New pumping lemmas for linear and nonlinear context-free languages

Géza Horváth

Brno, 29 March 2011.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Chomsky hierarchy

The Generative (formal) Grammar is an universal tool for creating languages.

The Chomsky Hierarchy is a containment hierarchy of classes of formal grammars.

Linear languages

Definition

Linear languages can be generated by grammars have rules of the form $P \rightarrow a$ and $P \rightarrow aRb$, where $P, R \in V_N$, $a, b \in V_T^*$.

The hierarchy what we use

(日) (同) (E) (E) (E)

The Bar-Hillel lemma

Recursively enumerable languages

Context-free languages

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L$, |p| > n can be written as p = uvwxy, where $|vwx| \le m$, |vx| > 0 and $uv^iwx^iy \in L$ for every integer $i \ge 0$.

The Bar-Hillel lemma

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L$, |p| > n can be written as p = uvwxy, where $|vwx| \le m$, |vx| > 0 and $uv^iwx^iy \in L$ for every integer $i \ge 0$.

The Ogden Lemma

(日) (同) (E) (E) (E)

Lemma

All context-free language satisfies the Ogden restriction.

The strong Bader-Moura lemma

Lemma

All context-free language satisfies the strong Bader-Moura restriction.

Pumping lemma for linear languages

Lemma

If a language L is linear and infinite, then there exists integer n such than any string |p| > n can be wtritten as p = uvwxy, where $|uvxy| \le n$, |vx| > 0 and $uv^i wx^i y \in L$ for every integer $i \ge 0$.

Pumping lemma for non-linear context-free languages

Recursively enumerable languages

Context-free languages

Linear languages

Lemma

If the language L is non-linear, context-free and infinite, then there exists infinite many string $p \in L$ such that p can be written as p = rstuvwxyz, where |su| > 0, |wy| > 0 and $rs^{i}tu^{i}vw^{j}xy^{j}z \in L$ for every integers $i, j \ge 0$.

Classic application

Let $H \subseteq \{1^2, 2^2, 3^2, ...\}$ infinie set, and let $L_H = \{a^k b^k a^l b^l \mid k, l \ge 1; k \in H \text{ vagy } l \in H\} \cup \{a^m b^m \mid m \ge 1\}.$ 1. The language L_H satisfies the Bar-Hillel condition. 2a. The language L_H does not satisfy the conditions of the pumping lemma for linear languages. $\Rightarrow L_H$ non-linear. 2b. The language L_H does not satisfy the conditions of the new pumping lemma. $\Rightarrow L_H$ not context-free.

New application

Recursively enumerable languages

Context-free languages

Linear languages

Let $L = \{a^i b^i b^i \mid i \ge 0\}.$

1. We know that the language L is context-free, because the context-free grammar

$$G = (\{S, B\}, \{a, b\}, S, \{S \rightarrow aSB, S \rightarrow \lambda, B \rightarrow bb\}) \text{ generates } L.$$

2. The language L does not satisfy the conditions of the new pumping lemma.

 \Rightarrow *L* is linear.

K-linear languages

Definition

A context-free grammar $G = (V_N, V_T, S, P)$ is said to be a k-linear grammar if it has the form of a linear grammar plus one additional rule of the form $S \rightarrow S_1S_2...S_k$, where none of the S_i may appear on the right-hand side of any other rule and S may not appear in any other rule at all.

Pumping lemma for not k-linear context-free languages

Recursively enumerable languages

Context-free languages

K-linear languages

Theorem

Given a context-free language L which does not belong to any k-linear language for a given positive integer k. There exist infinite many words $w \in L$ which admit a factorization $w = uv_0w_0x_0y_0...v_kw_kx_ky_k$ satisfying $uv_0^{i_0}w_0x_0^{i_0}y_0...v_k^{i_k}w_kx_k^{i_k}y_k \in L$ for all integer $i_0, ..., i_k \ge 0$ and $|v_jx_j| \ne 0$ for all $0 \le j \le k$.

Metalinear languages

Definition

A context-free language is said to be metalinear if it is a k-linear language for some $k \ge 1$.

(日) (同) (E) (E) (E)

Pumping lemma for not metalinear context-free languages

Recursively enumerable languages

Context-free languages

Metalinear languages

Proposition

Given a context-free language L which is not in the class of metalinear languages. For all integers $k \ge 1$ there exist infinite many words $w \in L$ which admit a factorization $w = uv_0w_0x_0y_0...v_kw_kx_ky_k$ satisfying $uv_0^{i_0}w_0x_0^{i_0}y_0...v_k^{i_k}w_kx_k^{i_k}y_k \in L$ for all integer $i_0, ..., i_k \ge 0$ and $|v_jx_j| \ne 0$ for all $0 \le j \le k$.

K-rated linear languages

Definition

A context-free grammar is said to be a k-rated linear grammar if it has the form of a linear grammar and there exists a rational number k such that for each rule of the form $A \rightarrow vBw$ the |w|/|v| = k.

Normal form for k-rated linear grammars

Lemma

Every k-rated (k = g/h) linear grammar has an equivalent one in which for every rule of the form $A \rightarrow vBw$: |w| = g, |v| = h such that g and h are relatively primes and for all rules of the form $A \rightarrow u$ with $u \in V^*$: |u| < g + h holds.

(日) (同) (E) (E) (E)

Pumping lemma for k-rated linear languages

Theorem

Let L be a k-rated linear language. (k=g/h) Then there exists an integer n such that any word $p \in L$, $|p| \ge n$ can be written as p = uvwxy, satisfying $uv^i wx^i y \in L$ for all integer $i \ge 0$, $0 < |u|, |v| \le n(h/(g+h)), 0 < |x|, |y| \le n(g/(g+h)), |x|/|v| = |y|/|u| = g/h = k.$

Another pumping lemma for k-rated linear languages

Theorem

Let L be a k-rated linear language. (k=g/h) Then there exists an integer n such that any word $p \in L$, $|p| \ge n$ can be written as p = uvwxy, satisfying $uv^i wx^i y \in L$ for every integer $i \ge 0$, $0 < |v| \le n(h/(g+h)), 0 < |x| \le n(g/(g+h)), 0 < |w| \le n$, |x|/|v| = |y|/|u| = g/h = k.

Summary

Context-sensitive Languages Context-free Languages Metalinear Languages Fix-rated Linear Languages

< ロ > < 回 > < 回 > < 回 > < 回 > <

3

The target language classes of the new iteration lemmas

Bibliography

- Amar, V. and Putzolu, G.R.: On a Family of Linear Grammars, (1964).
- Amar, V. and Putzolu, G.R.: Generalizations of Regular Events, (1965).
- Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars, (1961).
- Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, languages, and Computation, (1979).
- Horváth, G.: New Pumping Lemma for Non-Linear Context-Free Languages, (2006).

Nagy, B.: On $5' \rightarrow 3'$ sensing Watson-Crick finite automata, (2008).