
1/50

Part VII.Part VII.
Models for ContextModels for Context--Free Free

LanguagesLanguages

Context-Free Grammar (CFG)
Gist: A grammar is based on a finite set of

grammatical rules, by which it
generates strings of its language.

Illustration:
Grammar G:

Start nonterminal

Terminals: a, b, c, d

Nonterminals: A, B, S

S

Rules: S → AB,
A → aAb,
A → ab,
B → bBa,
B → ba

AB

abB

abbBa

abbbaa

2/50

Rule: S → AB

Rule: A → ab

Rule: B → bBa

Rule: B → ba
∈ L(G)

Context-Free Grammar: Definition
Definition: A context-free grammar (CFG) is a
quadruple G = (N, T, P, S), where
• N is an alphabet of nonterminals
• T is an alphabet of terminals, N ∩ T = ∅
• P is a finite set of rules of the form A → x,

where A ∈ N, x ∈ (N ∪ T)*

• S ∈ N is the start nonterminal

• Strictly mathematically, P is a relation from N to (N ∪ T)*

• Instead of (A, x) ∈ P, we write A → x ∈ P
• A → x means that A can be replaced with x
• A → ε is called ε-rule

Mathematical Note on Rules:

3/50

Convention
4/50

• A, … , F, S : nonterminals
• S : the start nonterminal
• a, … , d : terminals
• U, … , Z : members of (N ∪ T)
• u, … , z : members of (N ∪ T)*

• π : sequence of productions
A subset of rules of the form:

A → x1, A → x2 , …, A → xn
can be simply written as:

A → x1 | x2 | … | xn

Derivation Step

Definition: Let G = (N, T, P, S) be a CFG. Let
u, v ∈ (N ∪ T)* and p = A → x ∈ P. Then, uAv
directly derives uxv according to p in G, written
as uAv ⇒ uxv [p] or, simply, uAv ⇒ uxv.

5/50

Gist: A change of a string by a rule.

Note: If uAv ⇒ uxv in G, we also say that G makes a
derivation step from uAv to uxv.

Au v

Rule: A → x

x

…

u v

…

Sequence of Derivation Steps 1/2
Gist: Several consecutive derivation steps.

6/50

Definition: Let u ∈ (N ∪ T)*. G makes a
zero-step derivation from u to u; in symbols,

u ⇒0 u [ε] or, simply, u ⇒0 u

Definition: Let u0,…,un ∈ (N ∪ T)*, n ≥ 1, and
ui-1 ⇒ ui [pi], pi ∈ P, for all i = 1,…, n; that is

u0 ⇒ u1 [p1]⇒ u2 [p2] … ⇒ un [pn]
Then, G makes n derivation steps from u0 to un,

u0 ⇒n un [p1... pn] or, simply, u0 ⇒n un

Sequence of Derivation Steps 2/2
7/50

If u0 ⇒n un [π] for some n ≥ 1, then u0 properly
derives un in G, written as u0 ⇒+ un [π].

If u0 ⇒n un [π] for some n ≥ 0, then u0 derives
un in G, written as u0 ⇒* un [π].

Example: Consider
aAb ⇒ aaBbb [1: A → aBb], and
aaBbb ⇒ aacbb [2: B → c].
Then, aAb ⇒2 aacbb [1 2],

aAb ⇒+ aacbb [1 2],
aAb ⇒* aacbb [1 2]

Definition: Let G = (N, T, P, S) be a CFG. The
language generated by G, L(G), is defined as

L(G) = {w: w ∈ T*, S ⇒* w}

Generated Language

G = (N, T, P, S), let w = a1a2…an; ai∈ T for i = 1..n

S ⇒… ⇒ … ⇒ a1a2…an
w

G generates a terminal string w by a
sequence of derivation steps from S to w

Gist:

then w ∈ L(G);

otherwise, w ∉ L(G)

Illustration:

8/50

if

Definition: Let L be a language. L is a context-
free language (CFL) if there exists a context-free
grammar that generates L.

Example:

L = {anbn: n ≥ 0} is a CFL.

