The Language of Primitive Words

Géza Horváth

Brno, November 2, 2011.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Géza Horváth

Chomsky hierarchy				

The Generative (formal) Grammar is an universal tool for creating languages.

The Chomsky Hierarchy is a containment hierarchy of classes of formal grammars.

A nonempty word is said to be primitive if it is not a proper power of another word.

Examples over the $\{a, b\}$ alphabet: Primitive: bbaa, aaaab, ababa Non-primitive: *ababab* = $(ab)^3$, *aaaaa* = a^5 , *babbbabb* = $(babb)^2$

・ロン ・回と ・ヨン ・ヨン

Deterministic context-free languages

Recursively enumerable languages Context-sensitive languages Context-free languages Deterministic context-free languages Regular languages

A context-free language is called deterministic context-free if it can be accepted by deterministic pushdown automaton. The set of deterministic context-free languages are closed under

complementation.

Known facts

The language of non-primitive words is not context-free. (Bar-Hillel lemma.)

The language of primitive words is not deterministic context-free.

(日) (同) (E) (E) (E)

 \Rightarrow

The Bar-Hillel lemma

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L$, |p| > n can be written as p = uvwxy, where $|vwx| \le m$, |vx| > 0 and $uv^iwx^iy \in L$ for every integer $i \ge 0$.

・ロン ・日ン ・ヨン ・ヨン

э

The Bar-Hillel lemma

Lemma

If a language L is context-free and infinite, then there exists integers n, m, such that any string $p \in L$, |p| > n can be written as p = uvwxy, where $|vwx| \le m$, |vx| > 0 and $uv^iwx^iy \in L$ for every integer $i \ge 0$.

イロト イポト イヨト イヨト

э

The Ogden Lemma

(日) (同) (E) (E) (E)

Lemma

All context-free language satisfies the Ogden restriction.

The strong Bader-Moura lemma

Lemma

All context-free language satisfies the strong Bader-Moura restriction.

Linear languages

Definition

Linear languages can be generated by grammars have rules of the form $P \rightarrow a$ and $P \rightarrow aRb$, where $P, R \in V_N$, $a, b \in V_T^*$.

Pumping lemma for linear languages

Lemma

If a language L is linear and infinite, then there exists integer n such than any string |p| > n can be wtritten as p = uvwxy, where $|uvxy| \le n$, |vx| > 0 and $uv^i wx^i y \in L$ for every integer $i \ge 0$.

Pumping lemma for non-linear context-free languages

Lemma

If the language L is non-linear, context-free and infinite, then there exists infinite many string $p \in L$ such that p can be written as p = rstuvwxyz, where |su| > 0, |wy| > 0 and $rs^{i}tu^{i}vw^{j}xy^{j}z \in L$ for every integers $i, j \ge 0$.

K-linear languages

Definition

A context-free grammar $G = (V_N, V_T, S, P)$ is said to be a k-linear grammar if it has the form of a linear grammar plus one additional rule of the form $S \rightarrow S_1 S_2 \dots S_k$, where none of the S_i may appear on the right-hand side of any other rule and S may not appear in any other rule at all.

Géza Horváth

Pumping lemma for not k-linear context-free languages

Recursively enumerable languages

Context-free languages

K-linear languages

Theorem

Given a context-free language L which does not belong to any k-linear language for a given positive integer k. There exist infinite many words $w \in L$ which admit a factorization $w = uv_0w_0x_0y_0...v_kw_kx_ky_k$ satisfying $uv_0^{i_0}w_0x_0^{i_0}y_0...v_k^{i_k}w_kx_k^{i_k}y_k \in L$ for all integer $i_0, ..., i_k \ge 0$ and $|v_jx_j| \ne 0$ for all $0 \le j \le k$.

Metalinear languages

Definition

A context-free language is said to be metalinear if it is a k-linear language for some $k \ge 1$.

Pumping lemma for not metalinear context-free languages

Recursively enumerable languages

Context-free languages

Metalinear languages

Proposition

Given a context-free language L which is not in the class of metalinear languages. For all integers $k \ge 1$ there exist infinite many words $w \in L$ which admit a factorization $w = uv_0w_0x_0y_0...v_kw_kx_ky_k$ satisfying $uv_0^{i_0}w_0x_0^{i_0}y_0...v_k^{i_k}w_kx_k^{i_k}y_k \in L$ for all integer $i_0, ..., i_k \ge 0$ and $|v_jx_j| \ne 0$ for all $0 \le j \le k$.

Conjectures

Definition

Denote by L_p the language of primitive words over the $\{a, b\}$ alphabet. Let $L_1 = L_p \cup a^+ \cup b^+ \setminus \{a\} \setminus \{b\}$. If L_p is context-free, then L_1 will be context-free language as well. L_1 generates all the words for length *i* if and only if *i* is prime number.

Conjecture

The language L_1 is not context-free.

Conjecture

Denote by L_2 any language which generates all the words for length i if and only if i is prime number. The language L_2 is not context-free.

Géza Horváth

Conjectures

Definition

We call a language all-word-periodic, if there exists integers n, m, such that the language generates all the words for length n + i * m, $i \ge 0$.

Conjecture

If a context-free grammar generates all the word for infinite many length, then the language will be all-word-periodic.

(日) (同) (E) (E) (E)

Bibliography

- Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple phrase structure grammars, (1961).
- Hopcroft, J. E., Ullman, J. D.: Introduction to Automata Theory, languages, and Computation, (1979).
- Dömösi, P., Horváth, S., Ito, M.: Formal languages and primitive words, (1991).
- Horváth, G.: New Pumping Lemma for Non-Linear Context-Free Languages, (2006).
- Horváth, G., Nagy, B.: Pumping Lemmas for Linear and Nonlinear Context-free Languages, (2010).

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで