Regulated Pushdown Automata Alexander Meduna

Faculty of Information Technology Brno University of Technology Brno, Czech Republic, Europe

Fundamental References

- Meduna Alexander, Kolář Dušan:
 Regulated Pushdown Automata, Acta Cybernetica,
 Vol. 2000, No. 4, p. 653-664
- Meduna Alexander, Kolář Dušan: One-Turn Regulated Pushdown Automata and Their Reduction, *Fundamenta Informatica*, Vol. 2002, No. 16, p. 399-405

Inspiration: Regulated Grammars

• Grammar G:

1.
$$S \rightarrow AC$$

2. $A \rightarrow aAb$
3. $A \rightarrow ab$
4. $C \rightarrow Cc$
5. $C \rightarrow c$

•
$$\Xi = \{1\}\{24\}^*\{35\}$$

Regulated Grammars 1/2

- Grammar G:
 - 1. $S \rightarrow AC$
 - $2. A \rightarrow aAb$
 - $3. A \rightarrow ab$
 - 4. $C \rightarrow Cc$
 - 5. $C \rightarrow c$
- $\Xi = \{1\}\{24\}^*\{35\}$

• Without **\(\mathbb{\pi}\)**, *G* generates *aabbccc*:

$$S \Rightarrow AC$$
 [1]

$$\Rightarrow aAbC$$
 [2]

$$\Rightarrow aAbCc$$
 [4]

$$\Rightarrow aabbCc$$
 [3]

$$\Rightarrow aabbCcc$$
 [4]

$$\Rightarrow aabbccc$$
 [5]

 $L(G) = \{a^nb^nc^m : n, m \ge 1\}$

Regulated Grammars 2/2

• with Ξ , G does not generate aabbccc, because

$$124345 \notin \Xi = \{1\}\{24\}^*\{35\}$$

• with Ξ , G generates aabbcc:

```
S \Rightarrow AC [1]

\Rightarrow aAbC [2]

\Rightarrow aAbCc [4]

\Rightarrow aabbCc [3]

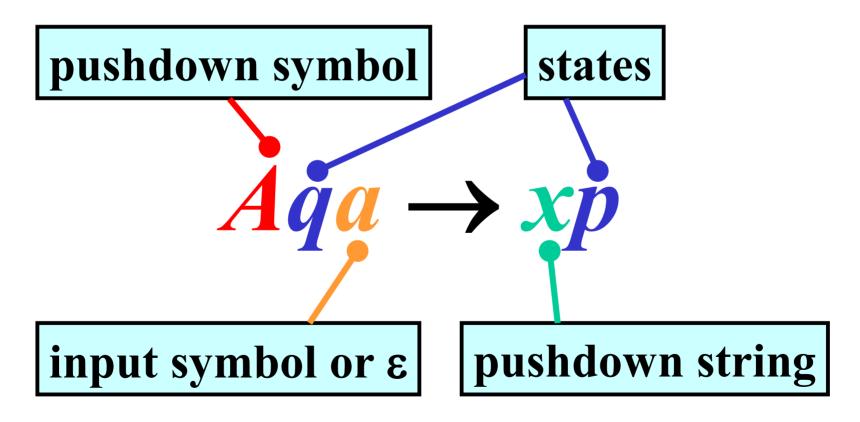
\Rightarrow aabbcc [5]

and 12435 \in \mathbb{\initial}
```

$$L(G,\Xi)=\{a^nb^nc^n\colon n\geq 1\}$$

PDA: Notation

• A PDA is based on a finite set of rules of the form:



New Concept: Regulated PDAs

• **PDA** *M*:

1. $Ssa \rightarrow Sas$ 2. $asa \rightarrow aas$ 3. $asb \rightarrow q$ 4. $aqb \rightarrow q$ 5. $Sqc \rightarrow Sq$

6. $Sqc \rightarrow f$

• $\Xi = \{12^m 34^n 5^n 6: m, n \ge 0\}$

Regulated PDAs 1/2

• **PDA** *M*:

