A New Interpretation of the Decipherability

János Falucskai
College of Nyíregyháza
falu@nyf.hu

2011.07.21

We define the "quasi code" H as follows: Let Σ and Δ be two finite alphabets. Denote H a finite subset of $2^{\Delta^{+}} \backslash \emptyset$. We define the function $\bar{f}: \Sigma \rightarrow H$, where \bar{f} is called "quasi coding" of Σ. A quasi code H is called decipherable if, whenever $f\left(x_{1}\right), \ldots, f\left(x_{n}\right), f\left(y_{1}\right), \ldots, f\left(y_{m}\right)$ are in H and satisfy $f\left(x_{1}\right) \ldots f\left(x_{n}\right)=f\left(y_{1}\right) \ldots f\left(y_{m}\right)$, then $n=m$ and $f\left(x_{i}\right)=f\left(y_{i}\right)$ for all $i, 1 \leq i \leq n$.

Example:

$$
\begin{aligned}
& \Sigma=\{a, b\} \\
& \Delta=\{1,0\} \\
& 2^{\Delta^{+}} \backslash \emptyset=\{\{0\},\{1\},\{0,1\},\{00\},\{01\} \ldots\} \\
& H=\{\{0,1\},\{0,110,1\}\} \\
& a \rightarrow\{0,1\} \\
& b \rightarrow\{0,110,1\}
\end{aligned}
$$

In general (non quasi codes) a code is a set of sequences of letters: $C=\{01,0,100\}$
$a \rightarrow 01$
$b \rightarrow 0$
$c \rightarrow 100$

The main question: decipherability
$0100=0 \quad 100=01 \quad 0 \quad 0$
$0100=b c=a b b$

The decipherability only depends on the code set for quasi codes, too.

Basic notions

We call the set Σ an alphabet, the elements of Σ letters. A word over Σ is a finite sequence of elements of some finite non-empty set Σ. The empty word λ consisting of zero letters. The length $|w|$ of a word w is the number of letters in w. Thus $|\lambda|=0$. If $u=x_{1} \cdots x_{k}$ and $v=x_{k+1} \cdots x_{\ell}$ are words over an alphabet Σ (with $x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{\ell} \in \Sigma$) then their catenation (which is also called their product) $u v=x_{1} \cdots x_{k} x_{k+1} \cdots x_{\ell}$ is also a word over Σ. In addition, for every word $u=x_{1} \cdots x_{k}$ over Σ (with $x_{1}, \ldots, x_{k} \in \Sigma$), $u \lambda=\lambda u=u\left(=x_{1} \cdots x_{k}\right.$). Moreover, $\lambda \lambda=\lambda$. Obviously, for every $u, v \in \Sigma^{*},|u v|=|u|+|v|$. Clearly, then, for all words u, v, w (over $\Sigma) u(v w)=(u v) w$. Catenation is an associative operation and the empty word λ is the identity with respect to catenation. We extend this operation on words to sets.

Let U, V be sets of words.

Then the catenation (or product) of these two sets is $U V=\{u v: u \in$ $U, v \in V\}$.

A word u is a factor (or subword) of a word v if $v=v_{1} u v_{2}$ for some words v_{1} and v_{2}.

If v_{1} is empty we say that u is a prefix of v, and if v_{2} is empty, we say that u is a suffix of v. Since catenation is an associative operation, for arbitrary $X_{1}, \ldots, X_{n} \subseteq \Sigma^{*}$ the set $X=X_{1} \cdots X_{n}$ is uniquely defined. We say that $X_{1} \cdots X_{n}$ is a decomposition of X.
$\{a b c, a b a c\}=\{a\}\{b c, b a c\}=\{a b\}\{c, a c\}$

If u is a subword (prefix, suffix) of v such that $u \neq v$ then we speak about proper subword (proper prefix, proper suffix).

If the nonempty set $X \subseteq \Sigma^{*}$ is closed under taking factors of its elements, then X is called a factorial set.
$\{a b c, \lambda, a, b, c, a b, b c\}$

By definition, the empty set is not factorial, and each factorial set contains at least the empty word λ.

