
On n-Path-Controlled Grammars
Jǐŕı Koutný

Brno University of Technology, Faculty of Information Technology
Božetěchova 2, 612 00 Brno, CZ

www.fit.vutbr.cz/∼ikoutny

Formal Model Research Group 2010

Outline

Introduction

Definitions

Results

Examples

Conclusion

References

Acknowledgement

This work was partially supported by the FRVŠ MŠMT grant
FR2581/2010/G1, the BUT FIT grant FIT-10-S-2, and the research
plan MSM0021630528.

On n-Path-Controlled Grammars 2 / 63

Introduction

What’s going on

• Regulated formal model.
• Model based on the restrictions on the derivation trees.
• Actual trend in today’s FLT (see [1], [2], [3], [4], [5], [6]).
• Simple extension of context-free grammars.
• One of the ways to increase the generative power of

context-free grammar.
• Potentially applicable model.

Motivation

Generation of not context-free languages of the form
• anbncn, anbncndn, anbncndnen, . . .
• akblakbl , akblcmakblcm, akblcmdnakblcmdn, . . .

On n-Path-Controlled Grammars 3 / 63

Introduction

What’s going on

• Regulated formal model.
• Model based on the restrictions on the derivation trees.
• Actual trend in today’s FLT (see [1], [2], [3], [4], [5], [6]).
• Simple extension of context-free grammars.
• One of the ways to increase the generative power of

context-free grammar.
• Potentially applicable model.

Motivation

Generation of not context-free languages of the form
• anbncn, anbncndn, anbncndnen, . . .
• akblakbl , akblcmakblcm, akblcmdnakblcmdn, . . .

On n-Path-Controlled Grammars 4 / 63

Preliminaries

Linear grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ T ∗NT ∗, N = V − T ,
• S ∈ V − T is the starting symbol.

Context-free grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ V ∗,
• S ∈ V − T is the starting symbol.

On n-Path-Controlled Grammars 5 / 63

Preliminaries

Linear grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ T ∗NT ∗, N = V − T ,
• S ∈ V − T is the starting symbol.

Context-free grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ V ∗,
• S ∈ V − T is the starting symbol.

On n-Path-Controlled Grammars 6 / 63

Preliminaries

Set of the derivation trees
• Let G = (V , T ,P, S) be a grammar.
• Let G4(x) denote a set of the derivation trees with frontier x

with respect to the grammar G starting from S.

A path

• A path s of t ∈G4(x) is sequence a1 . . .an, n ≥ 1, of nodes
of t with:

• a1 is the root of t ,
• a1 is labeled by starting symbol of G,
• an is a leaf of t ,
• an is labeled by terminal symbol of G,
• for each i = 1, . . . ,n− 1, there is an edge from ai to ai+1 in t .

• Let path(s) denote the word obtained by concatenating
all symbols of the path s (in order from the top).

On n-Path-Controlled Grammars 7 / 63

Preliminaries

Set of the derivation trees
• Let G = (V , T ,P, S) be a grammar.
• Let G4(x) denote a set of the derivation trees with frontier x

with respect to the grammar G starting from S.

A path

• A path s of t ∈G4(x) is sequence a1 . . .an, n ≥ 1, of nodes
of t with:

• a1 is the root of t ,
• a1 is labeled by starting symbol of G,
• an is a leaf of t ,
• an is labeled by terminal symbol of G,
• for each i = 1, . . . ,n− 1, there is an edge from ai to ai+1 in t .

• Let path(s) denote the word obtained by concatenating
all symbols of the path s (in order from the top).

On n-Path-Controlled Grammars 8 / 63

Path-controlled grammars

• PC grammars, for short.

• Based on a new type of the restriction in a derivation (see
Introduction in [4]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 9 / 63

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [4]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 10 / 63

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [4]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 11 / 63

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [4]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:
• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 12 / 63

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [4]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:
• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 13 / 63

n-path-controlled grammars

• nPC grammars, for short.

• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 14 / 63

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 15 / 63

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 16 / 63

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 17 / 63

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [4], Prop. 2).
• Linear paths can increase the generative power (see [4]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 18 / 63

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?

• Regular paths do not increase the generative power (see
[3] and [4], Prop. 2).

