The Language of Primitive Words

Géza Horváth

Brno, November 2, 2011.

Chomsky hierarchy

Recursively enumerable languages
Context-sensitive languages
Context-free languages
Regular languages

The Generative (formal) Grammar is an universal tool for creating languages.
The Chomsky Hierarchy is a containment hierarchy of classes of formal grammars.

Language of primitive words

Recursively enumerable languages
Context-sensitive languages
Context-free languages
Regular languages

A nonempty word is said to be primitive if it is not a proper power of another word.
Examples over the $\{a, b\}$ alphabet:
Primitive: bbaa, aaaab, ababa
Non-primitive: $a b a b a b=(a b)^{3}$, aaaaa $=a^{5}, b a b b b a b b=(b a b b)^{2}$

Deterministic context-free languages

Recursively enumerable languages Context-sensitive languages
Context-free languages
Deterministic context-free languages Regular languages

A context-free language is called deterministic context-free if it can be accepted by deterministic pushdown automaton.
The set of deterministic context-free languages are closed under complementation.

Known facts

Recursively enumerable languages
Context-free languages
Deterministic context-free languages

The language of non-primitive words is not context-free.
(Bar-Hillel lemma.)

$$
\Rightarrow
$$

The language of primitive words is not deterministic context-free.

The Bar-Hillel lemma

Recursively enumerable languages
Context-free languages

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L,|p|>n$ can be written as $p=u v w x y$, where $|v w x| \leq m,|v x|>0$ and $u v^{i} w x^{i} y \in L$ for every integer $i \geq 0$.

The Bar-Hillel lemma

Recursively enumerable languages
Context-free languages

- Example: The $L=\left(a^{i} b a^{i} b a^{i} b \mid i \geq 0\right)$ language is not context-free.

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L,|p|>n$ can be written as $p=u v w x y$, where $|v w x| \leq m,|v x|>0$ and $u v^{i} w x^{i} y \in L$ for every integer $i \geq 0$.

The Ogden Lemma

Recursively enumerable languages
Context-free languages

Lemma

All context-free language satisfies the Ogden restriction.

The strong Bader-Moura lemma

Recursively enumerable languages
Context-free languages

Lemma

All context-free language satisfies the strong Bader-Moura restriction.

Linear languages

Recursively enumerable languages Context-sensitive languages Context-free languages
Linear languages Regular languages

Definition

Linear languages can be generated by grammars have rules of the form $P \rightarrow a$ and $P \rightarrow a R b$, where $P, R \in V_{N}, a, b \in V_{T}{ }^{*}$.

Pumping lemma for linear languages

Recursively enumerable languages

Lemma

If a language L is linear and infinite, then there exists integer n such than any string $|p|>n$ can be wtritten as $p=u v w x y$, where $|u v x y| \leq n,|v x|>0$ and $u v^{i} w x^{i} y \in L$ for every integer $i \geq 0$.

Pumping lemma for non-linear context-free languages

Recursively enumerable languages
Context-free languages
Linear languages

Lemma

If the language L is non-linear, context-free and infinite, then there exists infinite many string $p \in L$ such that p can be written as $p=r s t u v w x y z$, where $|s u|>0,|w y|>0$ and $r s^{i} t u^{i} v w^{j} x y^{j} z \in L$ for every integers $i, j \geq 0$.

K-linear languages

Context-free languages

K-linear languages

Linear languages

Definition

A context-free grammar $G=\left(V_{N}, V_{T}, S, P\right)$ is said to be a k-linear grammar if it has the form of a linear grammar plus one additional rule of the form $S \rightarrow S_{1} S_{2} \ldots S_{k}$, where none of the S_{i} may appear on the right-hand side of any other rule and S may not appear in any other rule at all.

Pumping lemma for not k-linear context-free languages

Recursively enumerable languages
Context-free languages
K-linear languages

Theorem

Given a context-free language L which does not belong to any k-linear language for a given positive integer k. There exist infinite many words $w \in L$ which admit a factorization $w=u v_{0} w_{0} x_{0} y_{0} \ldots v_{k} w_{k} x_{k} y_{k}$ satisfying $u v_{0}^{i_{0}} w_{0} x_{0}^{i_{0}} y_{0} \ldots v_{k}^{i_{k}} w_{k} x_{k}^{i_{k}} y_{k} \in L$ for all integer $i_{0}, \ldots, i_{k} \geq 0$ and $\left|v_{j} x_{j}\right| \neq 0$ for all $0 \leq j \leq k$.

Metalinear languages

Context-free languages
Metalinear languages
K-linear languages

Definition

A context-free language is said to be metalinear if it is a k-linear language for some $k \geq 1$.

Pumping lemma for not metalinear context-free languages

Recursively enumerable languages
Context-free languages
Metalinear languages

Proposition

Given a context-free language L which is not in the class of metalinear languages. For all integers $k \geq 1$ there exist infinite many words $w \in L$ which admit a factorization $w=u v_{0} w_{0} x_{0} y_{0} \ldots v_{k} w_{k} x_{k} y_{k}$ satisfying $u v_{0}^{i_{0}} w_{0} x_{0}^{i_{0}} y_{0} \ldots v_{k}^{i_{k}} w_{k} x_{k}^{i_{k}} y_{k} \in L$ for all integer $i_{0}, \ldots, i_{k} \geq 0$ and $\left|v_{j} x_{j}\right| \neq 0$ for all $0 \leq j \leq k$.

Conjectures

Definition

Denote by L_{p} the language of primitive words over the $\{a, b\}$ alphabet. Let $L_{1}=L_{p} \cup a^{+} \cup b^{+} \backslash\{a\} \backslash\{b\}$. If L_{p} is context-free, then L_{1} will be context-free language as well. L_{1} generates all the words for length i if and only if i is prime number.

Conjecture

The language L_{1} is not context-free.

Conjecture

Denote by L_{2} any language which generates all the words for length i if and only if i is prime number. The language L_{2} is not context-free.

Conjectures

Definition

We call a language all-word-periodic, if there exists integers n, m, such that the language generates all the words for length $n+i * m$, $i \geq 0$.

Conjecture

If a context-free grammar generates all the word for infinite many length, then the language will be all-word-periodic.

Bibliography

嗇 Bar－Hillel，Y．，Perles，M．，Shamir，E．：On formal properties of simple phrase structure grammars，（1961）．

嗇 Hopcroft，J．E．，Ullman，J．D．：Introduction to Automata Theory，languages，and Computation，（1979）．

Dömösi，P．，Horváth，S．，Ito，M．：Formal languages and primitive words，（1991）．

國 Horváth，G．：New Pumping Lemma for Non－Linear Context－Free Languages，（2006）．

國 Horváth，G．，Nagy，B．：Pumping Lemmas for Linear and Nonlinear Context－free Languages，（2010）．