Similarly, if a nonempty set $X \subseteq \Sigma^{*}$ contains all non-empty prefixes of its elements (i.e., is closed under taking a non-empty prefix), we say that it is prefixial.
$\{a b c, a, a b\}$

Analogously, if it is closed under taking a non-empty suffix, we say that it is suffixial.
$\{a b c, c, b c\}$

Clearly, each factorial set is prefixial and also suffixial.

Proposition 1 Every catenation of (finitely many) prefixial (suffixial) sets is also prefixial (suffixial).

Proof 1 Given two nonempty prefixial (suffixial) sets $X_{1}, X_{2} \subseteq \Sigma^{*}$, let $u \in X_{1}$ and $v \in X_{2}$. It is enough to prove that all prefixes (suffixes) of $u v$ are in $X_{1} X_{2}$. Let r be a prefix (suffix) of $u v$ with $|u| \leq|r|(|v| \leq|r|)$. Then there exists a decomposition $r=u r^{\prime}\left(r=r^{\prime} v\right)$, where r^{\prime} is a prefix of v (suffix of u). But X_{1} is prefixial (suffixial). Thus $r^{\prime} \in X_{2}\left(r^{\prime} \in X_{1}\right)$. Hence $r \in X_{1} X_{2}$. Suppose that r is a prefix (suffix) of $u v$ with $|u|>|r|$ $(|v|>|r|)$. Then r is a a prefix of u (suffix of v) and thus $r \in X_{1}\left(r \in X_{2}\right)$. Because λ is a prefix (suffix) of all words and $X_{2} \neq \emptyset\left(X_{1} \neq \emptyset\right), \lambda \in X_{2}$ $\left(\lambda \in X_{1}\right)$. Hence $r \in X_{1} X_{2}$ again.

Remark 1 Every catenation of (finitely many) factorial sets is also factorial. (Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages (2005))

Proposition 2 Given a finite nonempty set $X \subset \Sigma^{*}$, for all nonempty suffixial sets $X_{1}, X_{2} \subseteq \Sigma^{*}, X X_{1}=X X_{2}$ implies $X_{1}=X_{2}$.

Proof 2 Suppose that, contrary to our statement, there are a finite nonempty set $X \subset \Sigma^{*}$, nonempty suffixial sets $X_{1}, X_{2} \subseteq \Sigma^{*}$ having $X X_{1}=X X_{2}$ and $X_{1} \neq X_{2}$. In this case one of X_{1} and X_{2} should have an element which is not in the another one. Say, $r \in X_{2}$ but $r \notin X_{1}$.

Because of the finiteness of X, there exists a word $u \in X$ which is not a proper prefix of any word in X. (For example, u has this property if it is one
of the longest words in X.) By $X X_{1}=X X_{2}$ and ur $\in X X_{2}$, there are words $u_{1} \in X, r_{1} \in X_{1}$ with $u_{1} r_{1}=u r$.

By our conditions, u is not a proper prefix of u_{1}. Therefore, $u_{1} r_{1}=u r$ implies that r is a suffix of r_{1}. Recall that X_{1} is suffixial. Therefore, contrary to our assumptions, $r_{1} \in X_{1}$ implies $r \in X_{1}$ because r is a suffix of r_{1}. This completes the proof.

Remark 2 The above statement can not be extended for arbitrary infinite sets $X \subseteq \Sigma^{*}$. Take, for example, $X_{1}=\left\{x_{1}\right\}, X_{2}=\left\{x_{2}\right\}, x_{1}, x_{2} \in$ $\Sigma, x_{1} \neq x_{2}$ and let $X \subseteq \Sigma^{*}$ be an arbitrary infinite set having the property that

$$
\forall r \in X: r x_{1}, r x_{2} \in X
$$

Then $X X_{1}=X X_{2}$, but $X_{1} \neq X_{2}$.

