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We define the "quasi code" H as follows: Let Σ and ∆ be two finite al-
phabets. Denote H a finite subset of 2∆+ \ ∅. We define the function
f̄ : Σ → H, where f̄ is called "quasi coding" of Σ. A quasi code H is
called decipherable if, whenever f(x1), . . . , f(xn), f(y1), . . . , f(ym) are
in H and satisfy f(x1) . . . f(xn) = f(y1) . . . f(ym), then n = m and
f(xi) = f(yi) for all i, 1 ≤ i ≤ n.



Example:

Σ = {a, b}

∆ = {1,0}

2∆+ \ ∅ = {{0}, {1}, {0,1}, {00}, {01} . . . }

H = {{0,1}, {0,110,1}}

a → {0,1}

b → {0,110,1}



In general (non quasi codes) a code is a set of sequences of letters:
C = {01,0,100}

a → 01

b → 0

c → 100

The main question: decipherability
0100 = 0 100 = 01 0 0

0100 = bc = abb

The decipherability only depends on the code set for quasi codes, too.



Basic notions

We call the set Σ an alphabet, the elements of Σ letters. A word over Σ is
a finite sequence of elements of some finite non-empty set Σ. The empty
word λ consisting of zero letters. The length |w| of a word w is the number
of letters in w. Thus |λ| = 0. If u = x1 · · ·xk and v = xk+1 · · ·x` are
words over an alphabet Σ (with x1, . . . , xk, xk+1, . . . , x` ∈ Σ) then their
catenation (which is also called their product) uv = x1 · · ·xkxk+1 · · ·x`

is also a word over Σ. In addition, for every word u = x1 · · ·xk over Σ

(with x1, . . . , xk ∈ Σ), uλ = λu = u (= x1 · · ·xk). Moreover, λλ = λ.

Obviously, for every u, v ∈ Σ∗, |uv| = |u|+ |v|. Clearly, then, for all words
u, v, w (over Σ) u(vw) = (uv)w. Catenation is an associative operation
and the empty word λ is the identity with respect to catenation. We extend
this operation on words to sets.



Let U, V be sets of words.

Then the catenation (or product) of these two sets is UV = {uv : u ∈
U, v ∈ V }.

A word u is a factor (or subword) of a word v if v = v1uv2 for some
words v1 and v2.

If v1 is empty we say that u is a prefix of v, and if v2 is empty, we say that
u is a suffix of v. Since catenation is an associative operation, for arbitrary
X1, . . . , Xn ⊆ Σ∗ the set X = X1 · · ·Xn is uniquely defined. We say that
X1 · · ·Xn is a decomposition of X.

{abc, abac} = {a}{bc, bac} = {ab}{c, ac}



If u is a subword (prefix, suffix) of v such that u 6= v then we speak about
proper subword ( proper prefix, proper suffix).

If the nonempty set X ⊆ Σ∗ is closed under taking factors of its elements,
then X is called a factorial set.

{abc, λ, a, b, c, ab, bc}

By definition, the empty set is not factorial, and each factorial set contains
at least the empty word λ.



Similarly, if a nonempty set X ⊆ Σ∗ contains all non-empty prefixes of its
elements (i.e., is closed under taking a non-empty prefix), we say that it is
prefixial.

{abc, a, ab}

Analogously, if it is closed under taking a non-empty suffix, we say that it is
suffixial.

{abc, c, bc}

Clearly, each factorial set is prefixial and also suffixial.



Proposition 1 Every catenation of (finitely many) prefixial (suffixial) sets
is also prefixial (suffixial).

Proof 1 Given two nonempty prefixial (suffixial) sets X1, X2 ⊆ Σ∗, let
u ∈ X1 and v ∈ X2. It is enough to prove that all prefixes (suffixes) of
uv are in X1X2. Let r be a prefix (suffix) of uv with |u| ≤ |r| (|v| ≤ |r|).
Then there exists a decomposition r = ur′ (r = r′v), where r′ is a prefix
of v (suffix of u). But X1 is prefixial (suffixial). Thus r′ ∈ X2 (r′ ∈ X1).
Hence r ∈ X1X2. Suppose that r is a prefix (suffix) of uv with |u| > |r|
(|v| > |r|). Then r is a a prefix of u (suffix of v) and thus r ∈ X1 (r ∈ X2).
Because λ is a prefix (suffix) of all words and X2 6= ∅ (X1 6= ∅), λ ∈ X2

(λ ∈ X1). Hence r ∈ X1X2 again. ¤



Remark 1 Every catenation of (finitely many) factorial sets is also factorial.

(Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages
(2005))

Proposition 2 Given a finite nonempty set X ⊂ Σ∗, for all nonempty suf-
fixial sets X1, X2 ⊆ Σ∗, XX1 = XX2 implies X1 = X2.

Proof 2 Suppose that, contrary to our statement, there are a finite nonempty
set X ⊂ Σ∗, nonempty suffixial sets X1, X2 ⊆ Σ∗ having XX1 = XX2

and X1 6= X2. In this case one of X1 and X2 should have an element
which is not in the another one. Say, r ∈ X2 but r /∈ X1.

Because of the finiteness of X, there exists a word u ∈ X which is not a
proper prefix of any word in X. (For example, u has this property if it is one



of the longest words in X.) By XX1 = XX2 and ur ∈ XX2, there are
words u1 ∈ X, r1 ∈ X1 with u1r1 = ur.

By our conditions, u is not a proper prefix of u1. Therefore, u1r1 = ur

implies that r is a suffix of r1. Recall that X1 is suffixial. Therefore, contrary
to our assumptions, r1 ∈ X1 implies r ∈ X1 because r is a suffix of r1.

This completes the proof. ¤

Remark 2 The above statement can not be extended for arbitrary infinite
sets X ⊆ Σ∗. Take, for example, X1 = {x1}, X2 = {x2}, x1, x2 ∈
Σ, x1 6= x2 and let X ⊆ Σ∗ be an arbitrary infinite set having the property
that

∀r ∈ X : rx1, rx2 ∈ X.

Then XX1 = XX2, but X1 6= X2.



A factorial set X ⊆ Σ∗ is said to be indecomposable if X = AB implies
X = A or X = B for all factorial sets A, B ⊆ Σ∗; otherwise we say that
X is decomposable. Given set X ⊆ Σ∗, a collection of indecomposable
factorial languages X1, . . . , Xn ⊆ Σ∗, we say that X = X1 · · ·Xn is a
canonical decomposition of X if one of the following two cases arises:

• X = X1 = {λ}, n = 1;

• X 6= {λ}, Xi 6= {λ}, i ∈ {1, . . . , n}, moreover,
X 6= X1 · · ·Xi−1X ′

iXi+1 · · ·Xn for each i ∈ {1, . . . , n} and a facto-
rial language X ′

i $ Xi.



Theorem 1 Each factorial set X has a unique canonical decomposition
into factorial sets.

(Avgustinovich, S., Frid, A.: A unique decomposition theorem for factorial languages
(2005))



Quasi codes

For every xi ∈ Σ we define the set of strings Hi by Hi = {pi1, . . . pim} ∈
2∆+ \ ∅. Let us interpret the decipherability on the mapping f(xi) = Hi.

A quasi code H over ∆ is a finite subset of 2∆+ \ ∅. The elements of a
quasi code H are called code sets, the elements of H∗ are called mes-
sages. Let the injective mapping f : Σ+ → H be given. Let the equation

f(x1 . . . xn) = f(x1) . . . f(xn);∀xi ∈ Σ

hold, therefore f can be given by the function f̄ , where

f̄ : Σ → H.

The function f̄ : Σ → H is the determination of quasi code H belonging
to Σ. The function f : Σ+ → H is called quasi coding.



Let the decipherability of quasi codes be defined analogously as in the
case of verbatim codes, i.e. the mapping is decipherable if from the equa-
tion

f(x1) . . . f(xn) = f(y1) . . . f(ym)

we get, that

n = m and f(xi) = f(yi), xi = yi.

We say that a quasi code H is decipherable, if every message has at most
one decomposition. Formally, if the equation

f(x1) . . . f(xn) = f(y1) . . . f(ym)

holds, then n = m and f(x1) = f(y1), . . . , f(xn) = f(yn).

