Scattered Context Grammars

Alexander Meduna

Faculty of Information Technology Brno University of Technology Brno, Czech Republic, Europe

Based on these Papers

- Meduna, A.: Coincidental Extention of Scattered Context Languages, *Acta Informatica* 39, 307-314, 2003
- Meduna, A. and Fernau, H.: On the Degree of Scattered Context-Sensitivity. *Theoretical Computer Science* 290, 2121-2124, 2003
- Meduna, A.: Descriptional Complexity of Scattered Rewriting and Multirewriting: An Overview. *Journal of Automata, Languages and Combinatorics*, 571-579, 2002
- Meduna, A. and Fernau, H.: A Simultaneous Reduction of Several Measures of Descriptional Complexity in Scattered Context Grammars. *Information Processing Letters*, 214-219, 2003

Classification of Parallel Grammars

I. Totally parallel grammars, such as *L* systems, rewrite **all** symbols of the sentential form during a single derivation step (not discussed in this talk).

II. Partially parallel grammars rewrite **some** symbols while leaving the other symbols unrewritten.

- Scattered Context Grammars work in a partially parallel way.
- These grammars are central to this talk.

Scattered Context Grammars (SCGs)

Essence

- semi-parallel grammars
- application of several context-free productions during a single derivation step
- stronger than CFGs

Main Topics under Discussion

- reduction of the grammatical size
- new language operations

Concept

- sequences of context-free productions
- several nonterminals are rewritten in parallel while the rest of the sentential form remains unchanged

Definition

Scattered context grammar :

- G = (N, T, P, S)
- *N*, *T*, and *S* as in a CFG
- *P* is a finite set of productions of the form $(A_1, A_2, ..., A_n) \rightarrow (X_1, X_2, ..., X_n)$ where $A_i \in N$ and $X_i \in V^*$ with $V = N \cup T$

Direct derivation:

• $U_1 A_1 U_2 A_2 U_3 \dots U_n A_n U_{n+1} \Rightarrow U_1 X_1 U_2 X_2 U_3 \dots U_n X_n U_{n+1}$ if $(A_1, A_2, \dots, A_n) \to (X_1, X_2, \dots, X_n)$

Generated language:

•
$$L(G) = \{ w: S \Rightarrow^* w \text{ and } w \in T^* \}$$

Productions:

(S) \rightarrow (AA), (A, A) \rightarrow (aA, bAc), (A, A) \rightarrow (ε , ε)

Derivation:

 $S \Rightarrow AA \Rightarrow aAbAc \Rightarrow aaAbbAcc \Rightarrow aabbcc$

Generated Language:

 $L(G) = \{a^i b^j c^i: i \ge 0\}$

Language Families

- CS Context Sensitive Languages
- *RE R*ecursively *E*numerable Languages
- **SC** = {*L*(*G*): *G* is a SCG}

for every $n \ge 1$,

 SC(n) = {L(G): G is a SCG with no more than n nonterminals}

Reduction of SCGs

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) simultaneous reduction of (A) and (B)

Reduction (A) 1/2

Reduction of the Number of Nonterminals

- Theorem 1: *RE* = *SC*(3)
- Theorem 2: $CS \not\subset SC(1)$
- **Proof** (Sketch): Let $L = \{a^h: h = 2^n, n \ge 1\}$. Assume that L = L(G), where $G = (\{S\}, \{a\}, P, S)$ is a SCG. In G, $S \Rightarrow *a^j Sa^j \Rightarrow *a^j a^k a^j$

for some *i*, *j* ≥ 0 such that *i* + *j*, *k* ≥ 1. Thus, $S \Rightarrow {}^{*}a^{in}Sa^{jn} \Rightarrow {}^{*}a^{in}a^{k}a^{jn}$

for every $n \ge 0$. As $a^{i}a^{k}a^{j} \in L$, $|a^{i}a^{k}a^{j}| = i + k + j = 2^{m}$. Consider $v = a^{2i}a^{k}a^{2j} \in L$. Then, $2^{m} < |v| = 2^{m} + i + j < 2^{m+1}$, so $v \notin L$ —a contradiction.

- Corollary: $SC(1) \subset SC(3) = RE$
- Open Problem: RE = SC(2)?