A factorial set $X \subseteq \Sigma^{*}$ is said to be indecomposable if $X=A B$ implies $X=A$ or $X=B$ for all factorial sets $A, B \subseteq \Sigma^{*}$; otherwise we say that X is decomposable. Given set $X \subseteq \Sigma^{*}$, a collection of indecomposable factorial languages $X_{1}, \ldots, X_{n} \subseteq \Sigma^{*}$, we say that $X=X_{1} \cdots X_{n}$ is a canonical decomposition of X if one of the following two cases arises:

- $X=X_{1}=\{\lambda\}, n=1$;
- $X \neq\{\lambda\}, X_{i} \neq\{\lambda\}, i \in\{1, \ldots, n\}$, moreover, $X \neq X_{1} \cdots X_{i-1} X_{i}^{\prime} X_{i+1} \cdots X_{n}$ for each $i \in\{1, \ldots, n\}$ and a factorial language $X_{i}^{\prime} \varsubsetneqq X_{i}$.

Theorem 1 Each factorial set X has a unique canonical decomposition into factorial sets.
(Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages (2005))

Quasi codes

For every $x_{i} \in \Sigma$ we define the set of strings H_{i} by $H_{i}=\left\{p_{i_{1}}, \ldots p_{i_{m}}\right\} \in$ $2^{\Delta^{+}} \backslash \emptyset$. Let us interpret the decipherability on the mapping $f\left(x_{i}\right)=H_{i}$.

A quasi code H over Δ is a finite subset of $2^{\Delta^{+}} \backslash \emptyset$. The elements of a quasi code H are called code sets, the elements of H^{*} are called messages. Let the injective mapping $f: \Sigma^{+} \rightarrow H$ be given. Let the equation

$$
f\left(x_{1} \ldots x_{n}\right)=f\left(x_{1}\right) \ldots f\left(x_{n}\right) ; \forall x_{i} \in \Sigma
$$

hold, therefore f can be given by the function \bar{f}, where

$$
\bar{f}: \Sigma \rightarrow H
$$

The function $\bar{f}: \Sigma \rightarrow H$ is the determination of quasi code H belonging to Σ. The function $f: \Sigma^{+} \rightarrow H$ is called quasi coding.

Let the decipherability of quasi codes be defined analogously as in the case of verbatim codes, i.e. the mapping is decipherable if from the equation

$$
f\left(x_{1}\right) \ldots f\left(x_{n}\right)=f\left(y_{1}\right) \ldots f\left(y_{m}\right)
$$

we get, that

$$
n=m \text { and } f\left(x_{i}\right)=f\left(y_{i}\right), x_{i}=y_{i} .
$$

We say that a quasi code H is decipherable, if every message has at most one decomposition. Formally, if the equation

$$
f\left(x_{1}\right) \ldots f\left(x_{n}\right)=f\left(y_{1}\right) \ldots f\left(y_{m}\right)
$$

holds, then $n=m$ and $f\left(x_{1}\right)=f\left(y_{1}\right), \ldots, f\left(x_{n}\right)=f\left(y_{n}\right)$.

By Remark 1, every catenation of factorial sets is also factorial. Therefore, using Theorem 1, we can derive the following result.

Corollary 3 Every quasi code X_{1}, \ldots, X_{n}, with $X_{i} \nsubseteq X_{j}, i \neq j, 1 \leq$ $i, j \leq n$, consisting of indecomposable factorial sets is uniquely decipherable.

Criteria of decipherability of quasi codes

Let a set $A \subseteq \Sigma^{*}$ is called prefix-free for a set $B \subseteq \Sigma^{*}$, if $\exists a \in A$ such that $a \alpha \neq b$ and $b \alpha \neq a$ for $\forall \alpha \in \Sigma^{*}$ and for $\forall b \in B$. That is $\exists a \in A$ such that a is not a prefix of any $b \in B$ and there is no $b \in B$ such that b is a prefix of a.

Example 1 Let $A=\{b a a, a b, b\}$ and let $B=\{b a a, b b a\}$. In this case the set A is prefix-free for the set B, because $a b \in A$ is not a prefix of any element of the set B and for any element of B the element is not a prefix of $a b$.

Example 2 Let $A=\{b a a, a b, b\} \quad B=\{b a a, a, b b a, a a\}$. In this case the set A is not prefix-free for the set B. The string $a b \in A$ is not a prefix of any element of the set B, but $a \in B$ is a prefix of $a b \in A$.