By Remark 1, every catenation of factorial sets is also factorial. Therefore,
using Theorem 1, we can derive the following result.



Corollary 3 Every quasi code X1, . . . , Xn, with Xi " Xj, i 6= j,1 ≤
i, j ≤ n, consisting of indecomposable factorial sets is uniquely decipher-
able.



Criteria of decipherability of quasi codes

Let a set A ⊆ Σ∗ is called prefix-free for a set B ⊆ Σ∗, if ∃ a ∈ A such
that aα 6= b and bα 6= a for ∀α ∈ Σ∗ and for ∀b ∈ B. That is ∃ a ∈ A such
that a is not a prefix of any b ∈ B and there is no b ∈ B such that b is a
prefix of a.

Example 1 Let A = {baa, ab, b} and let B = {baa, bba}. In this case the
set A is prefix-free for the set B, because ab ∈ A is not a prefix of any
element of the set B and for any element of B the element is not a prefix
of ab.

Example 2 Let A = {baa, ab, b} B = {baa, a, bba, aa}. In this case the
set A is not prefix-free for the set B. The string ab ∈ A is not a prefix of
any element of the set B, but a ∈ B is a prefix of ab ∈ A.



Proposition 4 The properties of the relation prefix-free for a set:

• the relation is irreflexive

• the relation is not symmetric

• the relation is not transitive



Two sets A, B ⊆ Σ∗ are prefix-free (for each other), if A is prefix free for
B, or B is prefix-free for A. Here "or" does not mean "exclusive or".

Example 3 The following sets Ai, Bi are prefix-free for each other:
A1 = {ab}, B1 = {a, aa};A2 = {a, aa}, B2 = {ab};A3 = {a}, B3 =
{b}

Proposition 5 The properties of the relation prefix-free for each other:

• the relation is irreflexive

• the relation is symmetric

• the relation is not transitive



Let the set H consist of subsets of Σ∗. The set H is called prefix-free, if
any two elements of H are prefix-free for each other.

Theorem 2 If a quasi code consisting of nonempty suffixial sets is prefix-
free, then the quasi code is decipherable.

Proof 3 The proof we give here is an indirect one. Assume that a quasi
code consisting of nonempty sufficial sets is prefix-free, but it is not deci-
pherable. Since the quasi code is not decipherable, there is a set G, such
that we get G from the quasi code in at least two ways. Denote by Hi the
set f(xi). Take the following two different decompositions:

G = Hi1 . . . His and G = Hj1 . . . Hjt

Because of the indirect hypothesis there is a positive integer l such that
Hik = Hjk for ∀k < l. But, Hil 6= Hjl. If l = 1 then Hi1 6= Hj1 and
Hi1 . . . His = Hj1 . . . Hjt.



Otherwise, using the suffix Proposition 1, all of the decompositions Hi1 . . . Hil−1
,

Hj1 . . . Hjl−1
, Hil . . . His, Hjl . . . Hjt are suffixial sets. Therefore, applying

Proposition 2, from equations

Hi1 . . . Hil−1
Hil . . . His = Hj1 . . . Hl−1Hjl . . . Hjt

and

Hi1 . . . Hil−1
= Hj1 . . . Hjl−1

we have that

G′ = Hil . . . His = Hjl . . . Hjt.

Moreover, Hil 6= Hjl is assumed.

Thus, ∀p ∈ G′ could be written in the form p = xβ = yγ, where x ∈ Hil,
y ∈ Hjl. That is, xα = y or x = yα, where α ∈ Σ∗.



It is easy to see that there exists p ∈ G′ such that p = xβ = yγ for
∀x ∈ Hil and for ∀y ∈ Hjl because of the catenation property of sets.
Therefore, there is α ∈ Σ∗ for all x ∈ Hil such that xα = y or x = yα

holds for some y ∈ Hjl.

Consequently, Hil is not prefix-free for Hjl (analogously, we have that Hjl
is not prefix-free for Hil). Thus, the sets Hil and Hjl are not prefix-free
for each other. Therefore, the quasi code is not prefix-free. We have a
contradiction and hence the theorem is proved. ¤



Theorem 3 There exists a quasi code consisting of nonempty prefixial
sets such that it is prefix-free but not decipherable.

