Restricted Turing Machines

Zbyněk Křivka

krivka@fit.vutbr.cz

based on

Szepietowski, A.: Turing Machines with Sublogarithmic Space. Springer, 1994 (Chapters 1 through 5)

> Formal Model Research Group Faculty of Information Technology, Brno University of Technology, Czech Republic

Contents

1. Definitions

- Turing Machine
- Complexity Measures
- Pebble Automata
- 2. Results (Log-space, Sublog-space)
- 3. Maybe some proofs
- 4. Discussion

Turing Machine

- All recursively enumerable functions
- All algorithmically described languages
- Type-0 grammars
- . . .
- Almost all problems are undecidable and many are untractable (not P with small n)
 ⇒ restrict space of TM
 - \Rightarrow reduce power but better tractability

Space-bounded Turing Machines

- Assume: 2-way, read-only input, read-write work tape
- Complexity measure: Space (Strongly, Weakly)
- Log-space: Model independent
- Constant-space: Power?
- Sublog-space: How small bit of information improves finite automaton?
- Differences of log vs sublog bounded-space TMs:
 - Depends on the machines models & modes of space complexity (but lower bound same for many models).
 - *L*(*n*)≥log *n* closed under catenation, not *L*(*n*) = *o*(log *n*); Below log *n*, no unbounded non-decreasing function is fully space constructible.
 - More sophisticated proof techniques.

Turing Machine

Turing Machine (**TM**) is a sixtuple $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- *Q*—finite set of *states*,
- Σ —an *input alphabet*
- Γ —a *tape alphabet* with the *blank symbol* $\Box \in \Gamma$,
- $q_0 \in Q$ —start state,
- $F \subseteq Q$ —a set of accepting states,
- $\delta: Q \times \Sigma \cup \{ \blacktriangleright \blacktriangleleft \} \times \Gamma \rightarrow Power((\Gamma \{\Box\}) \times Q \times \{R, N, L\}^2)$ *the transition function* describing rules of the form

$$apt_r \rightarrow t_w A_{wt} q A_{in}$$

where $p, q \in Q, a \in \Sigma, t_r, t_w \in \Gamma, A_{wt}, A_{in} \in \{R, N, L\}.$

Deterministic Turing Machine

Deterministic Turing Machine (DTM) *M* is a **TM** where $\delta: Q \times \Sigma \cup \{ \blacktriangleright \blacktriangleleft \} \times \Gamma \rightarrow (\Gamma - \{\Box\}) \times Q \times \{R, N, L\}^2$

In other words:

For every (p, a, t_r) , there is at most one (t_w, q, A_{wt}, A_{in}) in $\delta(p, a, t_r)$, where $p, q \in Q, a \in \Sigma, t_r, t_w \in \Gamma, A_{wt}, A_{in} \in \{R, N, L\}$.

• One-way TM: input head cannot move to the left

Configuration

- input tape CANNOT change
- just possition of input head is sufficient

Initial Configuration:

 $(\blacktriangleright q_0 w \blacktriangleleft, q_0 \varepsilon)$ or simply $(1, q_0 \varepsilon)$

Computation

Computation step: $(i, x_1px_2) \Rightarrow (i', x_1'qx_2') [apt_r \rightarrow t_w A_{wt}qA_{in}]$ where $|x_1| = j - 1$, *M* does: 1. write t_w on x[j]; 2. do action A_{wt} on the work tape; 3. do action A_{in} on the input tape; 4. change the current state to q.

M cannot enter more than c configurations, where $c = |Q| \cdot (|w|+2) \cdot |x| \cdot |\Gamma|^{|x|}$

Internal Configuration

- *final configuration* = no computation step possible
- *accepting configuration* = final configuration with accepting state
- *computation* = finite or infine sequence of configurations

Upper bound for the number of all internal configurations: $d^{|x|} = |Q| \cdot |x| \cdot |\Gamma|^{|x|}$

Space Complexity

- the maximal space used by configurations of the computation
- recall that every visited cell is non-blank

L(n) be a function on natural number. Let w = |n|. *Strongly L(n) space-bounded TM*: if no accessible configuration on **any input** *w* uses more than L(n) cells on the work tape.

Weakly L(n) space-bounded TM:

If for every accepted input w, at least one accepting computation uses at most L(n) space.

Middle L(n) space-bounded TM:

If no accessible configuration on any accepted input w uses more than L(n) space.