Context-Free Language (CFL)
Gist: A language generated by a CFG.

G = (N, T, P, S), where N = {S}, T = {a, b},
P = {1: S → aSb, 2: S → ε}

S ⇒ε [2]
S ⇒ aSb [1] ⇒ ab [2]
S ⇒ aSb [1] ⇒ aaSbb [1] ⇒ aabb [2]…

L(G) = {anbn: n ≥ 0}

9/50

Rule Tree
• Rule tree graphically represents a rule

1) A → ε: 2) A → X1X2…Xn:
A

ε

A

X1 X2 … Xn

• Derivation tree corresponding to a derivation
S ⇒ …

⇒ U1U2…Um AV1V2…Vn

S

U1 U2…Um V1 V2 …Vn

…… … … …

…

Rule tree
corresponding

to A → x
x

A
⇒ U1U2…Um x V1V2…Vn

10/50

Derivation Tree: Example
11/50

G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},
P = { 1: E → E+T, 2: E → T, 3: T → T*F,

4: T → F, 5: F → (E), 6: F → i }
Derivation: Derivation tree:
E ⇒ E + T [1] E

E T

+

⇒ T + i * F [2]
T

⇒ F + i * i [4]
F

⇒ i + i * i [6] i

⇒ E + F * F [4]

F

⇒ E + i * F [6]

i

⇒ T + i * i [6]

i

⇒ E + T * F [3]

T

F

*

Leftmost Derivation
During a leftmost derivation step, the
leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let
u ∈ T*, v ∈ (N ∪ T)*. Let p = A → x ∈ P be a
rule. Then, uAv directly derives uxv in the
leftmost way according to p in G, written as

uAv ⇒lm uxv [p]

Gist:

12/50

Note: We define ⇒lm
+ and ⇒lm

* by analogy with ⇒+

and ⇒*, respectively.

Leftmost Derivation: Example
13/50

G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},
P = { 1: E → E+T, 2: E → T, 3: T → T*F,

4: T → F, 5: F → (E), 6: F → i }
Leftmost derivation: Derivation tree:
E ⇒lm E + T [1] E

E T

+

F

⇒lm F + T [4]
T

⇒lm T + T [2]

i

⇒lm i + T [6] T

F

*

⇒lm i + T * F [3]
F⇒lm i + F * F [4]

i
⇒lm i + i * F [6]

i⇒lm i + i * i [6]

Rightmost Derivation

Definition: Let G = (N, T, P, S) be a CFG, let
u ∈ (N ∪ T)*, v ∈ T*. Let p = A → x ∈ P be a
rule. Then, uAv directly derives uxv in the
rightmost way according to p in G, written as

uAv ⇒rm uxv [p]
Note: We define ⇒rm

+ and ⇒rm
* by analogy with ⇒+

and ⇒*, respectively.

During a rightmost derivation step, the
rightmost nonterminal is rewritten.

Gist:

14/50

Rightmost Derivation: Example
15/50

G = (N, T, P, E), where N = {E, F, T}, T = {i, +, *, (,)},
P = { 1: E → E+T, 2: E → T, 3: T → T*F,

4: T → F, 5: F → (E), 6: F → i }
Rightmost derivation: Derivation tree:
E ⇒rm E + T [1] E

E T

+

⇒rm E + T * F [3]

T

F

*

⇒rm E + F * i [4]

F

T

⇒rm T + i * i [2]
⇒rm E + i * i [6]

i

F
⇒rm F + i * i [4]

⇒rm E + T * i [6]

ii⇒rm i + i * i [6]

Derivations: Summary
• Let A → x ∈ P be a rule.
1) Derivation:

Let u, v ∈ (N ∪ T)* : uAv ⇒ uxv
Note: Any nonterminal is rewritten

2) Leftmost derivation:
Let u ∈ T*, v ∈ (N ∪ T)* : uAv ⇒lm uxv
Note: Leftmost nonterminal is rewritten

3) Rightmost derivation:
Let u ∈ (N ∪ T)*, v ∈ T* : uAv ⇒rm uxv
Note: Rightmost nonterminal is rewritten

16/50

Reduction of the Number of Derivations

Theorem: Let G = (N, T, P, S) be a CFG.
The next three languages coincide
(1) {w: w ∈ T*, S ⇒lm

* w}
(2) {w: w ∈ T*, S ⇒rm

* w}
(3) {w: w ∈ T*, S ⇒* w} = L(G)

Gist: Without any loss of generality, we can
consider only leftmost or rightmost
derivations.

