Restricted
 Turing Machines

Zbyněk Křivka

krivka@fit.vutbr.cz

based on
Szepietowski, A.: Turing Machines with Sublogarithmic Space. Springer, 1994 (Chapters 1 through 5)

Formal Model Research Group
Faculty of Information Technology,
Brno University of Technology, Czech Republic

Contents

1. Definitions

- Turing Machine
- Complexity Measures
- Pebble Automata

2. Results (Log-space, Sublog-space)
3. Maybe some proofs
4. Discussion

Turing Machine

- All recursively enumerable functions
- All algorithmically described languages
- Type-0 grammars
- Almost all problems are undecidable and many are untractable ($\operatorname{not} \mathbf{P}$ with small \boldsymbol{n})
\Rightarrow restrict space of TM
\Rightarrow reduce power but better tractability

Space-bounded Turing Machines

- Assume: 2-way, read-only input, read-write work tape
- Complexity measure: Space (Strongly, Weakly)
- Log-space: Model independent
- Constant-space: Power?
- Sublog-space: How small bit of information improves finite automaton?
- Differences of log vs sublog bounded-space TMs:
- Depends on the machines models \& modes of space complexity (but lower bound same for many models).
- $L(n) \geq \log n$ closed under catenation, not $L(n)=o(\log n)$; Below $\log n$, no unbounded non-decreasing function is fully space constructible.
- More sophisticated proof techniques.

Turing Machine

Turing Machine (TM) is a sixtuple

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right), \text { where }
$$

- Q —finite set of states,
- Σ —an input alphabet
$\cdot \Gamma$ —a tape alphabet with the blank symbol $\square \in \Gamma$,
- $q_{0} \in Q$-start state,
- $F \subseteq Q$-a set of accepting states,
- $\delta: Q \times \Sigma \cup\{$ - $\} \times \Gamma \rightarrow \operatorname{Power}\left((\Gamma-\{\square\}) \times Q \times\{R, N, L\}^{2}\right)-$ the transition function describing rules of the form

$$
a p t_{r} \rightarrow t_{w} A_{w t} q A_{i n}
$$

where $p, q \in Q, a \in \Sigma, t_{r}, t_{w} \in \Gamma, A_{w t}, A_{i n} \in\{R, N, L\}$.

Deterministic Turing Machine

Deterministic Turing Machine (DTM) M is a

 TM where$$
\delta: Q \times \Sigma \cup\{\triangleleft\} \times \Gamma \rightarrow(\Gamma-\{\square\}) \times Q \times\{R, N, L\}^{2}
$$

In other words:

$$
\text { For every }\left(p, a, t_{r}\right) \text {, }
$$

there is at most one $\left(t_{w}, q, A_{w t}, A_{i n}\right)$ in $\delta\left(p, a, t_{r}\right)$, where $p, q \in Q, a \in \Sigma, t_{r}, t_{w} \in \Gamma, A_{w i}, A_{i n} \in\{R, N, L\}$.

- One-way TM: input head cannot move to the left

Configuration

Configuration of M on an input w :

```
(>\mp@subsup{w}{1}{}qa\mp@subsup{w}{2}{}<,\mp@subsup{x}{1}{}q\mp@subsup{x}{2}{})\mathrm{ or (i, }\mp@subsup{x}{1}{}q\mp@subsup{x}{2}{})
```

where $q \in Q, w=w_{1} a w_{2} \in \Sigma^{*}, 0 \leq i \leq|w|+1$

$$
x=x_{1} x_{2} \in(\Gamma-\{\square\})^{*}
$$

In addition: $w[0]=\downarrow, w[|w|+1]=\mathbb{4}, x[|x|+1]=\square$

- input tape CANNOT change
- just possition of input head is sufficient

Initial Configuration:
$\left(>q_{0} w \triangleleft, q_{0} \varepsilon\right)$ or simply $\left(1, q_{0} \varepsilon\right)$

8/31

Computation

Computation step:

$$
\begin{gathered}
\left(i, x_{1} \boldsymbol{p} x_{2}\right) \Rightarrow\left(i^{\prime}, x_{1}{ }^{\prime} \boldsymbol{q} x_{2}{ }^{\prime}\right)\left[a p t_{r} \rightarrow t_{w} A_{w t} \boldsymbol{q} A_{i n}\right] \\
\text { where }\left|x_{1}\right|=j-1, M \text { does: }
\end{gathered}
$$

1. write t_{w} on $x[j]$;
2. do action $A_{w t}$ on the work tape;
3. do action $A_{\text {in }}$ on the input tape;
4. change the current state to q.