Proof 4 Let H1 = {b, ba, baa}, H2 = {a, aa, aaa, aaaa, ab, aaab, aaaab},
H3 = {a, aa, aaa, aaaa, ab, aab, aaaab}. None of the elements of H2∪H3

is a prefix of some element in H1 and none of the elements of H1 is a pre-
fix of some element in H2 ∪ H3. On the other hand, aaab ∈ H2 is not a
prefix of any element of H3 and aab ∈ H3 is not a prefix of any element
in H2. Therefore, the quasi code H1, H2, H3 is prefix-free. On the other
hand, it is clear that all of H1, H2, H3 are prefixial. To show H1H2 =

H1H3, we have to consider the catenations of all elements in H1 and
aaab ∈ H2, moreover, the catenations of all elements in H1 and aab ∈ H3.

But (b)(aaab) = (ba)(aab), (ba)(aaab) = (b)(aaaab), (baa)(aaab) =

(ba)(aaaab), and simultaneously, (b)(aab) = (ba)(ab), (ba)(aab) =

(b)(aaab), (baa)(aab) = (b)(aaaab). Therefore, H1H2 = H1H3 holds



such that H2 6= H3. In other words, the considered quasi code is not de-
cipherable. ¤

Remark 3 It is easy to see that there are decipherable prefix quasi codes.
One of the most simple examples is H1 = {a}, H2 = {ab}.

Theorem 4 If A and Ak are elements of a quasi code H, then the quasi
code H is not decipherable.

Proof 5 Let f(x) = A; f(y) = Ak. Thus, f(x)...f(x)︸ ︷︷ ︸
k

= A . . . A︸ ︷︷ ︸
k

= Ak.

f(y) = Ak. Therefore,

∃n 6= m : f(xi1)...f(xin) = f(xj1)...f(xjm).



Consequently the quasi code is not decipherable. ¤

We give a generalized form of the previous theorem:

Theorem 5 If ∃A =
∏m

i=1 A
ki
i ∈ H (m > 1, ki ≥ 1, A1, A2, . . . , Am ∈

H), then the quasi code H is not decipherable.

Proof 6 Let f(x) = A =
∏m

i=1 A
ki
i ; f(y1) = A1, . . . f(ym) = Am. This

implies that f(x) = A =
∏m

i=1 A
ki
i and f(y1) · · · f(y1)︸ ︷︷ ︸

k1

. . . . . . f(ym) · · · f(ym)︸ ︷︷ ︸
km

=

∏m
i=1 A

ki
i . Thus,

∃n 6= m : f(xi1)...f(xin) = f(xj1)...f(xjm).

Therefore, the quasi code H is not decipherable. ¤



Application of the Sardinas–Patterson algorithm for

quasi codes

The decipherability of codes was solved by the Sardinas–Patterson algo-
rithm. Let us try to use it for quasi codes. The application of the algorithm
forms the following power set system:

Let X and Y be two subsets of the set 2∆+ \ ∅. Let X−1Y denote the
following set: {C | ∃A ∈ X, B ∈ Y : AC = B}.

As a straightforward extension of the Sardinas-Patterson algorithm, con-
sider the following algorithm (called Quasi-Code SP):



Let the set H be a subset of the set 2∆+ \ ∅, and

U1 = H−1H \ {λ}
U2 = H−1U1 ∪ U−1

1 H
...

Un+1 = H−1Un ∪ U−1
n H.

(1)

If there exist i > j ≥ 1 with Ui = Uj and λ /∈ Uk for any k < i then let
the Quasi-Code SP algorithm answer that the quasi-code is decipherable.
Otherwise let it answer that the quasi-code is not decipherable.



Theorem 6 There exist quasi-codes for which the Quasi-Code SP-algorithm
does not give a correct answer.

Proof 7 Based on the Sardinas–Patterson theory our conjecture was the
following:
If ∃i, j such that Ui = Uj and {λ} /∈ Ui, then the quasi code H is deci-
pherable. Unfortunately, this statement is false. The behaviour of sets of
strings is not similar to the behaviour of strings with respect to the opera-
tion of catenation. The following holds for strings:

Let x, y, z ∈ Σ∗ \ {λ}, then xy = xz implies that y = z. The Sardinas–
Patterson algorithm is based on this connection. Of course, each set X

admits two trivial decompositions X = AB, where one of the sets A and
B is equal to {λ}, where λ is the empty word, and the other is equal to set
X.



