
Scattered Context Scattered Context
GrammarsGrammars

AlexanderAlexander MedunaMeduna
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic, Europe

2

Based on these Papers

Meduna, A.: Coincidental Extention of Scattered Context
Languages, Acta Informatica 39, 307-314, 2003

Meduna, A. and Fernau, H.: On the Degree of Scattered
Context-Sensitivity. Theoretical Computer Science 290,
2121-2124, 2003

Meduna, A.: Descriptional Complexity of Scattered Rewriting
and Multirewriting: An Overview. Journal of Automata,
Languages and Combinatorics, 571-579, 2002

Meduna, A. and Fernau, H.: A Simultaneous Reduction of
Several Measures of Descriptional Complexity in Scattered
Context Grammars. Information Processing Letters, 214-
219, 2003

3

Classification of Parallel Grammars

I. Totally parallel grammars, such as L systems, rewrite all
symbols of the sentential form during a single derivation
step (not discussed in this talk).

II. Partially parallel grammars rewrite some symbols
while leaving the other symbols unrewritten.
• Scattered Context Grammars work in a partially

parallel way.
• These grammars are central to this talk.

4

Scattered Context Grammars (SCGs)

Essence
semi-parallel grammars
application of several context-free productions during a
single derivation step
stronger than CFGs

Main Topics under Discussion
reduction of the grammatical size
new language operations

5

Concept

Concept
sequences of context-free productions
several nonterminals are rewritten in parallel while the rest
of the sentential form remains unchanged

6

Definition

Scattered context grammar :
G = (N, T, P, S)
N, T, and S as in a CFG
P is a finite set of productions of the form
(A1, A2, ..., An) → (x1, x2, ..., xn)
where Ai ∈ N and xi ∈ V* with V = N ∪ T

Direct derivation:
u1A1u2A2u3 ... unAnun+1 ⇒ u1x1u2x2u3 ... unxnun+1 if
(A1, A2, ..., An) → (x1, x2, ..., xn)

Generated language:
L(G) = {w: S ⇒* w and w ∈ T*}

7

Example

Productions:
(S) → (AA), (A, A) → (aA, bAc), (A, A) → (ε, ε)

Derivation:
S ⇒ AA ⇒ aAbAc ⇒ aaAbbAcc ⇒ aabbcc

Generated Language:
L(G) = {aibici: i ≥ 0}

8

Language Families

Language Families
CS - Context Sensitive Languages
RE - Recursively Enumerable Languages

SC = {L(G): G is a SCG}

for every n ≥ 1,
SC(n) = {L(G): G is a SCG with no more than n

nonterminals}

9

Reduction of SCGs

Reduction of SCGs
(A) reduction of the number of nonterminals
(B) reduction of the number of context (non-context-free)
productions
(C) simultaneous reduction of (A) and (B)

10

Reduction (A) 1/2

Reduction of the Number of Nonterminals

Theorem 1: RE = SC (3)
Theorem 2: CS ⊄ SC (1)

Proof (Sketch): Let L = {ah: h = 2n, n ≥ 1}. Assume that
L = L(G), where G = ({S}, {a}, P, S) is a SCG. In G,

S ⇒* aiSaj ⇒* aiakaj

for some i, j ≥ 0 such that i + j, k ≥ 1. Thus,
S ⇒* ainSajn ⇒* ainakajn

for every n ≥ 0. As aiakaj ∈ L, |aiakaj| = i + k + j = 2m.
Consider v = a2iaka2j ∈ L. Then, 2m < |v| = 2m + i + j <
2m+1, so v ∉ L—a contradiction.

11

Reduction (A) 2/2

Corollary: SC(1) ⊂ SC (3) = RE

Open Problem: RE = SC (2)?

12

Reduction (B)

Reduction of SCGs
(A) reduction of the number of nonterminals
(B) reduction of the number of context
(non-context-free) productions
(C) reduction of (A) and (B)

13

Reduction (B) 1/5

Reduction of the Number of Context Productions

A context production means a non-context-free production
(A1, A2, ..., An) → (x1, x2, ..., xn) with n ≥ 2

Theorem 4: Every language in RE is generated by a
scattered context grammar with only these two context
productions:

($, 0, 0, $) → (ε, $, $, ε)
($, 1, 1, $) → (ε, $, $, ε)

14

Reduction (B) 2/5

I. Left-Extended Queue Grammar
Q = (V, T, W, F, s, R)
R - finite set of productions of the form (a, q, z, r). Every

generation of h ∈ L(Q) has this form

#a0q0

⇒ a0#a1x0q1 [(a0, q0, z0, q1)]
⇒ a0a1#a2x1q2 [(a1, q1, z1, q2)]

⇒ a0a1…ak#ak+1xkqk+1

⇒ a0a1… akak+1#ak+2xk+1y1qk+2 [(ak+1, qk+1, y1, qk+2)]