Proposition 4 The properties of the relation prefix-free for a set:

- the relation is irreflexive
- the relation is not symmetric
- the relation is not transitive

Two sets $A, B \subseteq \Sigma^{*}$ are prefix-free (for each other), if A is prefix free for B, or B is prefix-free for A. Here "or" does not mean "exclusive or".

Example 3 The following sets A_{i}, B_{i} are prefix-free for each other:
$A_{1}=\{a b\}, B_{1}=\{a, a a\} ; A_{2}=\{a, a a\}, B_{2}=\{a b\} ; A_{3}=\{a\}, B_{3}=$ $\{b\}$

Proposition 5 The properties of the relation prefix-free for each other:

- the relation is irreflexive
- the relation is symmetric
- the relation is not transitive

Let the set H consist of subsets of Σ^{*}. The set H is called prefix-free, if any two elements of H are prefix-free for each other.

Theorem 2 If a quasi code consisting of nonempty suffixial sets is prefixfree, then the quasi code is decipherable.

Proof 3 The proof we give here is an indirect one. Assume that a quasi code consisting of nonempty sufficial sets is prefix-free, but it is not decipherable. Since the quasi code is not decipherable, there is a set G, such that we get G from the quasi code in at least two ways. Denote by H_{i} the set $f\left(x_{i}\right)$. Take the following two different decompositions:

$$
G=H_{i_{1}} \ldots H_{i_{s}} \text { and } G=H_{j_{1}} \ldots H_{j_{t}}
$$

Because of the indirect hypothesis there is a positive integer l such that $H_{i_{k}}=H_{j_{k}}$ for $\forall k<l$. But, $H_{i_{l}} \neq H_{j_{l}}$. If $l=1$ then $H_{i_{1}} \neq H_{j_{1}}$ and $H_{i_{1}} \ldots H_{i_{s}}=H_{j_{1}} \ldots H_{j_{t}}$.

Otherwise, using the suffix Proposition 1, all of the decompositions $H_{i_{1}} \ldots H_{i_{l-1}}$, $H_{j_{1}} \ldots H_{j_{l-1}}, H_{i_{l}} \ldots H_{i_{s}}, H_{j_{l}} \ldots H_{j_{t}}$ are suffixial sets. Therefore, applying Proposition 2, from equations

$$
H_{i_{1}} \ldots H_{i_{l-1}} H_{i_{l}} \ldots H_{i_{s}}=H_{j_{1}} \ldots H_{l-1} H_{j_{l}} \ldots H_{j_{t}}
$$

and

$$
H_{i_{1}} \ldots H_{i_{l-1}}=H_{j_{1}} \ldots H_{j_{l-1}}
$$

we have that

$$
G^{\prime}=H_{i_{l}} \ldots H_{i_{s}}=H_{j_{l}} \ldots H_{j_{t}}
$$

Moreover, $H_{i_{l}} \neq H_{j_{l}}$ is assumed.

Thus, $\forall p \in G^{\prime}$ could be written in the form $p=x \beta=y \gamma$, where $x \in H_{i_{l}}$, $y \in H_{j_{l}}$. That is, $x \alpha=y$ or $x=y \alpha$, where $\alpha \in \Sigma^{*}$.

It is easy to see that there exists $p \in G^{\prime}$ such that $p=x \beta=y \gamma$ for $\forall x \in H_{i_{l}}$ and for $\forall y \in H_{j_{l}}$ because of the catenation property of sets. Therefore, there is $\alpha \in \Sigma^{*}$ for all $x \in H_{i_{l}}$ such that $x \alpha=y$ or $x=y \alpha$ holds for some $y \in H_{j_{l}}$.

Consequently, $H_{i_{l}}$ is not prefix-free for $H_{j_{l}}$ (analogously, we have that $H_{j_{l}}$ is not prefix-free for $H_{i_{l}}$). Thus, the sets $H_{i_{l}}$ and $H_{j_{l}}$ are not prefix-free for each other. Therefore, the quasi code is not prefix-free. We have a contradiction and hence the theorem is proved.

Theorem 3 There exists a quasi code consisting of nonempty prefixial sets such that it is prefix-free but not decipherable.

Proof 4 Let $H_{1}=\{b, b a, b a a\}, H_{2}=\{a, a a, a a a, a a a a, a b, a a a b, a a a a b\}$, $H_{3}=\{a, a a, a a a, a a a a, a b, a a b, a a a a b\}$. None of the elements of $H_{2} \cup H_{3}$ is a prefix of some element in H_{1} and none of the elements of H_{1} is a prefix of some element in $H_{2} \cup H_{3}$. On the other hand, aaab $\in H_{2}$ is not a prefix of any element of H_{3} and $a a b \in H_{3}$ is not a prefix of any element in H_{2}. Therefore, the quasi code H_{1}, H_{2}, H_{3} is prefix-free. On the other hand, it is clear that all of H_{1}, H_{2}, H_{3} are prefixial. To show $H_{1} H_{2}=$ $H_{1} H_{3}$, we have to consider the catenations of all elements in H_{1} and $a a a b \in H_{2}$, moreover, the catenations of all elements in H_{1} and $a a b \in H_{3}$. But $(b)(a a a b)=(b a)(a a b),(b a)(a a a b)=(b)(a a a a b),(b a a)(a a a b)=$ (ba) (aaaab), and simultaneously, $(b)(a a b)=(b a)(a b),(b a)(a a b)=$ $(b)(a a a b),(b a a)(a a b)=(b)(a a a a b)$. Therefore, $H_{1} H_{2}=H_{1} H_{3}$ holds
such that $H_{2} \neq H_{3}$. In other words, the considered quasi code is not decipherable.

Remark 3 It is easy to see that there are decipherable prefix quasi codes. One of the most simple examples is $H_{1}=\{a\}, H_{2}=\{a b\}$.

Theorem 4 If A and A^{k} are elements of a quasi code H, then the quasi code H is not decipherable.

Proof 5 Let $f(x)=A ; f(y)=A^{k}$. Thus, $\underbrace{f(x) \ldots f(x)}_{k}=\underbrace{A \ldots A}_{k}=A^{k}$. $f(y)=A^{k}$. Therefore,

$$
\exists n \neq m: f\left(x_{i_{1}}\right) \ldots f\left(x_{i_{n}}\right)=f\left(x_{j_{1}}\right) \ldots f\left(x_{j_{m}}\right)
$$

Consequently the quasi code is not decipherable.

We give a generalized form of the previous theorem:
Theorem 5 If $\exists A=\prod_{i=1}^{m} A_{i}^{k_{i}} \in H\left(m>1, k_{i} \geq 1, A_{1}, A_{2}, \ldots, A_{m} \in\right.$ $H)$, then the quasi code H is not decipherable.

Proof 6 Let $f(x)=A=\prod_{i=1}^{m} A_{i}^{k_{i}} ; f\left(y_{1}\right)=A_{1}, \ldots f\left(y_{m}\right)=A_{m}$. This
implies that $f(x)=A=\prod_{i=1}^{m} A_{i}^{k_{i}}$ and $\underbrace{f\left(y_{1}\right) \cdots f\left(y_{1}\right)}_{k_{1}} \cdots \cdots \underbrace{f\left(y_{m}\right) \cdots f\left(y_{m}\right)}_{k_{m}}=$ $\prod_{i=1}^{m} A_{i}^{k_{i}}$. Thus,

$$
\exists n \neq m: f\left(x_{i_{1}}\right) \ldots f\left(x_{i_{n}}\right)=f\left(x_{j_{1}}\right) \ldots f\left(x_{j_{m}}\right)
$$

Therefore, the quasi code H is not decipherable.

Application of the Sardinas-Patterson algorithm for

 quasi codesThe decipherability of codes was solved by the Sardinas-Patterson algorithm. Let us try to use it for quasi codes. The application of the algorithm forms the following power set system:

Let X and Y be two subsets of the set $2^{\Delta^{+}} \backslash \emptyset$. Let $X^{-1} Y$ denote the following set: $\{C \mid \exists A \in X, B \in Y: A C=B\}$.