Reduction (B)

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) reduction of (A) and (B)

Reduction (B) 1/5

Reduction of the Number of Context Productions

- A *context production* means a non-context-free production $(A_1, A_2, ..., A_n) \rightarrow (x_1, x_2, ..., x_n)$ with $n \ge 2$
- Theorem 4: Every language in *RE* is generated by a scattered context grammar with only these two context productions:

 $(\$, 0, 0, \$) \rightarrow (\varepsilon, \$, \$, \varepsilon)$ $(\$, 1, 1, \$) \rightarrow (\varepsilon, \$, \$, \varepsilon)$

Reduction (B) 2/5

I. Left-Extended Queue Grammar

$$Q = (V, T, W, F, s, R)$$

R - finite set of productions of the form (*a*, *q*, *z*, *r*). Every generation of $h \in L(Q)$ has this form

- $\Rightarrow a_0 a_1 \dots a_k a_{k+1} \dots a_{k+m-1} \# a_{k+m} y_1 \dots y_{m-1} q_{k+m}$ $\Rightarrow a_0 a_1 \dots a_k a_{k+1} \dots a_{k+m} \# y_1 \dots y_m q_{k+m+1}$

where $h = y_1 \dots y_m$ with $q_{k+m+1} \in F$

 $[(a_0, q_0, z_0, q_1)] \\ [(a_1, q_1, z_1, q_2)]$

 $[(a_{k+1}, q_{k+1}, y_1, q_{k+2})]$ $[(a_{k+m+1}, q_{k+m+1}, y_{m+1}, q_{k+m})]$ $[(a_{k+m}, q_{k+m}, y_m, q_{k+m+1})]$

Reduction (B) 3/5

II. Substitutions

g: binary code of symbols from *V h*: binary code of states from *W*

III. Introduction of SCG

 $G = (N, T, CF \cup Context, S)$ Context = { (\$, 0, 0, \$) \rightarrow (ϵ , \$, \$, ϵ), (\$, 1, 1, \$) \rightarrow (ϵ , \$, \$, ϵ) }

IV. CF used to generate

 $g(a_0a_1...a_ka_{k+1}...a_{k+m})y_1...y_mh(q_{k+m}...q_{k+1}q_k...q_1q_0)$

Reduction (B) 4/5

V. Context used to verify

 $\begin{array}{l} g(a_0a_1\dots a_ka_{k+1}\dots a_{k+m}) = h(q_0q_1\dots q_kq_{k+1}\dots q_{k+m}) \\ \text{let } g(a_0a_1\dots a_ka_{k+1}\dots a_{k+m}) = c_0c_1\dots c_{(k+m)2n} \\ \textit{let } h(q_0q_1\dots q_kq_{k+1}\dots q_{k+m}) = d_0d_1\dots d_{(k+m)2n} \\ \text{where each } c_j, \ d_j \in \{0, 1\} \end{array}$

By using $(\$, 0, 0, \$) \rightarrow (\varepsilon, \$, \$, \varepsilon)$ and $(\$, 1, 1, \$) \rightarrow (\varepsilon, \$, \$, \varepsilon)$, *G* makes $\$c_0c_1c_2...c_{(k+m)2n}y_1...y_m d_{(k+m)2n}...d_2d_1d_0\$$ $\$c_1c_2...c_{(k+m)2n}y_1...y_m d_{(k+m)2n}...d_2d_1\$$ $\$c_2...c_{(k+m)2n}y_1...y_m d_{(k+m)2n}...d_2\$$ $\$y_1...y_m\$$

Reduction (B) 5/5

- Corollary 5: The SCGs with two context productions characterize RE.
- **Open Problem**: What is the power of the *SCGs* with a single context production?

Reduction of SCGs

Reduction of SCGs

- (A) reduction of the number of nonterminals
- (B) reduction of the number of context (non-context-free) productions
- (C) reduction of (A) and (B)

Simultaneous Reduction (A) & (B)

Simultaneous Reduction of the Number of Nonterminals and the Number of Context Productions

- Note: Next two theorems were proved in cooperation with H. Fernau (Germany).
- Theorem: Every type-0 language is generated by a SCG with no more than seven context productions and no more than five nonterminals
- Theorem: Every type-0 language is generated by a SCG with no more than six context productions and no more than six nonterminals
- **Open Problem**: Can we improve the above theorems?

New Operations

$\epsilon\text{-} \textbf{free SCGs}$

- ε -free SCG: each production $(A_1, ..., A_n) \rightarrow (x_1, ..., x_n)$ satisfies $x_i \neq \varepsilon$
- ε -free **SC** = {L(G): G is an ε -free SCG }
- ε-free SC ⊆ CS ⊂ SC = RE
- Objective: Increase of ε-free SC to RE by a simple language operation over ε-free SC

Coincidental Extension 1/6

Coincidental Extension

- For a symbol, #, and a string, $x = a_1 a_2 \dots a_{n-1} a_n$, any string of the form $\#^i a_1 \#^i a_2 \#^i \dots \#^i a_{n-1} \#^i a_n \#^i$, where $i \ge 0$, is a *coincidental #-extension* of *x*.
- A language, K, is a coincidental #-extension of L if every string of K represents a coincidental extension of a string in L and the deletion of all #s in K results in L, symbolically written as L _# < K
- If $L_{\#} \blacktriangleleft K$ and there are an infinitely many coincidental extensions of x in K for every $x \in L$, we write $L_{\#} \blacktriangleleft_{\infty} K$