- 1. $Ssa \rightarrow Sas$
- 2. $asa \rightarrow aas$
- 3. $asb \rightarrow q$
- 4. $aqb \rightarrow q$
- 5. $Sqc \rightarrow Sq$
- 6. $Sqc \rightarrow f$

 $\Xi = \{12^m 34^n 5^n 6: m, n \ge 0\}$

• Without Ξ , M accepts aabbccc:

Ssaabbccc

 $\Rightarrow Sasabbccc$ [1]

 $\Rightarrow Saasbbccc$ [2]

 $\Rightarrow Saqbccc$ [3]

 $\Rightarrow Sqccc$ [4]

 $\Rightarrow Sqcc$ [5]

 $\Rightarrow Sqc$ [5]

 $\Rightarrow f$ [6]

 $L(M) = \{a^nb^nc^m : n, m \ge 1\}$

Regulated PDAs 2/2

• with Ξ , M does not accept aabbccc because

$$1234556 \notin \Xi = \{12^m 34^n 5^n 6: m, n \ge 0\}$$

• with Ξ , M accepts *aabbcc*:

```
Ssaabbcc \Rightarrow Sasabbcc \qquad [1]
\Rightarrow Saasbbcc \qquad [2]
\Rightarrow Saqbcc \qquad [3]
\Rightarrow Sqcc \qquad [4]
\Rightarrow Sqc \qquad [5]
\Rightarrow f \qquad [6]
and 123456 \in \Xi
```

$$L(M, \Xi) = \{a^n b^n c^n \colon n \ge 1\}$$

Gist: Regulated PDAs

- Consider a pushdown automaton, M, and control language, Ξ .
- M accepts a string, x, if and only if Ξ contains a control string according to which M makes a sequence of moves so it reaches a final configuration after reading x.

Definition: Regulated PDA 1/4

A pushdown automaton is a 7-tuple $M = (Q, \Sigma, \Omega, R, s, S, F)$, where

- Q is a finite set of states,
- Σ is an *input alphabet*,
- Ω is a pushdown alphabet,
- R is a *finite set of rules* of the form:

$$Apa \rightarrow wq$$
, where

$$A \in \Omega, p,q \in Q, a \in \Sigma \cup \{\varepsilon\}, w \in \Omega^*$$

- $s \in Q$ is the start state
- $S \in \Omega$ is the start symbol
- $F \subseteq Q$ is a set of *final states*

Definition: Regulated PDA 2/4

- Let Ψ be an alphabet of *rule labels*. Let every rule $Apa \to wq$ be labeled with a unique $\rho \in \Psi$ as $\rho \cdot Apa \to wq$.
- A configuration of M, χ , is any string from $\Omega^* Q \Sigma^*$
- For every $x \in \Omega^*$, $y \in \Sigma^*$, and ρ . $Apa \to wq \in R$, M makes a move from configuration xApay to configuration xwqy according to ρ , written as $xApay \Rightarrow xwqy [\rho]$

Definition: Regulated PDA 3/4

• Let χ be any configuration of M. M makes zero moves from χ to χ according to ϵ , written as

$$\chi \Rightarrow^0 \chi [\epsilon]$$

• Let there exist a sequence of configurations $\chi_0, \chi_1, ..., \chi_n$ for some $n \ge 1$ such that $\chi_{i-1} \Rightarrow \chi_i [\rho_i]$, where $\rho_i \in \Psi$, for i = 1,...,n, then M makes n moves from χ_0 to χ_n according to $[\rho_1 ... \rho_n]$, written as $\chi_0 \Rightarrow^n \chi_n [\rho_1 ... \rho_n]$

Definition: Regulated PDA 3/4

• If for some $n \ge 0$, $\chi_0 \Rightarrow^n \chi_n [\rho_1 ... \rho_n]$, we write $\chi_0 \Rightarrow^* \chi_n [\rho_1 ... \rho_n]$

• Let Ξ be a *control language* over Ψ , that is, $\Xi \subseteq \Psi^*$. With Ξ , M accepts its language, $L(M, \Xi)$, as