As a straightforward extension of the Sardinas-Patterson algorithm, consider the following algorithm (called Quasi-Code SP):

Let the set H be a subset of the set $2^{\Delta^{+}} \backslash \emptyset$, and

$$
\begin{gather*}
U_{1}=H^{-1} H \backslash\{\lambda\} \\
U_{2}= \tag{1}\\
\vdots \\
U^{-1} U_{1} \cup U_{1}^{-1} H \\
U_{n+1}= \\
\end{gather*} H^{-1} U_{n} \cup U_{n}^{-1} H .
$$

If there exist $i>j \geq 1$ with $U_{i}=U_{j}$ and $\lambda \notin U_{k}$ for any $k<i$ then let the Quasi-Code SP algorithm answer that the quasi-code is decipherable. Otherwise let it answer that the quasi-code is not decipherable.

Theorem 6 There exist quasi-codes for which the Quasi-Code SP-algorithm does not give a correct answer.

Proof 7 Based on the Sardinas-Patterson theory our conjecture was the following:
If $\exists i, j$ such that $U_{i}=U_{j}$ and $\{\lambda\} \notin U_{i}$, then the quasi code H is decipherable. Unfortunately, this statement is false. The behaviour of sets of strings is not similar to the behaviour of strings with respect to the operation of catenation. The following holds for strings:

Let $x, y, z \in \Sigma^{*} \backslash\{\lambda\}$, then $x y=x z$ implies that $y=z$. The SardinasPatterson algorithm is based on this connection. Of course, each set X admits two trivial decompositions $X=A B$, where one of the sets A and B is equal to $\{\lambda\}$, where λ is the empty word, and the other is equal to set X.

If a set has only trivial decompositions, it is natural to call it a prime set. However, even a finite set can have several non-trivial decompositions to prime sets, and an infinite set can have none of them. Our conjecture was the following: if the sets A, B, C are prime sets, then $A B=A C$ implies $B=C$. It is not true, for example in the sets L, L_{1}, L_{2} are prime sets, but $L L_{1}=L L_{2}$ holds. Namely

$$
\begin{gathered}
L=\{b, b a, b a a, c, c a a, c a a a, c a a a a\} \\
L_{1}=\{a b, a a a b, a a a a b, c\}, L_{2}=\{a b, a a a a b, c\}
\end{gathered}
$$

Thus, if we form a quasi code with these sets, that is $H=\left\{L, L_{1}, L_{2}\right\}$ and if we apply the Sardinas-Patterson-like algorithm for H, then we have $U_{1}=\emptyset$ by the first step. (Note that $U_{1}=\emptyset$ implies $U_{2}=\emptyset$, i.e., $U_{i}=U_{j}$ with $i=1$ and $j=2$.) The quasi code seems decipherable according to the Sardinas-Patterson-like algorithm, but, in fact, it is not. Let the following
quasi code

$$
f\left(x_{1}\right)=L, f\left(x_{2}\right)=L_{1}, f\left(x_{3}\right)=L_{2}
$$

be given. $f\left(x_{2}\right) \neq f\left(x_{3}\right)$, but the equation $f\left(x_{1}\right) f\left(x_{2}\right)=f\left(x_{1}\right) f\left(x_{3}\right)$ holds. Therefore, the quasi code is not decipherable.

By our explanation, it seems that there exists no straightforward extension of the Sardinas-Patterson algorithm for quasi-codes.

Decomposition of quasi codes

We use the algorithm which decides the prime property of sets to determine a decomposition (Mateescu, A., Salomaa, A., Yu, S.: On the decomposition of finite languages):

Let R be a regular language over the alphabet Σ, and let $\mathcal{A}=\left(Q, \Sigma, \delta, q_{0}, Q_{F}\right)$ be the minimal deterministic finite automaton for R. (Here Q is the set of states, q_{0} is the initial state, Q_{F} is the set of final states, and δ is the transition function.) We extend δ to words over Σ. Thus, $\delta(q, w)=q^{\prime}$ means that the word w takes A from the state q to the state q^{\prime} (and, by definition, $\left.R=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in Q F\right\}\right)$. For a nonempty subset $P \subseteq Q$, we consider the following two languages:

$$
R_{1}^{P}=\left\{w \mid \delta\left(q_{0}, w\right) \in P\right\}
$$

$$
R_{2}^{P}=\left\{w \mid \delta(p, w) \in Q_{F}, p \in P\right\}
$$

Theorem 7 Let R and \mathcal{A} be defined as above. Assume that $R=L_{1} L_{2}$, where L_{1} and L_{2} are arbitrary languages. Define $P \subseteq Q$ by

$$
P=\left\{p \in Q \mid \delta\left(q_{0}, w\right)=p, \text { for some } w \in L_{1}\right\}
$$

Then $R=R_{1}^{P} R_{2}^{P}$, moreover, $L_{1} \subseteq R_{1}^{P}$ and $L_{2} \subseteq R_{2}^{P}$.