17/50

Introduction to Ambiguity

Theory: ☺ × Practice:

Theory: × Practice: ☺
Gexpr2 = (N, T, P, E), where
N = {E}, T = {i, +, *, (,)},
P = { 1: E → E+E, 2: E → E*E,

3: E → (E), 4: E → i }

Gexpr1 = (N, T, P, E), where
N = {E, F, T}, T = {i, +, *, (,)},
P = { 1: E → E+T, 2: E → T,

3: T → T*F, 4: T → F,
5: F → (E), 6: F → i }

E
E T

+

T
F

*
F

T

i
F

ii
E

E E

+ *i ii
E E

Improper during compilation

E
EE

+ *i ii
E E

Note: L(Gexpr1) = L(Gexpr2)

18/50

Grammatical Ambiguity
19/50

Definition: Let G = (N, T, P, S) be a CFG.
If there exists x ∈ L(G) with more than one
derivation tree, then G is ambiguous;
otherwise, G is unambiguous.
Definition: A CFL, L, is inherently ambiguous
if L is generated by no unambiguous grammar.
Example:
• Gexpr1 is unambiguous, because for every x ∈ L(Gexpr1)
there exists only one derivation tree
• Gexpr2 is ambiguous, because for i+i*i ∈ L(Gexpr2)
there exist two derivation trees
• Lexpr = L(Gexpr1) = L(Gexpr2) is not inherently ambiguous
because Gexpr1 is unambiguous

Pushdown Automata (PDA)
20/50

Gist: An FA extended by a pushdown store.

Am A1A2… ai an…a1 a2 …

Read-write head

Finite
State

Control

Pushdown: Input tape:

top

Read head

move of head

Pushdown Automata: Definition
Definition: A pushdown automaton (PDA) is
a 7-tuple M = (Q, Σ, Γ, R, s, S, F), where
• Q is a finite set of states
• Σ is an input alphabet
• Γ is a pushdown alphabet
• R is a finite set of rules of the form: Apa → wq
where A ∈ Γ, p, q ∈ Q, a ∈ Σ ∪ {ε}, w ∈ Γ*

• s ∈ Q is the start state
• S ∈ Γ is the start pushdown symbol
• F ⊆ Q is a set of final states

21/50

Notes on PDA Rules

• Interpretation of Apa → wq: if the current
state is p, current input symbol is a, and the
topmost symbol on the pushdown is A, then M
can read a, replace A with w and change state p
to q.

• Note: if a = ε, no symbol is read

•Strictly mathematically, R is a relation
from Γ × Q × (Σ ∪ {ε}) to Γ* × Q

• Instead of (Apa, wq) ∈ R, however, we write
Apa → wq ∈ R

Mathematical note on rules:

22/50

Graphical Representation
23/50

represents q ∈ Q

represents the initial state s ∈ Q

represents a final state f ∈ F

q

s

f

denotes Apa → wq ∈ Rp qA/w, a

Graphical Representation: Example
M = (Q, Σ, Γ, R, s, S, F)

• Σ = {a, b};

where:

• Γ = {a, S};

apa → aap,

a/aa, a p

q

s
• Q = {s, p, q, f};

f

• R = {Ssa → Sap,

S/Sa, a

apb → q,
a/ε, b

Sq → f} S/ε, ε
• F = {f}

aqb → q,
a/ε, b

24/50

PDA Configuration
25/50

Definition: Let M = (Q, Σ, Γ, R, s, S, F) be a PDA.
A configuration of M is a string χ ∈ Γ*QΣ*