• Linear paths can increase the generative power (see [4]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 19 / 63

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [4], Prop. 2).
• Linear paths can increase the generative power (see [4]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 20 / 63

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [4], Prop. 2).
• Linear paths can increase the generative power (see [4]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 21 / 63

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.

• For a nPC grammar (G,G′), there is some mC ∈ N that
denotes a number of common nodes for all p ∈ C.

• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,
path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 22 / 63

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.

• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,
path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 23 / 63

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 24 / 63

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 25 / 63

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 26 / 63

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 27 / 63

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 28 / 63

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 29 / 63

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 30 / 63

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 31 / 63

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 32 / 63

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 33 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Let (G,G′) be a III

n PC-grammar, where
• G = (V , T ,P, S),
• G′ = (V ′,V ,P′, S′).

• Consider t ∈(G,G′)4(z). For each path(s) = SA1 . . .Aka of t ,
where s ∈ C, consider

• the rules Ai → xiAi+1yi used when passing from Ai to Ai+1 on
this path,

• the rule Ak → xkayk used in the last step of the derivation in G
corresponding to the path s.

On n-Path-Controlled Grammars 34 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Let (G,G′) be a III

n PC-grammar, where
• G = (V , T ,P, S),
• G′ = (V ′,V ,P′, S′).

• Consider t ∈(G,G′)4(z). For each path(s) = SA1 . . .Aka of t ,
where s ∈ C, consider

• the rules Ai → xiAi+1yi used when passing from Ai to Ai+1 on
this path,

• the rule Ak → xkayk used in the last step of the derivation in G
corresponding to the path s.

On n-Path-Controlled Grammars 35 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.
• By the pumping lemma for context-free languages, z ′1, z

′
2

are bounded in length.

On n-Path-Controlled Grammars 36 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.

• By the pumping lemma for context-free languages, z ′1, z
′
2

are bounded in length.

On n-Path-Controlled Grammars 37 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.
• By the pumping lemma for context-free languages, z ′1, z

′
2

are bounded in length.

On n-Path-Controlled Grammars 38 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 39 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 40 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 41 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider the derivations starting from v in G. This leads to

the pumping of two substrings v1, v2n+2 of z—one in the
left-hand side, one in the right-hand side controlled by the
common part of all s ∈ C.

• Consider the derivations starting from y in G. This leads to
the pumping of two substrings of z—one in the left-hand
side, one in the right-hand side corresponding to each
s ∈ C. For each si+1 ∈ C, denote this two substrings v2i+2,
v2i+3, i = 0, 1, . . . ,n− 1. Since (G,G′) is III

n PC grammar, we
obtain 2n pumped substrings of z.

On n-Path-Controlled Grammars 42 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider the derivations starting from v in G. This leads to

the pumping of two substrings v1, v2n+2 of z—one in the
left-hand side, one in the right-hand side controlled by the
common part of all s ∈ C.

• Consider the derivations starting from y in G. This leads to
the pumping of two substrings of z—one in the left-hand
side, one in the right-hand side corresponding to each
s ∈ C. For each si+1 ∈ C, denote this two substrings v2i+2,
v2i+3, i = 0, 1, . . . ,n− 1. Since (G,G′) is III

n PC grammar, we
obtain 2n pumped substrings of z.

On n-Path-Controlled Grammars 43 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• By the pumping lemma for context-free languages, the

substrings v1, v2, . . . , v2n+2 are bounded in length.

• Thus, the total length of the 2n + 2 pumped substrings of z is
bounded by a constant q.

On n-Path-Controlled Grammars 44 / 63

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• By the pumping lemma for context-free languages, the

substrings v1, v2, . . . , v2n+2 are bounded in length.
• Thus, the total length of the 2n + 2 pumped substrings of z is

bounded by a constant q.