M cannot enter more than c configurations, where

$$
c=|Q| \cdot(|w|+2) \cdot|x| \cdot|\Gamma|^{|x|}
$$

Internal Configuration

- final configuration = no computation step possible
- accepting configuration $=$ final configuration with accepting state
- computation $=$ finite or infine sequence of configurations

Internal Configuration of M:

$$
x 1 q x 2
$$

$$
\begin{gathered}
\text { where } q \in Q, \\
x=x_{1} x_{2} \in(\Gamma-\{\square\})^{*},
\end{gathered}
$$

and j is the position of the work head, $1 \leq j \leq|x|+1$.
Upper bound for the number of all internal configurations: $d^{|x|}=|Q| \cdot|x| \cdot \mid \Gamma^{|x|}$

Space Complexity

- the maximal space used by configurations of the computation
- recall that every visited cell is non-blank
$\boldsymbol{L}(\boldsymbol{n})$ be a function on natural number. Let $w=|n|$. Strongly L(n) space-bounded TM:
if no accessible configuration on any input w uses more than $L(n)$ cells on the work tape.

Weakly $L(n)$ space-bounded TM:
If for every accepted input w, at least one accepting computation uses at most $L(n)$ space.
Middle $L(n)$ space-bounded TM:
If no accessible configuration on any accepted input w uses more than $L(n)$ space.

Space Complexity Classes

DSPACE[L(n)], NSPACE[L(n)] - class of languages accepted by deterministic and nondeterministic TM, respectively.

- Add prefix strong, weak, or middle, if needed; otherwise the results holds for all types of the definition.

Notation: (In literature: $=$ corresponds to \in)
$f(n)=O(g(n))$ if there exists $c>0$, s. t. $f(n) \leq c g(n)$.
$f(n) \ll g(n)$ if $\lim _{\inf _{n \rightarrow \infty}}(f(n) / g(n))=0$.
$f(n)=o(g(n))$ if $\lim _{n \rightarrow \infty}(f(n) / g(n))=0$.

- The logarithm function $\log \boldsymbol{n}$ is in base 2.

TM with Logarithmic Space

- TM with logarithmic or greater space can
- store on the work tape numbers up to the size of the input;
- remember any position on the input tape.
- Eg. GAP (Graph accessibility problem) language

Example 1: Primes

$\left\{a^{n}: n\right.$ is prime $\}$

- counts the letters of an input
- stores the number in binary on the work tape
- checks one by one for each $1<k<n$,
whether k divides n
- accepts if no k divides n.

Example 2: Reflection

$$
\left\{w w^{R}: w \in\{0,1\}^{*}\right\}
$$

- compare the first letter with the last one
- compare the second with the last by one
- just track the current position in binary on the work tape

Pebble Automata

A k-pebble finite automaton (k-PA):

- two-way read-only input tape (no work tape),
- k pebbles which can be placed on and removed from the input tape (bound to the concrete cell),
- finite set of rules of the form

$q a P \rightarrow q\{\mathbf{N}, \mathbf{R}, \mathbf{L}\}\{$ drop, take $\}$

 where $p, q \in Q, a \in \Sigma, P$ is a set of pebbles on the current cell.
Example 3: Reflection in PA

$$
\left\{w w^{R}: w \in\{0,1\}^{*}\right\}
$$

- How much pebbles do we need?
- What is the power of 1-pebble automata?
- What is the power of k-pebble automata?

Power of Pebble Automata

Theorem: k-PA $=\log$-space-TM, with k depending on the number of work tape symbols.

Proof:

See page 16-18.

GAP Language

GAP language consists of encoded directed graphs which have a path from the first to last vertex.