Gist: Instantaneous description of PDA

Configuration

Am A1A2… ai an…a1 a2 …

Read-write head

Finite State
Control

Pushdown: Input tape:

p = current state

p
Read head

Move
Definition: Let xApay and xwqy be two configurations
of a PDA, M, where
x, w ∈ Γ*, A ∈ Γ, p, q ∈ Q, a ∈ Σ ∪ {ε}, and y ∈ Σ*.
Let r = Apa → wq ∈ R be a rule. Then, M makes
a move from xApay to xwqy according to r, written as
xApay |– xwqy [r] or, simply, xApay |– xwqy.

Note: if a = ε, no input symbol is read

Gist: A computational step made by a PDA

26/50

apA yxConfiguration:

Rule: Apa → wq

New configuration: q

…

w

…

yx

Sequence of Moves 1/2
Gist: Several consecutive computational steps

27/50

Definition: Let χ be a configuration. M makes
zero moves from χ to χ; in symbols,

χ |–0 χ [ε] or, simply, χ |–0 χ

Definition: Let χ0, χ1, ..., χn be a sequence of
configurations, n ≥ 1, and χi-1 |– χi [ri], ri∈ R,
for all i = 1, ..., n; that is,

χ0 |– χ1 [r1] |– χ2 [r2] … |– χn [rn]
Then M makes n moves from χ0 to χn,

χ0 |–n χn [r1... rn] or, simply, χ0 |–n χn

Sequence of Moves 2/2
28/50

If χ0 |–n χn [ρ] for some n ≥ 1, then
χ0 |–+ χn [ρ] or, simply, χ0 |–+ χn

If χ0 |–n χn [ρ] for some n ≥ 0, then
χ0 |–* χn [ρ] or, simply, χ0 |–* χn

Example: Consider
AApabc |– ABqbc [1: Apa → Bq], and

ABqbc |– ABCrc [2: Bqb → BCr].
Then, AApabc |–2 ABCrc [1 2],

AApabc |–+ ABCrc [1 2],
AApabc |–* ABCrc [1 2]

Accepted Language: Three Types
29/50

Definition: Let M = (Q, Σ, Γ, R, s, S, F) be a PDA.
1) The language that M accepts by final state,

denoted by L(M)f , is defined as
L(M)f = {w: w ∈ Σ*, Ssw |–* zf, z ∈ Γ*, f ∈ F}

2) The language that M accepts by empty pushdown,
denoted by L(M)ε, is defined as
L(M)ε = {w: w ∈ Σ*, Ssw |–* zf, z = ε, f ∈ Q}

3) The language that M accepts by final state and
empty pushdown, denoted by L(M)fε, is defined as
L(M)fε = {w: w ∈ Σ*, Ssw |–* zf, z = ε, f ∈ F}

PDA: Example
M = (Q, Σ, Γ, R, s, S, F)

• Σ = {a, b};

where:

• Γ = {a, S};

apa → aap,

• Q = {s, p, q, f};

• R = {Ssa → Sap,

apb → q,

Sq → f}
• F = {f}

aqb → q,

Question: aabb ∈ L(M)fε?

Ssaabb |– Sapabb |– Saapbb |– Saqb |– Sq |– f

Rule: Ssa → Sap
S s baa b

paS a bb

qS a b

pS a a b b
Rule: apa → aap

Rule: apb → q

Rule: aqb → q

Rule: Sq → f
S q

f Answer: YES
Empty

pushdown

Final state

Note: L(M)f = L(M)ε = L(M)fε = {anbn: n ≥ 1}

30/50

Three Types of Acceptance: Equivalence
31/50

Theorem:
• L = L(Mf)f for a PDA Mf ⇔ L = L(Mfε)fε for a PDA Mfε
• L = L(Mε)ε for a PDA Mε⇔ L = L(Mfε)fε for a PDA Mfε
• L = L(Mf)f for a PDA Mf ⇔ L = L(Mε)ε for a PDA Mε