 $L(M, \Xi) = \{w: w \in \Sigma^*, Ssw \Rightarrow^* f[\sigma], \sigma \in \Xi\}$

Language Families

- LIN the family of linear languages
- *CF* the family of context-free languages
- **RE** the family of recursively enumerable languages
- *RPD*(*REG*) the family of languages accepted by PDAs regulated by regular languages
- *RPD(LIN)* the family of languages accepted by PDAs regulated by linear languages

Theorem 1 and its Proof 1/2

$$RPD(REG) = CF$$

Proof:

I. $CF \subseteq RPD(REG)$ is clear.

II. $RPD(REG) \subseteq CF$:

• Let $L = L(M, \Xi)$,

PDA

Regular language

• Let $\Xi = L(G)$, G - regular grammar based on rules: $A \to aB$, $A \to a$

Theorem 1 and its Proof 2/2

Transform M regulated by Ξ to a PDA N as follows:

- 1) for every $a.Cqb \rightarrow xp$ from M and every $A \rightarrow aB$ from G, add $C < qA > b \rightarrow x < pB >$ to N
- 2) for every $a.Cqb \rightarrow xp$ from M and every $A \rightarrow a$ from G, New symbol add $C < qA > b \rightarrow x

 New Symbol to <math>N$
- 3) The set of final states in N: $\{\langle p \rangle : p \text{ is a final state in } M\}$

Theorem 2

$$RPD(LIN) = RE$$

Proof:

• See [Meduna Alexander, Kolář Dušan: Regulated Pushdown Automata, *Acta Cybernetica*, Vol. 2000, No. 4, p. 653-664]

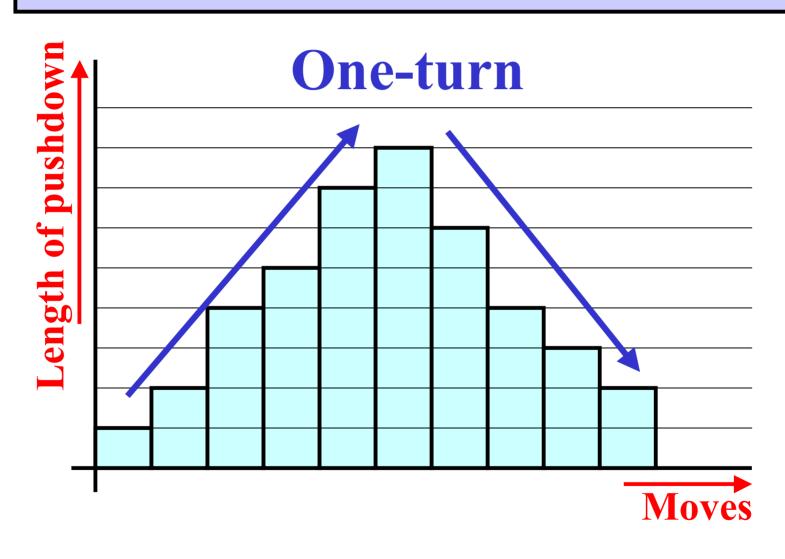
Simplification of RPDAs 1/2

I. consider two consecutive moves made by a pushdown automaton, M.

If during the first move M does not shorten its pushdown and during the second move it does, then M makes a turn during the second move.

• A pushdown automaton is *one-turn* if it makes no more than one turn during any computation starting from an initial configuration.

One-Turn PDA: Illustration



Simplification of RPDAs 2/2

- **II.** During a move, an *atomic* regulated PDA changes a state and, in addition, performs exactly one of the following actions:
- 1. pushes a symbol onto the pushdown
- 2. pops a symbol from the pushdown
- 3. reads an input symbol

Theorem 3

• Every $L \in RE$ is accepted by an atomic one-turn PDA regulated by Ξ , where $\Xi \in LIN$.

Proof:

• See [Meduna Alexander, Kolář Dušan: One-Turn Regulated Pushdown Automata and Their Reduction, *Fundamenta Informatica*, Vol. 2002, No. 16, p. 399-405]

End