A directed graph $G=(V, E)$, where $E \subseteq V \times V$.
Encoded as

$$
* * a_{1} * a_{1,1} * a_{1,2} \ldots a_{1, i} * * a_{2} * a_{2,1} * a_{2,2} \ldots a_{2, i 2} * * \ldots
$$

Thus, lists of vertices reachable from the list head.

NSPACE $(\log n)$ Complete Languages

Lemma: GAP $\in \operatorname{NSPACE}(\log n)$.

Proof: page 18

Lemma: GAP is NSPACE $(\log n)$ complete.

Proof: page 19

NSPACE $(\log n)$ Complete Languages

Lemma: If A_{1} is \log-space reducible to A_{2} and $A_{2} \in \operatorname{DSPACE}(\log \boldsymbol{n})$ then $A_{1} \in \operatorname{DSPACE}(\log \boldsymbol{n})$.

Proof: page 19

Theorem: GAP $\in \operatorname{DSPACE}(\log n)$ iff $\operatorname{NSPACE}(\log n)=\operatorname{DSPACE}(\log n)$.

TM with Sublogarithmic Space

- Constant space-bounded TM accepts regular languages (Hopcroft and Ullman 1979)
- $L(n) \ll \log n:$ e.g. Primes (even primes are trivial)
- a little tricky definition of <<
- The first real non-regular sublog-space language
- Stearns et al. 1965

$$
w_{k}=b_{0} \# b_{1} \# \ldots \# b_{k}
$$

where b_{i} is binary description of the number i.

22/31

Example 4: Numbers

$$
w_{k}=b_{0} \# b_{1} \# \ldots \# b_{k}
$$

- compare b_{0} with b_{1}
- compare b_{1} with b_{2}
- just track the current position in binary representation of b_{i}

$$
L(n)=\lfloor\log \lfloor\log k\rfloor\rfloor+1
$$

Example 5: What is $\log \log n$?

\boldsymbol{n}	$\boldsymbol{\operatorname { l o g } \boldsymbol { n }}$	$\boldsymbol{\operatorname { l o g } \operatorname { l o g } \boldsymbol { n }}$
2	1	0
4	2	1
16	4	2
256	8	3
65536	16	4
4294967296	32	5
$1,8467 \mathrm{E}+19$	64	6
$3,40282 \mathrm{E}+38$	128	7
$1,15792 \mathrm{E}+77$	256	8

Example 6: Nonequivalence

$$
A=\left\{a^{k} b^{m}: k \neq m\right\}
$$

- A is non-regular
- A \in weak-DSPACE $[\log \log n]$
- A \in weak-one-way-NSPACE $[\log \log n]$
- Trick (For proof see pages 22 through 24):
- M guesses j such that $k \neq m(\bmod j)$ and
$\cdot j<c \log |k+m|$.
- $A \notin$ strong-NSPACE[sublog $n]$

What are the lower bounds?

Lower Bounds for Accepting Non-regular Languages

- Gap theorems: no use of constant-bounded or less than $(d \log \log n)$ bounded-space to get nonregular languages.
- Lower bound for weakly space-bounded one-way TMs is $\log n$ for deterministic and $\log \log n$ for nondeterministic (Alberts 1985).
- TMs with 2-dimensional inputs can be spacebounded by $\log ^{*} n$ or $\log ^{(k)} n$

Lower Bounds for Two-way TMs

Theorem: Let M be a weakly $L(n)$ spacebounded deterministic or non-deterministic TM. Then either:

- $L(n) \geq c \log \log n$ with $c>0$ and inf. many n, or
- M accepts a regular language and space used by M is bounded by a constant.

Proof: k-equivalent suffixes

$C(k, M)$ - set of all k space-bounded (s-b) internal cfgs of M

$\left(\beta_{1}, \beta_{2}\right) \in \boldsymbol{P}(k, M, w)$ iff there is k s-b computation of M starting in β_{1} at $w[1]$ reaches β_{2} just after it leaves w to the left.
$(\beta) \in Q(k, M, w)$ iff there is k s-b accepting computation of M starting in β at leftmost letter of w accepts without leaving w.
k-equivalent u and $v, u, v \in \Sigma^{*}$:

$$
u \equiv_{k} v \text { iff }
$$

$$
P(k, M, u)=P(k, M, v) \text { and } Q(k, M, u)=Q(k, M, v) .
$$

Intuitively: M cannot distinguish k-equivalent suffixes when using k space.