Note: There exist these conversions:
PDA Mfε that accept L

by final state and
empty pushdown

PDA Mf that accept L
by final state

PDA Mε that accept L
by empty pushdown

Deterministic PDA (DPDA)
Gist: Deterministic PDA makes no more than

one move from any configuration.
Definition: Let M = (Q, Σ, Γ, R, s, S, F) be a
PDA. M is a deterministic PDA if for each rule
Apa → wq ∈ R, it holds that R – {Apa → wq}
contains no rule with the left-hand side equal
to Apa or Ap.
Illustration: Configuration:

apA yx

Ap → w1q1
Apa → w2q2

No more that one rule of the forms

32/50

PDAs are Stronger than DPDAs
33/50

Theorem: There exists no DPDA Mfε that accepts
L = {xy: x, y ∈ Σ*, y = reversal(x)}

Proof: See page 431 in [Meduna: Automata and Languages]
Illustration:

The family of
languages accepted

by PDAs

The family of deterministic
CFLs⎯the languages
accepted by DPDAs

⊂

L = {xy: x, y ∈ Σ*, y = reversal(x)}

Extended PDA (EPDA)
Gist: The pushdown top of an EPDA represents a

string rather than a single symbol.
Definition: An Extended Pushdown automaton
(EPDA) is a 7-tuple M = (Q, Σ, Γ, R, s, S, F),
where Q, Σ, Γ, s, S, F are defined as in an PDA and
R is a finite set of rules of the form: vpa → wq,
where v, w ∈ Γ*, p, q ∈ Q, a ∈ Σ ∪ {ε}

Illustration:
Pushdown of PDA: Pushdown of EPDA:

Ax x v

34/50

PDA has a single symbols as the
pushdown top

EPDA has a string as the
pushdown top

Move in EPDA
35/50

Definition: Let xvpay and xwqy be two configurations
of an EPDA, M, where x, v, w ∈ Γ*, p, q ∈ Q, a ∈ Σ
∪ {ε}, and y ∈ Σ*. Let r = vpa→wq∈ R be a rule.
Then, M makes a move from xvpay to xwqy according
to r, written as xvpay |– xwqy [r] or xvpay |– xwqy.

Configuration:

Rule: vpa → wq

New configuration: q

…

w

…

yx

ap yx v

Note: |–n, |–+, |–*, L(M)f , L(M)ε , and L(M)fε are defined
analogically to the corresponding definitions for PDA.

EPDA: Example
M = (Q, Σ, Γ, R, s, S, F)

• Σ = {a, b};

where:

• Γ = {a, b, S, C};

s• Q = {s, f};

f

• F = {f}

s → Cs,

ε/C, ε

SC/ε, ε

SCs → f }

aCsa → Cs,

aC/C, a

• R = { sa → as,

ε/a, a

sb → bs,

ε/b, b

bCsb → Cs,

bC/C, b

Ssabba |– Sasbba |– Sabsba
|– SabCsba |– SaCsa

|– f|– SCs

Question: abba ∈ Lfε(M)?

Answer: YES

36/50

Note: L(M)f = L(M)ε = L(M)fε = {xy: x, y ∈ Σ*, y = reversal(x)}

Three Types of Acceptance: Equivalence
37/50

Theorem:
• L = L(Mf)f for an EPDA Mf ⇔ L = L(Mfε)fε for an EPDA Mfε
• L = L(Mε)ε for an EPDA Mε⇔ L = L(Mfε)fε for an EPDA Mfε
• L = L(Mf)f for an EPDA Mf ⇔ L = L(Mε)ε for an EPDA Mε

Note: There exist these conversion:
EPDA Mfε that accept L

by final state and
empty pushdown

EPDA Mf that accept L
by final state

EPDA Mε that accept L
by empty pushdown

EPDAs and PDAs are Equivalent
38/50

Theorem: For every EPDA M, there is a PDA M’,
and L(M)f = L(M’)f.