If a set has only trivial decompositions, it is natural to call it a prime set.
However, even a finite set can have several non-trivial decompositions to
prime sets, and an infinite set can have none of them . Our conjecture was
the following: if the sets A, B, C are prime sets, then AB = AC implies
B = C. It is not true, for example in the sets L, L1, L2 are prime sets, but
LL1 = LL2 holds. Namely

L = {b, ba, baa, c, caa, caaa, caaaa}

L1 = {ab, aaab, aaaab, c}, L2 = {ab, aaaab, c}
Thus, if we form a quasi code with these sets, that is H = {L, L1, L2}
and if we apply the Sardinas–Patterson-like algorithm for H, then we have
U1 = ∅ by the first step. (Note that U1 = ∅ implies U2 = ∅, i.e., Ui = Uj

with i = 1 and j = 2.) The quasi code seems decipherable according to
the Sardinas–Patterson-like algorithm, but, in fact, it is not. Let the following



quasi code

f(x1) = L, f(x2) = L1, f(x3) = L2

be given. f(x2) 6= f(x3), but the equation f(x1)f(x2) = f(x1)f(x3)

holds. Therefore, the quasi code is not decipherable. ¤

By our explanation, it seems that there exists no straightforward extension
of the Sardinas-Patterson algorithm for quasi-codes.



Decomposition of quasi codes

We use the algorithm which decides the prime property of sets to deter-
mine a decomposition (Mateescu, A., Salomaa, A., Yu, S.: On the decom-
position of finite languages):

Let R be a regular language over the alphabet Σ, and letA = (Q,Σ, δ, q0, QF )

be the minimal deterministic finite automaton for R. (Here Q is the set of
states, q0 is the initial state, QF is the set of final states, and δ is the tran-
sition function.) We extend δ to words over Σ. Thus, δ(q, w) = q′ means
that the word w takes A from the state q to the state q′ (and, by definition,
R = {w ∈ Σ∗ | δ(q0, w) ∈ QF}). For a nonempty subset P ⊆ Q, we
consider the following two languages:

RP
1 = {w|δ(q0, w) ∈ P},



RP
2 = {w|δ(p, w) ∈ QF , p ∈ P}.

Theorem 7 Let R and A be defined as above. Assume that R = L1L2,
where L1 and L2 are arbitrary languages. Define P ⊆ Q by

P = {p ∈ Q|δ(q0, w) = p, for some w ∈ L1}.
Then R = RP

1 RP
2 , moreover, L1 ⊆ RP

1 and L2 ⊆ RP
2 .

By definition, a nonempty subset P ⊆ Q is a decomposition set (for a regu-
lar language R), if R = RP

1 RP
2 . The decomposition R = RP

1 RP
2 is referred

to as the decomposition of R induced by the decomposition set P . We say
that the decomposition L = L1L2 of a language L is included in the de-
composition
L = L′1L′2 if Li ⊆ L′i, i = 1,2.



Theorem 8 Every decomposition of a regular language R is included in
a decomposition of R induced by a decomposition set. The problem of
primality is decidable for regular languages.

Using these notations we form the following automaton:

Let A = (Q,∆, δ, q0, QF ) be the minimal deterministic finite automa-
ton for some finite set X ⊂ H∗ where H = {f(x1), . . . , f(xn)} is a
given quasi code. (Here Q is the set of states, q0 is the initial state,
QF is the set of final states, and δ is the transition function.) We ex-
tend δ to words over Σ as we did above. Thus, δ(x, w) = y means
that the word w takes A from the state x to the state y (and, by definition,
X = {w ∈ ∆∗ | δ(q0, w) ∈ QF}). For non-empty subsets P1, P2 ⊆ Q,
we consider the following language:

RP1,P2
= {w|δ(p, w) ∈ P2, p ∈ P1}



Theorem 9 Let H andA be defined as above. Assume, that X = f(xi1) · · ·
· · · f(xik), where f(xi1), . . . f(xik) ∈ H. Define the sets P0, . . . , Pk ⊆ Q

by

P0 = {q0}

P1 = {p ∈ Q|δ(q0, w) = p, for some w ∈ f(xi1)}.
(It is evident, that f(xi1) ⊆ R{q0},P1

.)