Coincidental Extension 2/6

Examples:

For $X = \{ \#ia \#ib \#i: i \ge 5 \} \cup \{ \#ic^n \#id^n \#i: n, i \ge 0 \}$ and $Y = \{ ab \} \cup \{ c^n d^n: n \ge 0 \},$ $Y_{\#} \blacktriangleleft_{\infty} X, \text{ so } Y_{\#} \blacktriangleleft X.$

For
$$A = \{ \#a\#b\#\} \cup \{ \#iC^n\#id^n\#i: n, i \ge 0 \}$$
,
 $Y_{\#} \blacktriangleleft A$ holds, but $Y_{\#} \blacktriangleleft_{\infty} A$ does not hold.

 $B = \{ \#^{i}a \#^{i}b \#^{i}: i \ge 5 \} \cup \{ \#^{i}C^{n} \#^{i}d^{n} \#^{i+1}: n, i \ge 0 \} \text{ is not}$ the coincidental #-extension of any language.

Coincidental Extension 3/6

- **Theorem**: Let $K \in RE$. Then, there exists a ε -free SCG, G, such that $K_{\#} \blacktriangleleft_{\infty} L(G)$.
- **Proof** (Sketch): Let $K \in RE$. There exists a SCG, G, such that L = L(G). Construct a ε -free SCG, $G = (V, P, S, \{\#\} \cup T)$, so that $L_{\#} \blacktriangleleft_{\infty} L(G)$.

Homomorphism *h* :

h(A) = A for every nonterminal Ah(a) = a for every terminal a $h(\varepsilon) = Y$

Coincidental Extension 4/6

P constructed by performing the next six steps:

I. add $(Z) \rightarrow (YS)$ to *P* **II.** for every $(A_1, \ldots, A_n) \rightarrow (x_1, \ldots, x_n) \in P$, add $(A_1, ..., A_n, \$) \to (h(x_1), ..., h(x_n), \$)$ to P **III.** add $(Y, \$) \rightarrow (YY, \$)$ to P **IV.** for every $a, b, c \in T$, add $(\langle a \rangle, \langle b \rangle, \langle c \rangle, \$) \rightarrow (\langle 0a \rangle, \langle 0b \rangle, \langle 0c \rangle, \$)$ to P **V.** for every $a, b, c, d \in T$, add $(Y, \langle 0a \rangle, Y, \langle 0b \rangle, Y, \langle 0c \rangle, \xi) \rightarrow (\#, \langle 0a \rangle, X, \langle 0b \rangle, Y, \langle 0c \rangle, \xi),$ $(\langle 0a \rangle, \langle 0b \rangle, \langle 0c \rangle, \xi) \rightarrow (\langle 4a \rangle, \langle 1b \rangle, \langle 2c \rangle, \xi),$ $(\langle 4a \rangle, X, \langle 1b \rangle, Y, \langle 2c \rangle, \xi) \rightarrow (\langle 4a \rangle, \#, \langle 1b \rangle, X, \langle 2c \rangle, \xi),$ $(\langle 4a \rangle, \langle 1b \rangle, \langle 2c \rangle, \langle d \rangle, \xi) \rightarrow (a, \langle 4b \rangle, \langle 1c \rangle, \langle 2d \rangle, \xi),$ $(\langle 4a \rangle, \langle 1b \rangle, \langle 2c \rangle, \xi) \rightarrow (a, \langle 1b \rangle, \langle 3c \rangle, \xi),$ $(\langle 1a \rangle, X, \langle 3b \rangle, Y, \xi) \rightarrow (\langle 1a \rangle, \#, \langle 3b \rangle, \#, \xi)$ to P

Coincidental Extension 5/6

VI. for every $a, b \in T$, add $(\langle 1a \rangle, X, \langle 3b \rangle, \S) \rightarrow (a, \#, b, \#)$ to P.

G generates every $y \in L(G)$ in this way $Z \Rightarrow YS$ $\Rightarrow^+ x$ $\Rightarrow v$ $\Rightarrow^+ z$ $\Rightarrow y$

where
$$v \in (\mathcal{T}\{Y\}^+)^+\{\$\}$$
. In addition,
 $v = u_0 \langle 0a_1 \rangle u_1 \langle 0a_2 \rangle u_2 \langle 0a_3 \rangle \dots u_{n-1} \langle a_n \rangle u_n \S$