⇒ a0a1… akak+1… ak+m-1# ak+m y1… ym-1qk+m [(ak+m-1, qk+m-1, ym-1, qk+m)]
⇒ a0a1… akak+1… ak+m#y1… ymqk+m+1 [(ak+m, qk+m, ym, qk+m+1)]

where h = y1… ym with qk+m+1 ∈ F

15

Reduction (B) 3/5

II. Substitutions
g: binary code of symbols from V
h: binary code of states from W

III. Introduction of SCG
G = (N, T, CF ∪ Context, S)
Context = { ($, 0, 0, $) → (ε, $, $, ε),

($, 1, 1, $) → (ε, $, $, ε) }

IV. CF used to generate
$g(a0a1… akak+1… ak+m)y1… ymh(qk+m… qk+1qk… q1q0)$

16

Reduction (B) 4/5

V. Context used to verify
g(a0a1… akak+1… ak+m) = h(q0q1… qkqk+1… qk+m)
let g(a0a1… akak+1… ak+m) = c0c1… c(k+m)2n
let h(q0q1… qkqk+1… qk+m) = d0d1… d(k+m)2n
where each ci, di ∈ {0, 1}

By using ($, 0, 0, $) → (ε, $, $, ε) and
($, 1, 1, $) → (ε, $, $, ε) , G makes
$c0c1c2… c(k+m)2ny1… ym d(k+m)2n… d2d1d0$
$c1c2… c(k+m)2ny1… ym d(k+m)2n… d2d1$
$c2… c(k+m)2ny1… ym d(k+m)2n… d2$
$y1… ym$
y1… ym

17

Reduction (B) 5/5

Corollary 5: The SCGs with two context productions
characterize RE.
Open Problem: What is the power of the SCGs with a
single context production?

18

Reduction of SCGs

Reduction of SCGs
(A) reduction of the number of nonterminals
(B) reduction of the number of context (non-context-free)
productions
(C) reduction of (A) and (B)

19

Simultaneous Reduction (A) & (B)

Simultaneous Reduction of the Number of
Nonterminals and the Number of Context Productions

Note: Next two theorems were proved in cooperation with
H. Fernau (Germany).
Theorem: Every type-0 language is generated by a SCG
with no more than seven context productions and no more
than five nonterminals
Theorem: Every type-0 language is generated by a SCG
with no more than six context productions and no more than
six nonterminals
Open Problem: Can we improve the above theorems?

20

New Operations

ε-free SCGs
ε-free SCG: each production (A1, …, An) → (x1, …, xn)
satisfies xi ≠ ε
ε-free SC = {L(G): G is an ε-free SCG }
ε-free SC ⊆ CS ⊂ SC = RE

Objective: Increase of ε-free SC to RE by a simple
language operation over ε-free SC

21

Coincidental Extension 1/6

Coincidental Extension
For a symbol, #, and a string, x = a1a2…an-1an, any string
of the form #ia1#ia2#i…#ian-1#ian#i, where i ≥ 0, is a
coincidental #-extension of x.

A language, K, is a coincidental #-extension of L if every
string of K represents a coincidental extension of a string in
L and the deletion of all #s in K results in L, symbolically
written as L # K

If L # K and there are an infinitely many coincidental
extensions of x in K for every x ∈ L, we write L # ∞ K

22

Coincidental Extension 2/6

Examples:
For X = {#ia#ib#i: i ≥ 5} ∪ {#icn#idn#i: n, i ≥ 0} and
Y = {ab} ∪ {cndn: n ≥ 0},

Y # ∞ X, so Y # X.

For A = {#a#b#} ∪ {#icn#idn#i: n, i ≥ 0},
Y # A holds, but Y # ∞ A does not hold.

B = {#ia#ib#i: i ≥ 5} ∪ {#icn#idn#i+1: n, i ≥ 0} is not
the coincidental #-extension of any language.

23

Coincidental Extension 3/6

Theorem: Let K ∈ RE. Then, there exists a ε-free SCG, G,
such that K # ∞ L(G).

Proof (Sketch): Let K ∈ RE. There exists a SCG, G, such
that L = L(G). Construct a ε-free SCG,
G = (V, P, S, {#} ∪ T), so that L # ∞ L(G).

Homomorphism h :
h(A) = A for every nonterminal A
h(a) = a for every terminal a
h(ε) = Y

24

Coincidental Extension 4/6

P constructed by performing the next six steps:
I. add (Z) → (YS$) to P
II. for every (A1, …, An) → (x1, …, xn) ∈ P, add

(A1, …, An, $) → (h(x1), …, h(xn), $) to P
III. add (Y , $) → (YY , $) to P
IV. for every a, b, c ∈ T,

add (〈a〉, 〈b〉, 〈c〉, $) → (〈0a〉, 〈0b〉, 〈0c〉, §) to P
V. for every a, b, c, d ∈ T, add