By definition, a nonempty subset $P \subseteq Q$ is a decomposition set (for a regular language R), if $R=R_{1}^{P} R_{2}^{P}$. The decomposition $R=R_{1}^{P} R_{2}^{P}$ is referred to as the decomposition of R induced by the decomposition set P. We say that the decomposition $L=L_{1} L_{2}$ of a language L is included in the decomposition
$L=L_{1}^{\prime} L_{2}^{\prime}$ if $L_{i} \subseteq L_{i}^{\prime}, i=1,2$.

Theorem 8 Every decomposition of a regular language R is included in a decomposition of R induced by a decomposition set. The problem of primality is decidable for regular languages.

Using these notations we form the following automaton:

Let $\mathcal{A}=\left(Q, \Delta, \delta, q_{0}, Q_{F}\right)$ be the minimal deterministic finite automaton for some finite set $X \subset H^{*}$ where $H=\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}$ is a given quasi code. (Here Q is the set of states, q_{0} is the initial state, Q_{F} is the set of final states, and δ is the transition function.) We extend δ to words over Σ as we did above. Thus, $\delta(x, w)=y$ means that the word w takes A from the state x to the state y (and, by definition, $\left.X=\left\{w \in \Delta^{*} \mid \delta\left(q_{0}, w\right) \in Q_{F}\right\}\right)$. For non-empty subsets $P_{1}, P_{2} \subseteq Q$, we consider the following language:

$$
R_{P_{1}, P_{2}}=\left\{w \mid \delta(p, w) \in P_{2}, p \in P_{1}\right\}
$$

Theorem 9 Let H and \mathcal{A} be defined as above. Assume, that $X=f\left(x_{i_{1}}\right) \ldots$ $\cdots f\left(x_{i_{k}}\right)$, where $f\left(x_{i_{1}}\right), \ldots f\left(x_{i_{k}}\right) \in H$. Define the sets $P_{0}, \ldots, P_{k} \subseteq Q$ by

$$
\begin{gathered}
P_{0}=\left\{q_{0}\right\} \\
P_{1}=\left\{p \in Q \mid \delta\left(q_{0}, w\right)=p, \text { for some } w \in f\left(x_{i_{1}}\right)\right\}
\end{gathered}
$$

(It is evident, that $f\left(x_{i_{1}}\right) \subseteq R_{\left\{q_{0}\right\}, P_{1}}$. .)

$$
\begin{gathered}
P_{2}=\left\{p \in Q \mid \delta\left(q_{0}, w\right)=p, \text { for some } w \in f\left(x_{i_{1}}\right) f\left(x_{i_{2}}\right)\right\} \\
\vdots \\
P_{k}=Q_{F}=\left\{p \in Q \mid \delta\left(q_{0}, w\right)=p, \text { for some } w \in f\left(x_{i_{1}}\right) \cdots f\left(x_{i_{k}}\right)\right\} .
\end{gathered}
$$

Then $X=R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$ and $f\left(x_{i_{1}}\right) \subseteq R_{P_{0}, P_{1}}, \ldots, f\left(x_{i_{k}}\right) \subseteq R_{P_{k-1}, P_{k}}$.