On n-Path-Controlled Grammars 45 / 63

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 46 / 63

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 47 / 63

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 48 / 63

Examples

Example 1

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 , . . . ,a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 49 / 63

Examples

Example 1

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 , . . . ,a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 50 / 63

Examples

Example 1

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 , . . . ,a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 51 / 63

Examples

Example 2

Consider III
2 PC grammar (G,G′), where

G = ({S,X ,Y ,U,V ,a,b,c,d,e, f}, {a,b,c,d,e, f},P, S)
P = {S → aSf , S → aXYf , X → bXc, Y → dYe,

X → U, U → bc, Y → V , V → de}
L(G′) = {SnXnUb ∪ SnY nVd| n ≥ 1}

L(G,G′) = {aibicid iei f i | i ≥ 1}

Example of the derivation:
S ⇒ aSf ⇒ aaSff ⇒ aaaSfff ⇒ aaaaXYffff ⇒ aaaabXcYffff ⇒
aaaabbXccYffff ⇒ aaaabbbXcccYfffff ⇒
aaaabbbUcccYffff ⇒ aaaabbbbccccYffff ⇒
aaaabbbbccccdYeffff ⇒ aaaabbbbccccddYeeffff ⇒
aaaabbbbccccdddYeeeffff ⇒ aaaabbbbccccdddVeeeffff ⇒
aaaabbbbccccddddeeeeffff = a4b4c4d4e4f 4

On n-Path-Controlled Grammars 52 / 63

Examples

Example 2

Consider III
2 PC grammar (G,G′), where

G = ({S,X ,Y ,U,V ,a,b,c,d,e, f}, {a,b,c,d,e, f},P, S)
P = {S → aSf , S → aXYf , X → bXc, Y → dYe,

X → U, U → bc, Y → V , V → de}
L(G′) = {SnXnUb ∪ SnY nVd| n ≥ 1}

L(G,G′) = {aibicid iei f i | i ≥ 1}

Example of the derivation:
S ⇒ aSf ⇒ aaSff ⇒ aaaSfff ⇒ aaaaXYffff ⇒ aaaabXcYffff ⇒
aaaabbXccYffff ⇒ aaaabbbXcccYfffff ⇒
aaaabbbUcccYffff ⇒ aaaabbbbccccYffff ⇒
aaaabbbbccccdYeffff ⇒ aaaabbbbccccddYeeffff ⇒
aaaabbbbccccdddYeeeffff ⇒ aaaabbbbccccdddVeeeffff ⇒
aaaabbbbccccddddeeeeffff = a4b4c4d4e4f 4

On n-Path-Controlled Grammars 53 / 63

Examples

Example 3

Let m ≥ 0 with m mod 2 = 0. Let us have III
n PC grammar (G,G′),

n ≥ 0, where

G = ({Aj ,Bj ,aj | j = 1, . . . ,m} ∪ {C}, {aj | j = 1, . . . ,m},P,A1)
P ={A1 → a1A1, A1 → a1A2, B1 → B1a1, B1 → C, C → a1}∪
{Am → Amam, Am → {Bm}n}∪
{Ai → Aiai , Ai → Ai+1| i = 2, . . . ,m− 1 with i mod 2 = 0}∪
{Ai → aiAi , Ai → Ai+1| i = 3, . . . ,m− 1 with i mod 2 = 1}∪
{Bi → aiBi , Bi → Bi−1| i = 2, . . . ,m with i mod 2 = 0}∪
{Bi → Biai , Bi → Bi−1| i = 3, . . . ,m with i mod 2 = 1}

L(G′) = {Ak1
1 Ak2

2 . . .Akm
m Bkm

m Bkm−1
m−1 . . .B

k2
2 Bk1

1 Ca1| ki ≥ 0, i = 1, . . . ,m}

On n-Path-Controlled Grammars 54 / 63

Examples
Consider a derivation in (G,G′):

A1⇒k1ak1
1 A1 ⇒ ak1+1

1 A2 ⇒k2 ak1+1
1 A2ak2

2 ⇒ ak1+1
1 A3ak2

2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1Amakm
m . . .ak6

6 ak4
4 ak2

2

⇒ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{Bm}nakm
m . . .ak6

6 ak4
4 ak2

2

⇒n×km ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km−1 ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1akm−1

m−1}
nakm

m . . .ak6
6 ak4

4 ak2
2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 B1ak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 Cak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 ak+1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

L(G,G′) = {(ak1+1
1 ak3

3 . . .akm−1
m−1am

makm−2

m−2akm−4
m−4 . . .a

k2
2)n+1

| ki ≥ 0, i = 1, . . . ,m}

On n-Path-Controlled Grammars 55 / 63

Examples
Consider a derivation in (G,G′):