if and only if $a_1a_2a_3...a_n \in L(G)$

Coincidental Extension 6/6

In greater detail, $v_{\S} \Rightarrow^+ z_{\S} \Rightarrow y$ can be expressed as $\mathcal{Y}(0a_1) \mathcal{Y}(0a_2) \mathcal{Y}(0a_3) \dots \mathcal{Y}(a_n) \mathcal{Y}^{+1}$ $\Rightarrow^{i} \#^{i}\langle 0a_{1}\rangle X^{i}\langle 0a_{2}\rangle Y^{i}\langle 0a_{3}\rangle Y^{i}\langle a_{4}\rangle \dots Y^{i}\langle a_{n}\rangle Y^{i}$ $\Rightarrow \#\langle 4a_1 \rangle X\langle 1a_2 \rangle Y\langle 2a_3 \rangle Y\langle a_4 \rangle \dots Y\langle a_n \rangle Y^{+1} \xi$ $\Rightarrow^{i} \#^{i}\langle 4a_{1}\rangle \#^{i}\langle 1a_{2}\rangle X^{i}\langle 2a_{3}\rangle Y^{i}\langle a_{4}\rangle \dots Y^{i}\langle a_{n}\rangle Y^{i+1} \xi$ $\Rightarrow \#^{i}a_{1}\#^{i}\langle 4a_{2}\rangle X^{i}\langle 1a_{3}\rangle Y^{i}\langle 2a_{4}\rangle \dots Y^{i}\langle a_{n}\rangle Y^{i+1}\xi$ $\Rightarrow^{i} \#^{i}a_{1} \#^{i}\langle 4a_{2}\rangle \#^{i}\langle 1a_{3}\rangle X^{i}\langle 2a_{4}\rangle \dots Y^{i}\langle a_{n}\rangle Y^{i}$ $\Rightarrow \#^{i}a_{1}\#^{i}a_{2}\#^{i}\langle 4a_{3}\rangle X\langle 1a_{4}\rangle Y\langle 2a_{5}\rangle \dots Y\langle a_{n}\rangle Y^{-1}\xi$ $\#a_1 \#a_2 \#a_3 \dots \langle 4a_{n-2} \rangle \#\langle 1a_{n-1} \rangle X \langle 2a_n \rangle Y^{+1} \S$ $\Rightarrow \#^{i}a_{1}\#^{i}a_{2}\#^{i}a_{3}\dots a_{n} \#^{i}\langle 1a_{n}\rangle X^{i}\langle 3a_{n}\rangle Y^{+1}\S$ $\Rightarrow^{i_1} \#^i a_1 \#^i a_2 \#^i a_3 \dots \#^i a_{n-2} \#^i \langle 1a_{n-1} \rangle \#^j X \#^k \langle 3a_n \rangle \#^{i_1} \S$ $\Rightarrow \#^{i}a_{1}\#^{i}a_{2}\#^{i}a_{3}\dots\#^{i}a_{n-2}\#^{i}a_{n-1}\#^{i}a_{n}\#^{i}a_{n}$

• **Corollary**: Let $K \in RE$. Then, there exists a ε -free SCG, G, such that $K_{\#} \triangleleft L(G)$.

Use in Theoretical Computer Science

Use in Theoretical Computer Science

- **Corollary**: For every language $K \in RE$, there exists a homomorphism *h* and a language $H \in \varepsilon$ -free **SC** such that K = h(H).
- In a complex way, this result was proved on page 245 in [Greibach, S. A. and Hopcroft, J. E.: Scattered Context Grammars. *J. Comput. Syst. Sci.* 3, 232-247 (1969)]

Future Investigation

Future Investigation: *k-limited coincidental extension*

- Let k be a non-negative integer.
- For a symbol, #, and a string, $x = a_1 a_2 \dots a_{n-1} a_n$, any string of the form $\#^i a_1 \#^i a_2 \#^i \dots \#^i a_{n-1} \#^i a_n \#^i$, where $k \ge i \ge 0$, is a *k*-*limited coincidental #-extension* of *x*.
- A language, K, is a coincidental a k-limited #-extension of L if every string of K represents a k-limited coincidental extension of a string in L and the deletion of all #s in K results in L, symbolically written as L k≥# K

Example

• For $X = \{ \#^{i}a \#^{i}b \#^{i}: 2 \ge i \ge 0 \} \cup \{ \#^{i}C_{n} \#^{i}d_{n} \#^{i}: n \ge 0, 4 \ge i \ge 0 \}$ and $Y = \{ab\} \cup \{c_{n}d_{n}: n \ge 0\},$

Very Important Open Problem

Important Open Problem: *c-free* **SC** = **CS**?

- Does there exist a non-negative integer k, such that for every $L \in CS$, $L_{k \ge \#} \blacktriangleleft L(H)$ for some ε -free SCG, H?
- If so, I know how to prove ε -free SC = CS \odot .