Illustration:
Proof: See page 419 in [Meduna: Automata and Languages]

=The family of
languages accepted

by EPDAs

The family of
languages accepted

by PDAs

EPDAs and PDAs as Parsing Models for CFGs
Gist: An EPDA or a PDA can simulate the

construction of a derivation tree for a CFG
• Two basic approaches:
1) Top-Down Parsing 2) Bottom-Up Parsing

39/50

From S towards
the input string

From the input
string towards S

S

Input string

S

Input string

EPDAs as Models of Bottom-Up Parsers 1/2
Gist: An EPDA M underlies a bottom-up parser
1) M contains shift rules that copy the input symbols

onto the pushdown:
as yx for every a ∈ Σ:

add sa → as to R;

40/50

a s yx

for every A → x ∈ P in G:
add xs → As to R;

2) M contains reduction rules that simulate the
application of a grammatical rule in reverse:

s yx

A s y

3) M also contains the rule #Ss → f that takes M to a
final state f

Derivation tree:
S

EPDAs as Models of Bottom-Up Parsers 2/2

#Ss → f ∈ R

x y z

start pushdown symbol

B C

s x y z

sx y z

sx y z

B# sx z

f

Rule: B → y

Rule: C → z

Rule: S→ xBC
CB# sx

B# sx z

S# s

Bottom-up construction of a derivation tree:

41/50

• Input: CFG G = (N, T, P, S)
• Output: EPDA M = (Q, Σ, Γ, R, s, #, F); L(G) = L(M)f
• Method:
• Q := {s, f};
• Σ := T;
• Γ := N ∪ T ∪ {#};
• Construction of R:

• for every a ∈ Σ, add sa → as to R;
• for every A → x ∈ P, add xs → As to R;
• add #Ss → f to R;

• F := {f};

Algorithm: From CFG to EPDA
42/50

From CFG to EPDA: Example 1/2
43/50

• G = (N, T, P, S), where:
N = {S}, T = {(,)}, P = {S → (S), S → ()}
Objective: An EPDA M such that L(G) = L(M)f

M = (Q, Σ, Γ, R, s, #, F) where:
Q = {s, f}; Γ = N ∪ T ∪ {#} = {S, (,), #}Σ = T = {(,)};

S → (S) ∈ P

R = {s(→ (s,

“(” ∈ T

s) →)s, (S)s → Ss, ()s → Ss, #Ss → f }

S → () ∈ P“)” ∈ T

shift rules reduction rules

F = {f}

From CFG to EPDA: Example 2/2
44/50

M = (Q, Σ, Γ, R, s, #, F), where:
Q = {s, f}, Σ = T = {(,)}, Γ = {(,), S, #}, F = {f}
R = {s(→ (s, s) →)s, (S)s → Ss, ()s → Ss, #Ss → f }

Question: (()) ∈ L(M)f?

(())
S

(()
S

Rule: s(→ (s
s)(()

f
Answer: YES

Rule: s) →)s
s)(S

Rule: (S) → S

Rule: #Ss → f

Rule: ()s → S

s)(S

sS

s)(()

s)(()
Rule: s(→ (s

Rule: s) →)s
s)(() (()

((

(

(())
S
S

Final state

PDAs as Models of Top-Down Parsers 1/2
45/50

Gist: An PDA M underlies a top-down parser
1) M contains popping rules that pops the top symbol from the

pushdown and reads the input symbol if both coincide:

for every a ∈ Σ:
add asa → s to R;

x ys

as yx a

2) M contains expansion rules that simulate the
application of a grammatical rule:

A s y

s yan … a1

for every A → a1 …an ∈ P in G,
add As → an …a1s to R;

= reversal(a1 …an)

Derivation tree:

PDAs as Models of Top-Down Parsers 2/2
Top-down construction of a derivation tree:

start pushdown symbol

S

a1..ak

B C

b1..bl c1..cm

S s a1 … ak b1 … bl c1 … cm

C B sak … a1 a1 … ak b1 … bl c1 … cm

C B s b1 … bl c1 … cm

C s b1 … bl c1 … cmbl … b1

C s c1 … cm

s c1 … cmcm … c1

s OK OK OK

S → a1..akBC

B → b1..bl

C → c1..cm

Empty
pushdown

46/50

• Input: CFG G = (N, T, P, S)
• Output: PDA M = (Q, Σ, Γ, R, s, S, F); L(G) = L(M)ε
• Method:
• Q := {s};
• Σ := T;
• Γ := N ∪ T;
• Construction of R:

• for every a ∈ Σ, add asa → s to R;
• for every A → x ∈ P, add As → ys to R,

where y = reversal(x);
• F := ∅;

Algorithm: From CFG to PDA
47/50

From CFG to PDA: Example 1/2
48/50

• G = (N, T, P, S), where:
N = {S}, T = {(,)}, P = {S → (S), S → ()}
Objective: An PDA M such that L(G) = L(M)ε

M = (Q, Σ, Γ, R, s, S, F) where:

S → (S) ∈ P
Σ = T = {(,)}; Γ = N ∪ T = {S, (,)}

R = {

“(” ∈ T

(s(→ s,

Q = {s};

)s) → s, Ss →)S(s, Ss →)(s }

S → () ∈ P“)” ∈ T

rev rev

popping rules expansion rules

F = ∅

From CFG to PDA: Example 2/2
M = (Q, Σ, Γ, R, s, S, F), where:
Q = {s}, Σ = T = {(,)}, Γ = {(,), S}, F = ∅
P = {(s(→ s,)s) → s, Ss →)S(s, Ss →)(s }
Question: (()) ∈ L(M)ε?

Rule: Ss →)S(s

Answer: YES

(())
S
S

Rule: (s(→ s

Rule: Ss →)(s

Rule:)s) → s

Rule:)s) → s

Rule: (s(→ s

Empty
pushdown

S s)(()) (

S s)())

s)())) (

s))))

s))

s

()S
S

S

()S
S (())

S
S

(())
S
S

(())
S
S

S s)(()

49/50

Models for Context-free Languages
50/50

Theorem: For every CFG G, there is an PDA
M such that L(G) = L(M)ε.

Proof: See the previous algorithm.

Theorem: For every PDA M, there is a CFG
G such that L(M)ε = L(G).

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for
context-free languages are

1) Context-free grammars 2) Pushdown automata

	Part VII.Models for Context-Free Languages
	Context-Free Grammar (CFG)
	Context-Free Grammar: Definition
	Convention
	Derivation Step
	Sequence of Derivation Steps 1/2
	Sequence of Derivation Steps 2/2
	Generated Language
	Context-Free Language (CFL)
	Rule Tree
	Derivation Tree: Example
	Leftmost Derivation
	Leftmost Derivation: Example
	Rightmost Derivation
	Rightmost Derivation: Example
	Derivations: Summary
	Reduction of the Number of Derivations
	Introduction to Ambiguity
	Grammatical Ambiguity
	Pushdown Automata (PDA)
	Pushdown Automata: Definition
	Notes on PDA Rules
	Graphical Representation
	Graphical Representation: Example
	PDA Configuration
	Move
	Sequence of Moves 1/2
	Sequence of Moves 2/2
	Accepted Language: Three Types
	PDA: Example
	Three Types of Acceptance: Equivalence
	Deterministic PDA (DPDA)
	PDAs are Stronger than DPDAs
	Extended PDA (EPDA)
	Move in EPDA
	EPDA: Example
	Three Types of Acceptance: Equivalence
	EPDAs and PDAs are Equivalent
	EPDAs and PDAs as Parsing Models for CFGs
	EPDAs as Models of Bottom-Up Parsers 1/2
	EPDAs as Models of Bottom-Up Parsers 2/2
	Algorithm: From CFG to EPDA
	From CFG to EPDA: Example 1/2
	From CFG to EPDA: Example 2/2
	PDAs as Models of Top-Down Parsers 1/2
	PDAs as Models of Top-Down Parsers 2/2
	Algorithm: From CFG to PDA
	From CFG to PDA: Example 1/2
	From CFG to PDA: Example 2/2
	Models for Context-free Languages