Space Complexity Classes

DSPACE[*L*(*n*)], *NSPACE*[*L*(*n*)] – class of languages accepted by **deterministic** and **nondeterministic** TM, respectively.

• Add prefix *strong*, *weak*, or *middle*, if needed; otherwise the results holds for all types of the definition.

Notation: (In literature: = corresponds to \in) f(n) = O(g(n)) if there exists c > 0, s. t. $f(n) \le cg(n)$. $f(n) \le g(n)$ if $\liminf_{n \to \infty} (f(n)/g(n)) = 0$. f(n) = o(g(n)) if $\lim_{n \to \infty} (f(n)/g(n)) = 0$.

• The logarithm function log *n* is in base 2.

TM with Logarithmic Space

- TM with logarithmic or greater space can
 - store on the work tape numbers up to the size of the input;
 - remember any position on the input tape.
- Eg. *GAP* (Graph accessibility problem) language

Example 1: Primes

 $\{a^n : n \text{ is prime}\}\$

- counts the letters of an input
- stores the number in binary on the work tape
- checks one by one for each 1 < k < n, whether k divides n
- accepts if no *k* divides *n*.

Example 2: Reflection

$\{ww^R : w \in \{0,1\}^*\}$

- compare the first letter with the last one
- compare the second with the last by one
- •
- just track the current position in binary on the work tape

Pebble Automata

A k-pebble finite automaton (k-PA):

- *two-way read-only input tape* (no work tape),
- *k pebbles* which can be placed on and removed from the input tape (bound to the concrete cell), *finite set of rules* of the form

$qaP \rightarrow q\{N, R, L\}\{drop, take\}$

where $p, q \in Q, a \in \Sigma, P$ is a set of pebbles on the current cell.

Example 3: Reflection in PA

 $\{ww^R : w \in \{0,1\}^*\}$

- How much pebbles do we need?
- What is the power of 1-pebble automata?
- What is the power of *k*-pebble automata?

Power of Pebble Automata

Theorem: *k***-PA** = *log-space-TM*, with *k* depending on the number of work tape symbols.

Proof: See page 16-18.

GAP Language

GAP language consists of encoded directed graphs which have a path from the first to last vertex.

A directed graph G = (V, E), where $E \subseteq V \times V$.

Encoded as

$$**a_1*a_{1,1}*a_{1,2}...a_{1,i_1}**a_2*a_{2,1}*a_{2,2}...a_{2,i_2}**...$$

Thus, lists of vertices reachable from the list head.

NSPACE(log *n*) Complete Languages

Lemma: $GAP \in NSPACE(\log n)$.

Proof: page 18

Lemma: *GAP* is *NSPACE*(log *n*) complete.

Proof: page 19

NSPACE(log *n*) Complete Languages

Lemma: If A_1 is log-space reducible to A_2 and $A_2 \in DSPACE(\log n)$ then $A_1 \in DSPACE(\log n)$.

Proof: page 19

Theorem: $GAP \in DSPACE(\log n)$ iff $NSPACE(\log n) = DSPACE(\log n)$.

TM with Sublogarithmic Space

- **Constant space-bounded** TM accepts regular languages (Hopcroft and Ullman 1979)
- *L*(*n*) << log *n*: e.g. Primes (even primes are trivial)
 - a little tricky definition of <<
- The first real non-regular **sublog-space** language
 - Stearns et al. 1965

$$w_k = b_0 \# b_1 \# \dots \# b_k$$

where b_i is binary description of the number *i*.

Example 4: Numbers

$$w_k = b_0 \# b_1 \# \dots \# b_k$$

- compare b_0 with b_1
- compare b_1 with b_2
- •

• just track the current position in binary representation of b_i

$$L(n) = \lfloor \log \lfloor \log k \rfloor \rfloor + 1$$

Example 5: What is log log *n*?

n	log n	log log n
2	1	0
4	2	1
16	4	2
256	8	3
65536	16	4
4294967296	32	5
1,84467E+19	64	6
3,40282E+38	128	7
1,15792E+77	256	8

Example 6: Nonequivalence

$$A = \{a^k b^m \colon k \neq m\}$$

- A is non-regular
- $A \in weak$ -DSPACE[log log n]
- $A \in weak$ -one-way-NSPACE[log log n]
- •Trick (For proof see pages 22 through 24):
 - *M* guesses *j* such that $k \neq m \pmod{j}$ and
 - $j < c \log |k + m|$.
- $A \notin strong$ -NSPACE[sublog n]

What are the lower bounds?