Proof 8 First, we establish the inclusions. To prove the inclusion $f\left(x_{i_{m}}\right) \subseteq$ $R_{P_{m-1}, P_{m}}$, assume the contrary: for some $w_{i_{m}} \in f\left(x_{i_{m}}\right)$ and $p \in P_{m-1}$, $\delta\left(p, w_{i_{m}}\right) \notin P_{m}$. Choose a word $w \in f\left(x_{i_{1}}\right) \cdots f\left(x_{i_{m-1}}\right)$ such that $\delta\left(q_{0}, w\right) \quad=\quad p . \quad$ Since $w w_{i_{m}} \in f\left(x_{i_{1}}\right) \cdots f\left(x_{i_{m}}\right)$, we have $\delta\left(q_{0}, w w_{i_{m}}\right) \in P_{m}$. But $\delta\left(q_{0}, w w_{i_{m}}\right)=$ $\delta\left(p, w_{i_{m}}\right) \notin P_{m}$. This contradiction proves the inclusion $f\left(x_{i_{m}}\right) \subseteq R_{P_{m-1}, P_{m}}$.

Second, we establish the statement $X=R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$. Consider an arbitrary word $w_{1} \cdots w_{k}$, where $w_{m} \in R_{P_{m-1}, P_{m}}$. Since, $w_{1} \in R_{P_{0}, P_{1}}$, $\delta\left(q_{0}, w_{1}\right)=p_{1}$. By the definition of P_{1}, we have $p_{1} \in P_{1}$. By the definition of $R_{P_{1}, P_{2}}, \delta\left(p_{1}, w_{2}\right)=p_{2} \in P_{2}$ and similarly for all $1 \leq m \leq k$ that (by the definition of $\left.R_{P_{m-1}, P_{m}}\right), \delta\left(p_{m-1}, w_{m}\right)=p_{m} \in P_{m}$. Thus, $\delta\left(q_{0}, w_{1} \cdots w_{k}\right)=\delta\left(p_{1}, w_{2} \cdots w_{k}\right) \quad=\quad \cdots \quad=$ $\delta\left(p_{k-1}, w_{k}\right)=p_{k} \in Q_{F}$, and thus, $w_{1} \cdots w_{k} \in X$, therefore $X \supseteq$ $R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$. Consider an arbitrary $w \in X$. We can write $w=$
$w_{1} \cdots w_{k}$, where $\quad w_{m} \quad \in \quad f\left(x_{i_{m}}\right)$,
$1 \leq m \leq k$. By the already proved inclusion $f\left(x_{i_{m}}\right) \subseteq R_{P_{m-1}, P_{m}}$, we conclude that $w_{m} \in R_{P_{m-1}, P_{m}}$, where $1 \leq m \leq k$. Thus, $w=w_{1} \cdots w_{k} \in$ $R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$. Therefore, $X \subseteq R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$. Having these two inclusions, we get that $X=R_{P_{0}, P_{1}} \cdots R_{P_{k-1}, P_{k}}$.

Consider a set of nonempty subsets $\left\{P_{1}, \ldots, P_{k-1}\right\}$, where $P_{m} \subseteq Q$, $m \in\{1, \ldots, k-1\}$ is a decomposition set for a finite set X and a quasi code
$H=\left\{f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right\}$, where $X=R_{\left\{q_{0}\right\}, P_{1}} \cdots R_{P_{k-1}, Q_{F}}$. The decomposition
$X=R_{\left\{q_{0}\right\}, P_{1}} \cdots R_{P_{k-1}, Q_{F}}$ will be referred to as the decomposition of X induced by the decomposition set $\left\{P_{1}, \ldots, P_{k-1}\right\}$. We say that the decomposition $X=X_{1} \cdots X_{k}$ of a finite set X is included in the decomposition $X \quad=\quad X_{1}^{\prime} \cdots X_{k}^{\prime}$ if $X_{m} \subseteq X_{m}^{\prime}$, $m=1,2, \ldots k$.

Theorem 10 Every decomposition of a finite set X is included in a decomposition of X induced by a decomposition set. The problem of decipherability is decidable for finite sets.

Proof 9 The first part of Theorem 10 follows by Theorem 9. To perform the verification for all possible decompositions of a finite set X, check through all sets of nonempty subsets $\left\{P_{1}, \ldots P_{k-1}\right\}$, where $P_{m} \subseteq Q$. If more than one of them induces a nontrivial decomposition, we conclude that H is not decipherable.

Of course, there are non-decipherable quasi codes such that they have one or zero decompositions for a set. For example, the set $H=\{\{a\},\{a a\},\{b\}\}$ has one decomposition $\{b\}\{a\}$ for the set $X=\{b a\}$.

