
Some Algorithms Concerning Uniquely

Decipherable Codes
János Falucskai

Department of Mathematic and Informatics, College of Nyíregyháza
e-mail: falu@nyf.hu

The following problem plays an important role in code theory and its app-
lications: Having a set of codewords we have to decide whether there are
two or more sequences of codewords which form the same chain of char-
acters of codewords. The problem can be approached in various ways,
so the algorithms concerning uniquely decipherable codes use different
devices for testing this property. The algorithm of Sardinas–Patterson is
based on sequences of sets, other algorithms solve this problem by using
finite automata.

The algorithm of Sardinas – Patterson.

The algorithm of Sardinas – Patterson is based on the following: Let us
compute all the remainders in all attempts at a double factorization. It can
recognize a double factorization by the fact that the empty word is one of
the remainders.

Let A be a set, which we call an alphabet. A word w on the alphabet A is
a finite sequence of elements of A

w = (a1, a2, . . . , an), ai ∈ A

The set of all words on the alphabet A is denoted by A∗. If we omit the
empty word from A∗ then we get A+. Let X and Y be two subsets of

A+ and let x ∈ X and y ∈ Y . Denote X−1Y the following set: w is an
element of X−1Y if xw = y.

Let C be a subset of A+, and let

U1 = C−1C \ {ε}
U2 = C−1U1 ∪ U−1

1 C
...

Un+1 = C−1Un ∪ U−1
n C

(1)

Theorem 1 The set C ⊂ A+ is a uniquely decipherable code if and only
if none of the sets Un defined above contains the empty word.

Example 1 K = {00,01,011,100}

U1 = K−1K \ {ε} = {1}

U2 = K−1U1 ∪ U−1
1 K = {00}

U3 = K−1U2 ∪ U−1
2 K = {ε}

Since U3 contains the empty word, the code K is not a uniquely decipher-
able code.

Kayoko Tsuji’s algorithm

Let us construct an automaton AK for set K: L(AK) is the set of all
ambiguous words in K.

Theorem 2 The set K is a uniquely decipherable code if and only if L(AK)

is empty.

The automaton is constructed by the following way:
P (K) = {p ∈ K| pq ∈ K, q 6= ε}
!ϕ : P (K) → N : 1 ≤ ϕ(p) ≤ card(P (K))

S(K) = {s ∈ A+| qs ∈ K, q, s 6= ε}
!ψ : S(K) → N : card(P (K)) + 1 ≤ ψ(p)

S: initial state
ϕ(P (K)): inner states
S

p−→ ϕ(p): path
if u = p−1x, then ϕ(p)

u−→ ψ(u):path and ψ(u) inner state
if uv = x1 . . . xm and ∃w : wv = xm, then ψ(u)

v−→ ψ(v):path and ψ(v)

inner state
ψ(S(K) ∩K) ∩Q: terminal states

Example 2 K = {01,00,011,100}
P (K) = {01}
S(K) = {1,0,11,00}
ϕ(01) = 1, ψ(1) = 2, ψ(00) = 3, ψ(11) = 4, ψ(0) = 5

S
01−−→ ϕ(01) = 1, 1

1−→ ψ(1) = 2, 2
00−−→ ψ(00) = 3

States:S,1,2,3

Terminal states: ψ(S(K) ∩K) ∩Q =

= ψ({1,0,11,00} ∩ {01,00,011,100}) ∩ {S,1,2,3} =

= ψ(00) ∩ {S,1,2,3} = {3} ∩ {S,1,2,3} = {3}

Kayako Tsuji’s automaton for code K = {01,00,011,100}

Our automaton to test codes

Our algorithm is based on theory of finite automata. With the aid of the
automata of code words we construct an automaton for the code C over
alphabet ∆. If the code word wi ∈ C is x1x2 . . . xn, xj ∈ ∆, then

the automaton A({wi}) is A({wi}) = (Q(i), qλ, Q
(i)
F , A, δ(i)). The set

Q(i) is the set of states, the state qλ is the initial state of the automaton
A({wi}) and the singleton Q

(i)
F is the set of final state. Q

(i)
F = {i} and

|Q(i)| = length(wi)+1. Since, the transition rules of automatonA({wi})
are the followings:

δ(qλ, x1) = qx1
δ(qx1, x2) = qx1x2...
δ(qx1x2...xn−2, xn−1) = qx1x2...xn−2xn−1

δ(qx1x2...xn−1, xn) = i

Thus, the automaton A({wi}) accepts the code word wi. The figure rep-
resents the automaton of code word w1 = 01.

qλ q0 1
0 1

The automaton A({w1}) = A({01})

Let the code word w1 be a prefix part of the code word w2. Then the
automaton A({w1}) and the automaton A({w2}) have states, which are
signed by the same notations. Therefore, (Q(1) \ {1}) ⊂ Q(2).

qλ q0 q01 q010 2
0 1 0 0

The automaton A({w2}) = A({0100})

Since, the code word w1 is a prefix part of the code word w2, we can use
the following notation:

w1 = x1x2 · · ·xn; w2 = x1x2 · · ·xnxn+1 · · ·xm

Denote δ(1) the set of transition rules of the automaton A({w1}) and de-
note δ(2) the set of transition rules of the automaton A({w2}). If the code
word w1 is a prefix part of code word w2, then the sets of transition rules
of the automata A({w1}) and A({w2}) are the followings.
The set δ(1):

{δ(qλ, x1) = qx1,
δ(qx1, x2) = qx1x2,...
δ(qx1x2...xn−2, xn−1) = qx1x2...xn−2xn−1,
δ(qx1x2...xn−1, xn) = 1}

The set δ(2):

{δ(qλ, x1) = qx1,
δ(qx1, x2) = qx1x2,...
δ(qx1x2...xn−2, xn−1) = qx1x2...xn−2xn−1,
δ(qx1x2...xn−1, xn) = qx1x2...xn−1xn,

...
δ(qx1x2...xm−2, xm−1) = qx1x2...xm−2xm−1,
δ(qx1x2...xm−1, xm) = 2}

Consequently,

(δ(1) \ {δ(qx1x2...xn−1, xn) = 1}) ⊂ δ(2)

holds. Therefore,

δ(1) ∪ δ(2) = δ(2) ∪ {δ(qx1x2...xn−1, xn) = 1}.