A1⇒k1ak1
1 A1 ⇒ ak1+1

1 A2 ⇒k2 ak1+1
1 A2ak2

2 ⇒ ak1+1
1 A3ak2

2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1Amakm
m . . .ak6

6 ak4
4 ak2

2

⇒ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{Bm}nakm
m . . .ak6

6 ak4
4 ak2

2

⇒n×km ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km−1 ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1akm−1

m−1}
nakm

m . . .ak6
6 ak4

4 ak2
2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 B1ak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 Cak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 ak+1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

L(G,G′) = {(ak1+1
1 ak3

3 . . .akm−1
m−1am

makm−2

m−2akm−4
m−4 . . .a

k2
2)n+1

| ki ≥ 0, i = 1, . . . ,m}
On n-Path-Controlled Grammars 56 / 63

Examples

Example 4

Consider m = 4 and III
3 PC grammar (G,G′), where

G = ({A,B,C,D, E, F ,G,H, I,a,b,c,d}, {a,b,c,d},P,A)
P = {A→ aA, A→ aB, B → Bb, B → C,

C → cC, C → D, D → Dd, D → HHH,
E → Ea, E → I, F → bF , F → E,
G→ Gc, G→ F , H → dH, H → G, I → a}

L(G′) = {ArBsCtDuHuGtF sE r Ia| r , s, t ,u ≥ 0}

L(G,G′) = {avcwdxbyavcwdxbyavcwdxbyavcwdxby | v > 0,w , x , y ≥ 0}

On n-Path-Controlled Grammars 57 / 63

Examples

Example of the derivation:
A⇒ aA⇒ aaB ⇒ aaBb⇒ aaCb⇒ aacCb⇒ aacDb⇒
aacDdb⇒ aacHHHdb⇒ aacdHHHdb⇒ aacdGHHdb⇒
aacdGcHHdb⇒ aacdFcHHdb⇒ aacdbFcHHdb⇒
aacdbEcHHdb⇒ aacdbEacHHdb⇒ aacdbIacHHdb⇒
aacdbaacHHdb⇒ aacdbaacdHHdb⇒ aacdbaacdGHdb⇒
aacdbaacdGcHdb⇒ aacdbaacdFcHdb⇒
aacdbaacdbFcHdb⇒ aacdbaacdbEcHdb⇒
aacdbaacdbEacHdb⇒ aacdbaacdbIacHdb⇒
aacdbaacdbaacHdb⇒ aacdbaacdbaacdHdb⇒
aacdbaacdbaacdGdb⇒ aacdbaacdbaacdGcdb⇒
aacdbaacdbaacdFcdb⇒ aacdbaacdbaacdbFcdb⇒
aacdbaacdbaacdbEcdb⇒ aacdbaacdbaacdbEacdb⇒
aacdbaacdbaacdbIacdb⇒ aacdbaacdbaacdbaacdb

On n-Path-Controlled Grammars 58 / 63

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 59 / 63

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 60 / 63

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 61 / 63

References

K. Čulik and H. A. Maurer.
Tree controlled grammars.
Computing, 19:129–139, 1977.

J. Dassow and B. Truthe.
Subregularly tree controlled grammars and languages.
In Automata and Fromal Languages - 12th International Conference AFL 2008,
Balatonfured, pages 158–169. Hungarian Academy of Sciences, 2008.

J. Koutný.
Regular paths in derivation trees of context-free grammars.
In Proceedings of the 15th Conference and Competition STUDENT EEICT 2009 Volume
4, pages 410–414. Faculty of Information Technology BUT, 2009.

S. Marcus, C. Mart́ın-Vide, V. Mitrana, and Gh. Păun.
A new-old class of linguistically motivated regulated grammars.
In CLIN, pages 111–125, 2000.

C. Mart́ın-Vide and V. Mitrana.
Further properties of path-controlled grammars.
In Formal Grammar / Mathematics of Language 2005, pages 219–230. Edimburgh,
2005.

Gh. Păun.
On the generative capacity of tree controlled grammars.
Computing, 21(3):213–220, 1979.

On n-Path-Controlled Grammars 62 / 63

Thank you for your attention!

	Introduction
	Definitions
	Results
	Examples
	Conclusion
	References