Proof: Auxiliary Lemma

Lemma: Let $u, v, x \in \Sigma^{*}$, and $\boldsymbol{u} \equiv_{\boldsymbol{k}} \boldsymbol{v}$. Then:
There is $k \mathrm{~s}-\mathrm{b}$ accepting computation of M on $x u$ iff there is $k s-b$ accepting computation of M on $x v$.

Proof (see page 29):

- Study crossing x - u boundary: divide computation into segments $\alpha_{1}, \ldots, \alpha_{j}$, where α_{i} satisfy (a) with odd i enters x, and (b) with even i enters u.
- From assumption $u \equiv_{k} v$, for α_{i} and even i, there is corresponding δ_{i} (by analogy for even j).
- For even i, replace α_{i} by δ_{i} and we obtain computation of M on $x v$.

29/31

Proof of Theorem

Part: $\boldsymbol{L}(\boldsymbol{n}) \geq \boldsymbol{c} \log \log \boldsymbol{n}$ with $c>0$ and inf. many n

Proof (page 29): Part 1) Contradition of ($w_{i} \equiv_{k} w_{j}$ and $w_{i} \equiv_{k-1} w_{j}$)

- Suppose no constant upper s-b \Rightarrow inf. many k and w.
- $w=a_{1} a_{2} \ldots a_{n}$ the shortest input accepted in k space.
- $w_{i}=a_{i} \ldots a_{n}, w_{j}=a_{j} \ldots a_{n}, i<j$.
- Suppose $w_{i} \equiv_{k} w_{j}$ and $w_{i} \equiv_{k-1} w_{j}$ for some $1 \leq i<j \leq n$.
- From lemma, there is $k \mathrm{~s}-\mathrm{b}$ accepting computation on $w^{\prime}=a_{1} a_{2} \ldots a_{i-1} a_{j} \ldots a_{n}$.
- As w is the shortest input \& $w_{i} \equiv_{k-1} w_{j}, w^{\prime}$ cannot use less than k; otherwise w also accepted in less space.

30/31

Proof of Theorem

Part: $\boldsymbol{L}(\boldsymbol{n}) \geq \boldsymbol{c} \log \log n$ with $c>0$ and inf. many n
Proof (Part 2, page 29): Recall: \equiv_{k} is an equivalence relation; Let $\mathrm{c}=d^{|x|}=|Q| \cdot|x| \cdot \mid \Gamma{ }^{|x|}$, where $|x|=k$ and $|w|=n$.

- The number of possible equivalence classes \equiv_{k}

$$
f_{k}=, \# \boldsymbol{P}(k, M, w) \cdot \# \boldsymbol{Q}(k, M, w)^{" ‘}=2^{(\mathrm{c} \cdot \mathrm{c})} \cdot 2^{\mathrm{c}} \leq 4^{(\mathrm{c} \cdot \mathrm{c})}
$$

- Since two diff. suffixes w_{i}, w_{j} cannot belong to the same equivalence classes of \equiv_{k} and \equiv_{k-1}, it requires that

$$
\begin{gathered}
\left(4^{(c \cdot c)}\right)^{2} \geq f_{k} \cdot f_{k}=\left(4^{(c \cdot c)}\right) \cdot\left(4^{\left(c^{\prime} \cdot c^{\prime}\right)}\right) \geq n \\
\log \left(4^{(\mathrm{ccc} \cdot \mathrm{c})}\right)^{2} \geq \log n \\
\log \left(2 d^{|x|} \cdot d^{|x|}\right) \geq \log \log n \\
\boldsymbol{k} \geq \boldsymbol{h} \log \log n .
\end{gathered}
$$

- Hence, $L(n) \geq h \log \log n$ for const. $h>0 \&$ infinite many n.

Conclusion

- Open problems:
- deterministic vs non-deterministic TMs
- Read the book!

Discussion