(Y, 〈0a〉, Y, 〈0b〉, Y, 〈0c〉, §) → (#, 〈0a〉, X, 〈0b〉, Y, 〈0c〉, §),
(〈0a〉,〈0b〉, 〈0c〉, §) → (〈4a〉, 〈1b〉, 〈2c〉, §),
(〈4a〉, X, 〈1b〉, Y, 〈2c〉, §) → (〈4a〉, #, 〈1b〉, X, 〈2c〉, §),
(〈4a〉, 〈1b〉, 〈2c〉, 〈d〉, §) → (a, 〈4b〉, 〈1c〉, 〈2d〉, §),
(〈4a〉, 〈1b〉, 〈2c〉, §) → (a, 〈1b〉, 〈3c〉, §),
(〈1a〉, X, 〈3b〉, Y, §) → (〈1a〉, #, 〈3b〉, #, §)
to P

25

Coincidental Extension 5/6

VI. for every a, b ∈ T, add
(〈1a〉, X, 〈3b〉, §) → (a, #, b, #) to P.

G generates every y ∈ L(G) in this way
Z ⇒ YS$ ⇒+ x$ ⇒ v§ ⇒+ z§ ⇒ y

where v ∈ (T{Y}+)+{$}. In addition,
v = u0〈0a1〉u1〈0a2〉u2〈0a3〉… un-1〈an〉un§

if and only if a1a2a3…an ∈ L(G)

26

Coincidental Extension 6/6

In greater detail, v§ ⇒+ z§ ⇒ y can be expressed as
Yi〈0a1〉Yi〈0a2〉Yi〈0a3〉…Yi〈an〉Yi-1§

⇒i #i〈0a1〉Xi〈0a2〉Yi〈0a3〉Yi〈a4〉…Yi〈an〉Yi-1§
⇒ #i〈4a1〉Xi〈1a2〉Yi〈2a3〉Yi〈a4〉…Yi〈an〉Yi-1§
⇒i #i〈4a1〉#i〈1a2〉Xi〈2a3〉Yi〈a4〉…Yi〈an〉Yi-1§
⇒ #ia1#i〈4a2〉Xi〈1a3〉Yi〈2a4〉…Yi〈an〉Yi-1§
⇒i #ia1#i〈4a2〉#i〈1a3〉Xi〈2a4〉…Yi〈an〉Yi-1§
⇒ #ia1#ia2#i〈4a3〉Xi〈1a4〉Yi〈2a5〉…Yi〈an〉Yi-1§

:
#ia1#ia2#ia3… 〈4an-2〉#i〈1an-1〉 Xi〈2an〉Yi-1§

⇒ #ia1#ia2#ia3…an-2#i〈1an-1〉 Xi〈3an〉Yi-1§
⇒i-1#ia1#ia2#ia3…#ian-2#i〈1an-1〉#j X#k〈3an〉#i-1§
⇒ #ia1#ia2#ia3…#ian-2#ian-1#ian#i

Corollary: Let K ∈ RE. Then, there exists a ε-free SCG, G,
such that K # L(G).

27

Use in Theoretical Computer Science

Use in Theoretical Computer Science
Corollary: For every language K ∈ RE, there exists a
homomorphism h and a language H ∈ ε-free SC such that
K = h(H).
In a complex way, this result was proved on page 245 in
[Greibach, S. A. and Hopcroft, J. E.: Scattered Context
Grammars. J. Comput. Syst. Sci. 3, 232-247 (1969)]

28

Future Investigation

Future Investigation: k-limited coincidental extension
Let k be a non-negative integer.
For a symbol, #, and a string, x = a1a2…an-1an, any string
of the form #ia1#ia2#i…#ian-1#ian#i, where k ≥ i ≥ 0, is a
k-limited coincidental #-extension of x.
A language, K, is a coincidental a k-limited #-extension of L
if every string of K represents a k-limited coincidental
extension of a string in L and the deletion of all #s in K
results in L, symbolically written as L k≥# K

Example
For X = {#ia#ib#i: 2 ≥ i ≥ 0} ∪ {#icn#idn#i: n ≥ 0, 4 ≥ i ≥ 0}
and Y = {ab} ∪ {cndn: n ≥ 0},

Y 4≥# X

29

Very Important Open Problem

Important Open Problem: ε-free SC = CS ?
Does there exist a non-negative integer k, such that for
every L ∈CS, L k≥# L(H) for some ε-free SCG, H?
If so, I know how to prove ε-free SC = CS ☺.

END

	Based on these Papers
	Classification of Parallel Grammars
	Scattered Context Grammars (SCGs)
	Concept
	Definition
	Example
	Language Families
	Reduction of SCGs
	Reduction (A) 1/2
	Reduction (A) 2/2
	Reduction (B)
	Reduction (B) 1/5
	Reduction (B) 2/5
	Reduction (B) 3/5
	Reduction (B) 4/5
	Reduction (B) 5/5
	Reduction of SCGs
	Simultaneous Reduction (A) & (B)
	New Operations
	Coincidental Extension 1/6
	Coincidental Extension 2/6
	Coincidental Extension 3/6
	Coincidental Extension 4/6
	Coincidental Extension 5/6
	Coincidental Extension 6/6
	Use in Theoretical Computer Science
	Future Investigation
	Very Important Open Problem