Lower Bounds for Accepting Non-regular Languages

- **Gap theorems**: no use of constant-bounded or less than (*d* log log *n*) bounded-space to get non-regular languages.
- Lower bound for weakly space-bounded one-way TMs is log *n* for deterministic and log log *n* for nondeterministic (Alberts 1985).
- TMs with 2-dimensional inputs can be spacebounded by log^{*}*n* or log^(*k*)*n*

Lower Bounds for Two-way TMs

Theorem: Let *M* be a weakly *L*(*n*) spacebounded deterministic or non-deterministic **TM**. Then either:

• $L(n) \ge c \log \log n$ with c > 0 and inf. many n,

or

• *M* accepts a **regular language** and space used by *M* is **bounded by a constant**.

Proof: k-equivalent suffixes

C(k, M) – set of all k space-bounded (s-b) internal cfgs of M

 $(\beta_1, \beta_2) \in P(k, M, w)$ iff there is k s-b computation of M starting in β_1 at w[1] reaches β_2 just after it leaves w to the left.

(β) ∈ Q(k, M, w) iff there is *k* s-b accepting computation of *M* starting in β at leftmost letter of *w* accepts without leaving *w*.

k-equivalent u and v, u,v $\in \Sigma^*$: $u \equiv_k v$ iff P(k, M, u) = P(k, M, v) and Q(k, M, u) = Q(k, M, v).

Intuitively: *M* cannot distinguish *k*-equivalent suffixes when using *k* space.

Proof: Auxiliary Lemma

Lemma: Let $u, v, x \in \Sigma^*$, and $u \equiv_k v$. Then: There is k s-b accepting computation of M on xu iff there is k s-b accepting computation of M on xv.

Proof (see page 29):

• Study crossing *x*-*u* boundary: divide computation into segments $\alpha_1, \ldots, \alpha_j$, where α_i satisfy (a) with odd *i* enters *x*, and (b) with even *i* enters *u*.

- From assumption $u \equiv_k v$, for α_i and even *i*, there is corresponding δ_i (by analogy for even *j*).
- For even *i*, replace α_i by δ_i and we obtain computation of *M* on *xv*.

Proof of Theorem

Part: $L(n) \ge c \log \log n$ with c > 0 and inf. many n

Proof (page 29): Part 1) Contradition of $(w_i \equiv_k w_j \text{ and } w_i \equiv_{k-1} w_j)$

- Suppose no constant upper s-b \Rightarrow inf. many *k* and *w*.
- $w = a_1 a_2 \dots a_n$ the **shortest** input accepted **in** *k* **space**.
- $w_i = a_i \dots a_n, w_j = a_j \dots a_n, i < j.$
- Suppose $w_i \equiv_k w_j$ and $w_i \equiv_{k-1} w_j$ for some $1 \le i < j \le n$.
- From lemma, there is k s-b accepting computation on $w' = a_1 a_2 \dots a_{i-1} a_j \dots a_n$.
- As *w* is the shortest input & $w_i \equiv_{k-1} w_j$, *w'* cannot use less than *k*; otherwise *w* also accepted in less space.

Proof of Theorem

Part: $L(n) \ge c \log \log n$ with c > 0 and inf. many n

Proof (Part 2, page 29): Recall: \equiv_k is an equivalence relation; Let $c = d^{|x|} = |Q| \cdot |x| \cdot |\Gamma|^{|x|}$, where |x| = k and |w| = n. • The number of possible equivalence classes \equiv_k $f_{\nu} = ,, \# P(k, M, w) \cdot \# Q(k, M, w)^{"} = 2^{(c \cdot c)} \cdot 2^{c} \le 4^{(c \cdot c)}$ • Since two diff. suffixes w_i , w_j cannot belong to the same equivalence classes of \equiv_k and \equiv_{k-1} , it requires that $(4^{(c \cdot c)})^2 \ge f_k \cdot f_k = (4^{(c \cdot c)}) \cdot (4^{(c' \cdot c')}) \ge n$ $\log (4^{(c \cdot c)})^2 \ge \log n$ $\log \left(2 d^{|x|} \cdot d^{|x|}\right) \ge \log \log n$ $k \geq h \log \log n$.

• Hence, $L(n) \ge h \log \log n$ for const. h > 0 & infinite many n.

Conclusion

- Open problems:
 - deterministic vs non-deterministic TMs
- Read the book!

