

Converting Finite Automata to Regular Expressions

Petr Zemek

Brno University of Technology Faculty of Information Technology

2009-10-07

- Finite automata (NFAs, DFAs)
- Regular expressions (REGEXPs)
- . . .

Two possible transformations:

- Regular expression \rightarrow Finite automaton \checkmark
- Finite automaton \rightarrow Regular expression Uhm...Why?

Transitive Closure Method

Rather theoretical approach.

Sketch of the method:

- 1 Let $Q = \{q_1, q_2, \dots, q_m\}$ be the set of all automatons states.
- 2 Suppose that regular expression *R_{ij}* represents the set of all strings that transition the automaton from *q_i* to *q_i*.
- 3 Wanted regular expression will be the union of all R_{sf} , where q_s is the starting state and q_f is one the final states.
- The main problem is how to construct R_{ij} for all states q_i, q_j .

Introduction	Transitive Closure Method
wiethous	
Comparison	Brzozowski Algebraic Method

How to construct R_{ij} ?

• Suppose R_{ij}^k represents the set of all strings that transition the automaton from q_i to q_j without passing through any state higher than q_k . We can construct R_{ij} by successively constructing $R_{ij}^1, R_{ij}^2, \ldots, R_{ij}^{|Q|} = R_{ij}$.

• R_{ii}^k is recursively defined as:

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1})^{*} R_{kj}^{k-1}$$

• Assuming we have initialized R_{ii}^0 to be:

 $R_{ij}^{0} = \begin{cases} r & \text{if } i \neq j \text{ and } r \text{ transitions NFA from } q_i \text{ to } q_j \\ r + \varepsilon & \text{if } i = j \text{ and } r \text{ transitions NFA from } q_i \text{ to } q_j \\ \emptyset & \text{otherwise} \end{cases}$

Transform the following NFA to the corresponding REGEXP using Transitive Closure Method:

Example (1/5)

Introduction	Transitive Closure Method
Methods	State Removal Method
Comparison	Brzozowski Algebraic Method

Example (2/5)

1) Initialize R_{ii}^0 :

Example (3/5)

2) Compute R_{ii}^{1} :

	By direct substitution	Simplified
R_{11}^1	$\varepsilon + 1 + (\varepsilon + 1)(\varepsilon + 1)^*(\varepsilon + 1)$	1*
R_{12}^{1}	$0+(\varepsilon+1)(\varepsilon+1)^*0$	1*0
R_{21}^{1}	$\emptyset + \emptyset(arepsilon + 1)^*(arepsilon + 1)$	Ø
$R_{22}^{\overline{1}}$	$arepsilon+0+1+\emptyset(arepsilon+1)^*0$	$\varepsilon + 0 + 1$

Introduction	Transitive Closure Method
Methods	State Removal Method
Comparison	Brzozowski Algebraic Method

Example (4/5)

3) Compute R_{ij}^2 :

	By direct substitution	Simplified
R_{11}^2	$1^* + 1^*0(\varepsilon + 0 + 1)^*\emptyset$	1*
R_{12}^{2}	$1^*0 + 1^*0(\varepsilon + 0 + 1)^*(\varepsilon + 0 + 1)$	1*0(0+1)*
R_{21}^{2}	$\emptyset + (\varepsilon + 0 + 1)(\varepsilon + 0 + 1)^* \emptyset$	Ø
$R_{22}^{\bar{2}}$	ε + 0 + 1 + (ε + 0 + 1)(ε + 0 + 1)*(ε + 0 + 1)	(0+1)* 🔐

4) Get the resulting regular expression:

 $\Rightarrow R_{12}^2 = R_{12} = 1^* 0(0+1)^*$ is the REGEXP corresponding to the NFA.

State Removal Method

- Based on a transformation from NFA to GNFA (generalized nondeterministic finite automaton).
- Identifies patterns within the graph and removes states, building up regular expressions along each transition.
- Sketch of the method:
 - 1 Unify all final states into a single final state using ε -trans.
 - 2 Unify all multi-transitions into a single transition that contains union of inputs.
 - 3 Remove states (and change transitions accordingly) until there is only the starting a the final state.
 - 4 Get the resulting regular expression by direct calculation.
- The main problem is how to remove states correctly so the accepted language won't be changed.

Example (1/3)

Transform the following NFA to the corresponding REGEXP using State Removal Method:

Introduction	Transitive Closure Method
Methods	State Removal Method
Comparison	Brzozowski Algebraic Method

Example (2/3)

	Introduction Methods Comparison	Transitive Closure Method State Removal Method Brzozowski Algebraic Method
Example (3/3)		

2) Get the resulting regular expression *r*:

$$\Rightarrow$$
 $r = (ae^*d)^*ae^*b(ce^*b + ce^*d(ae^*d)^*ae^*b)^*.$

Introduction	Transitive Closure Method
Methods	State Removal Method
Comparison	Brzozowski Algebraic Meth

٦d

Brzozowski Algebraic Method

- Janusz Brzozowski, 1964
- Utilizes equations over regular expressions.
- Sketch of the method:
 - 1 Create a system of regular equations with one regular expression unknown for each state in the NFA.
 - 2 Solve the system.
 - 3 The regular expression corresponding to the NFA is the regular expression associated with the starting state.
- The main problem is how to create the system and how to solve it.

Transform the following NFA to the corresponding REGEXP using Brzozowski Method:

1) Create a characteristic regular equation for state 1:

	Introduction Methods Comparison	Transitive Closure Method State Removal Method Brzozowski Algebraic Method
Example (3/5)		

2) Create a characteristic regular equation for state 2:

	Introduction Methods Comparison	Transitive Closure Method State Removal Method Brzozowski Algebraic Method
Example (4/5)		

4) Solve the arisen system of regular expressions:

$$\begin{array}{rcl} X_1 &=& aX_1 + bX_2 \\ X_2 &= \varepsilon + bX_1 + cX_2 \end{array}$$

Introduction Methods Comparison	Transitive Closure Method State Removal Method Brzozowski Algebraic Method	

Example (5/5)

 \Rightarrow X₁ is the REGEXP corresponding to the NFA.

Comparison of presented methods

• Transitive Closure Method

- + clear and simple implementation
- tedious for manual use
- tends to create very long regular expressions
- State Removal Method
 - + intuitive, useful for manual inspection
 - not as straightforward to implement as other methods
- Brzozowski Algebraic Method
 - + elegant
 - + generates reasonably compact regular expressions

References

Christoph Neumann Converting Deterministic Finite Automata to Regular Expressions. http://neumannhaus.com/christoph/papers/2005-03-16.DFA_to_RegEx.pdf John E. Hopcroft and Jeffery D. Ullman Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Publishing Company, Reading, MA, 1979.

- Peter Linz An introduction to Formal Languages and Automata. Jones and Bartlett Publishers, Sudbury, MA, third edition, 2001.
- Milan Češka and Tomáš Vojnar and Aleš Smrčka Studijní opora do předmětu Teoretická Informatika. https://www.fit.vutbr.cz/study/courses/TIN/public/Texty/oporaTIN.pdf
- Janusz A. Brzozowski Derivatives of regular expressions.
 - J. ACM, 11(4):481-494, 1964.