Let

A({w1, w2}) = (Q, qλ, QF , A, δ(1,2)),

where

Q(1,2) = Q(1) ∪Q(2), Q
(1,2)
F = {1,2},

and

δ(1,2) = δ(1) ∪ δ(2) ∪ {δ(1, x1) = qx1, δ(2, x1) = qx1}.
We could see that

δ(qx1x2...xn−1, xn) = 1 ∈ δ(1),

δ(qx1x2...xn−1, xn) = qx1x2...xn−1xn ∈ δ(2).

Thus, A({w1, w2}) is a nondeterministic automaton.

Let us consider the nondecipherable sequences of code words. It is obvi-
ous, that the different factorizations contain at least two code words such
that one of them is prefix part of the other. If we join the automata of code-
words by the method above, then we get the automaton A({w1, . . . , wn})
for the code C = {w1, . . . , wn}. Obviously, the automaton A(C) accepts
exactly the language C+.

Theorem 3 If the automaton A(C) is deterministic, then the code C is
decipherable.

Proof 1 If the automaton A(C) is deterministic, then the code C is prefix.
Every prefix code is decipherable.

Remark 1 There are codes, which are nonprefix, but decipherable. For
example the code C = {01,0100}. That is, the automaton of a decipher-
able codes can be nondeterministic automaton. Thus, the theorem 3 is not
reversible. We demonstrate the graphical presentation of the automaton
A({01,0100}).

q q0 q01 q010 2

1

0 1 0 0

1
0

0

But, the code {01,0100} is decipherable. If we use our construction, then
the automata of the nondecipherable codes are nondeterministic.

The condition of the Theorem 3 is sufficient. Next, we give a necessary
and sufficient condition of the decipherability. The construction is based
on Theorem 4, which gives the relationship of the nondeterministic and its
deterministic automata:

Theorem 4 Every finite automaton equivalent to its deterministic finite au-
tomaton.

If the string v ∈ C+, then the automaton A(C) accepts v. That is, the
automaton A(C) reads v and gets to a final state. If the code C is not
uniquely decipherable, then we can follow different paths during reading v.
We join these different paths by the equivalent deterministic automaton.

Let us construct the deterministic automaton AD(C) for the automaton
A(C). If we have two (or more) factorization of a string, then there exists
a state of deterministic automaton such that the state contains at least two
final states of nondeterministic automaton. Denote Q

A(C)
F the set of final

states of the automaton A(C).

Theorem 5 A code is decipherable if, and only if in the automatonAD(C)

at most one – being in the automaton A(C) – accept state appears on the
right side of any transaction rule. That is, for any transaction rule the fol-
lowing holds: if the transaction rule δ({qi1, . . . , qin}, x) = {qj1, . . . , qjm}
is in the automaton AD(C), then don’t exist l 6= k such that, qjl ∈ Q

A(C)
F

and qjk ∈ Q
A(C)
F hold.

Proof 2 The proof is carried out in an indirect proof. Assume that a code is
decipherable and there exists a state of deterministic automaton such that

the state contains at least two final states of nondeterministic automaton.
That is, there exists a rule δ({qi1, . . . , qin}, x) = {qj1, . . . , qjm} in the au-

tomaton AD(C) and exist l 6= k such that, qjl ∈ Q
A(C)
F and qjk ∈ Q

A(C)
F

hold. Denote v the sequence of symbols which are touched in the course
of the path from the initial state qλ to the state {qj1, . . . , qjm}. That is,
qλ

v−→ {qj1, . . . , qjm}. Thus, the paths qλ
v−→ qjl and qλ

v−→ qjk are different
success paths in the nondeterministic automaton. That is, the sequence
v has two different factorization. Therefore, the code is nondecipherable.
We have contradiction and the ’if’ part is proved.

To prove the ’only if’ part we assume the following: There does not exist
state of the deterministic automaton such that the state contains at least
two final states of nondeterministic automaton and the code is nondeci-
pherable. Thus, if the code is nondecipherable, then there exists at least
two sequences of the codewords such that wi1 · · ·win = wj1 · · ·wjm and

win 6= wjm. If we read the sequences, then we get to the same state
because of the automaton is deterministic. Therefore, this state contains
the final states in and jm of the nondeterministic automaton because of
the code words win and wjm. We have contradiction and the theorem is
proved.

Example 3 Let C = {010, 1101, 10, 11}.

The automaton A({010, 1101, 10, 11}) of the code C is the following:

q C D E 2

A B 1

3

4

1

0

1

0

1
1

1

0

0

0 1

1 0

1

0

1

0

Let us construct its deterministic automaton AD({010, 1101, 10, 11}).
The figure represents the automaton AD({010, 1101, 10, 11}). Since,

δ({B, C},0) = {1,3},
the code is nondecipherable.

q C 4D AE

2BA B 1

3

1A

BC

13

1
0

1
1

0 10

0

1

1 0

1

0

1

0

0

1

01

1

0

The automaton AD({010, 1101, 10, 11})