P2 = {p ∈ Q|δ(q0, w) = p, for some w ∈ f(xi1)f(xi2)}.
...

Pk = QF = {p ∈ Q|δ(q0, w) = p, for some w ∈ f(xi1) · · · f(xik)}.

Then X = RP0,P1
· · ·RPk−1,Pk

and f(xi1) ⊆ RP0,P1
, . . . , f(xik) ⊆ RPk−1,Pk

.



Proof 8 First, we establish the inclusions. To prove the inclusion f(xim) ⊆
RPm−1,Pm, assume the contrary: for some wim ∈ f(xim) and p ∈ Pm−1,
δ(p, wim) 6∈ Pm. Choose a word w ∈ f(xi1) · · · f(xim−1

) such that
δ(q0, w) = p. Since
wwim ∈ f(xi1) · · · f(xim), we have δ(q0, wwim) ∈ Pm. But δ(q0, wwim) =

δ(p, wim) 6∈ Pm. This contradiction proves the inclusion f(xim) ⊆ RPm−1,Pm.

Second, we establish the statement X = RP0,P1
· · ·RPk−1,Pk

. Consider
an arbitrary word w1 · · ·wk, where wm ∈ RPm−1,Pm. Since, w1 ∈ RP0,P1

,
δ(q0, w1) = p1. By the definition of P1, we have p1 ∈ P1. By the def-
inition of RP1,P2

, δ(p1, w2) = p2 ∈ P2 and similarly for all 1 ≤ m ≤ k

that (by the definition of RPm−1,Pm), δ(pm−1, wm) = pm ∈ Pm. Thus,
δ(q0, w1 · · ·wk) = δ(p1, w2 · · ·wk) = · · · =

δ(pk−1, wk) = pk ∈ QF , and thus, w1 · · ·wk ∈ X, therefore X ⊇
RP0,P1

· · ·RPk−1,Pk
. Consider an arbitrary w ∈ X. We can write w =



w1 · · ·wk, where wm ∈ f(xim),
1 ≤ m ≤ k. By the already proved inclusion f(xim) ⊆ RPm−1,Pm, we con-
clude that wm ∈ RPm−1,Pm, where 1 ≤ m ≤ k. Thus, w = w1 · · ·wk ∈
RP0,P1

· · ·RPk−1,Pk
. Therefore, X ⊆ RP0,P1

· · ·RPk−1,Pk
. Having these

two inclusions, we get that X = RP0,P1
· · ·RPk−1,Pk

. ¤

Consider a set of nonempty subsets {P1, . . . , Pk−1}, where Pm ⊆ Q,

m ∈ {1, . . . , k − 1} is a decomposition set for a finite set X and a quasi
code
H = {f(x1), . . . , f(xn)}, where X = R{q0},P1

· · ·RPk−1,QF
. The de-

composition
X = R{q0},P1

· · ·RPk−1,QF
will be referred to as the decomposition of

X induced by the decomposition set {P1, . . . , Pk−1}. We say that the de-
composition X = X1 · · ·Xk of a finite set X is included in the decomposi-
tion X = X ′

1 · · ·X ′
k if Xm ⊆ X ′

m,

m = 1,2, . . . k.



Theorem 10 Every decomposition of a finite set X is included in a decom-
position of X induced by a decomposition set. The problem of decipher-
ability is decidable for finite sets.

Proof 9 The first part of Theorem 10 follows by Theorem 9. To perform the
verification for all possible decompositions of a finite set X, check through
all sets of nonempty subsets {P1, . . . Pk−1}, where Pm ⊆ Q. If more than
one of them induces a nontrivial decomposition, we conclude that H is not
decipherable. ¤

Of course, there are non-decipherable quasi codes such that they have one

or zero decompositions for a set. For example, the set H =
{
{a}, {aa}, {b}

}

has one decomposition {b}{a} for the set X = {ba}.


