

Context-Free Grammar: Definition

Definition: A context-free grammar (CFG) is a quadruple G = (N, T, P, S), where

- *N* is an alphabet of *nonterminals*
- *T* is an alphabet of *terminals*, $N \cap T = \emptyset$
- *P* is a finite set of *rules* of the form $A \rightarrow x$, where $A \in N, x \in (N \cup T)^*$
- $S \in N$ is the start nonterminal

Mathematical Note on Rules:

- Strictly mathematically, *P* is a relation from *N* to $(N \cup T)^*$
- Instead of $(A, \mathbf{x}) \in P$, we write $A \to \mathbf{x} \in P$
- $A \rightarrow x$ means that A can be replaced with x
- $A \rightarrow \varepsilon$ is called *\varepsilon*-rule

Convention

- A, \ldots, F, S : nonterminals
 - : the start nonterminal
- *a*, ..., *d*

• \$

• π

- *U*, ..., *Z*

- : terminals
- U, \ldots, Z : members of $(N \cup T)$
 - : members of $(N \cup T)^*$
 - : sequence of productions

A subset of rules of the form:

$$A \rightarrow x_1, A \rightarrow x_2, \dots, A \rightarrow x_n$$

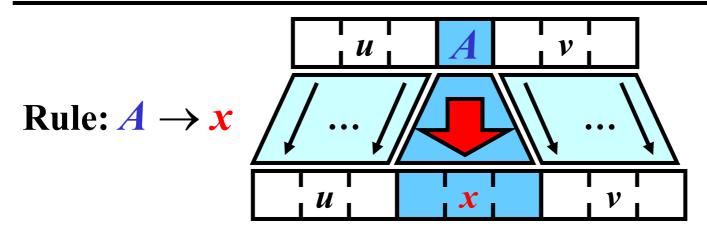
can be simply written as:

 $A \rightarrow x_1 \mid x_2 \mid \ldots \mid x_n$

Derivation Step

Gist: A change of a string by a rule. **Definition:** Let G = (N, T, P, S) be a CFG. Let $u, v \in (N \cup T)^*$ and $p = A \rightarrow x \in P$. Then, uAv *directly derives uxv according to p* in *G*, written as $uAv \Rightarrow uxv [p]$ or, simply, $uAv \Rightarrow uxv$.

Note: If $uAv \Rightarrow uxv$ in *G*, we also say that *G* makes a *derivation step* from uAv to uxv.



Sequence of Derivation Steps 1/2 Gist: Several consecutive derivation steps. Definition: Let $u \in (N \cup T)^*$. *G* makes a zero-step derivation from *u* to *u*; in symbols, $u \Rightarrow^0 u [\varepsilon]$ or, simply, $u \Rightarrow^0 u$

Definition: Let $u_0, \ldots, u_n \in (N \cup T)^*$, $n \ge 1$, and $u_{i-1} \Rightarrow u_i [p_i], p_i \in P$, for all $i = 1, \ldots, n$; that is $u_0 \Rightarrow u_1 [p_1] \Rightarrow u_2 [p_2] \ldots \Rightarrow u_n [p_n]$ Then, *G* makes *n* derivation steps from u_0 to u_n , $u_0 \Rightarrow^n u_n [p_1 \ldots p_n]$ or, simply, $u_0 \Rightarrow^n u_n$

Sequence of Derivation Steps 2/2

If $u_0 \Rightarrow^n u_n [\pi]$ for some $n \ge 1$, then u_0 properly derives u_n in G, written as $u_0 \Rightarrow^+ u_n [\pi]$.

If $u_0 \Rightarrow^n u_n[\pi]$ for some $n \ge 0$, then u_0 derives u_n in *G*, written as $u_0 \Rightarrow^* u_n[\pi]$.

Example: Consider

 $aAb \Rightarrow aaBbb [1: A \rightarrow aBb]$, and $aaBbb \Rightarrow aacbb [2: B \rightarrow c]$. Then, $aAb \Rightarrow^2 aacbb [1 2]$, $aAb \Rightarrow^+ aacbb [1 2]$, $aAb \Rightarrow^* aacbb [1 2]$,

Generated Language

Gist: *G generates* a terminal string *w* by a sequence of derivation steps from *S* to *w*

Definition: Let G = (N, T, P, S) be a CFG. The *language generated by* G, L(G), is defined as $L(G) = \{w: w \in T^*, S \Rightarrow^* w\}$

Illustration: G = (N, T, P, S), let $w = a_1 a_2 \dots a_n$; $a_i \in T$ for $i = 1 \dots n$ **if** $S \Rightarrow \dots \Rightarrow \dots \Rightarrow \underbrace{a_1 a_2 \dots a_n}_{W}$ then $w \in L(G)$; **otherwise**, $w \notin L(G)$

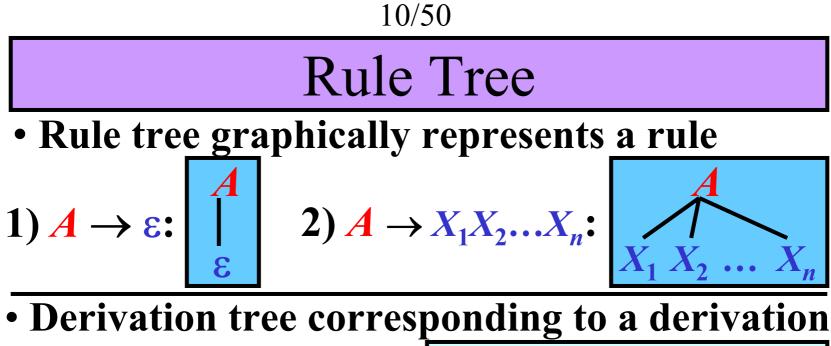
Context-Free Language (CFL)

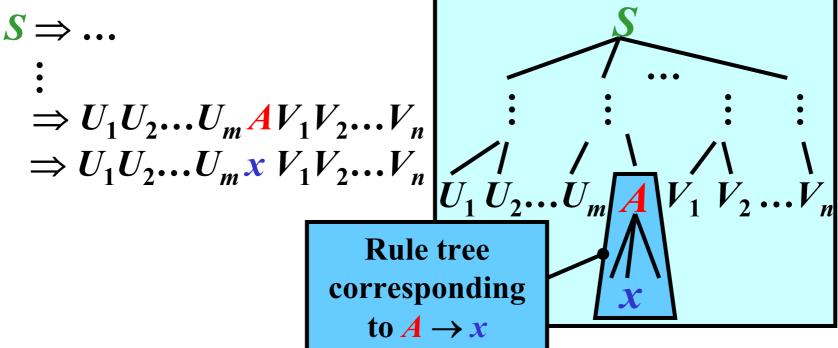
Gist: A language generated by a CFG.

Definition: Let *L* be a language. *L* is a *contextfree language* (CFL) if there exists a context-free grammar that generates *L*.

Example:

 $L = \{a^n b^n \colon n \ge 0\} \text{ is a CFL.}$





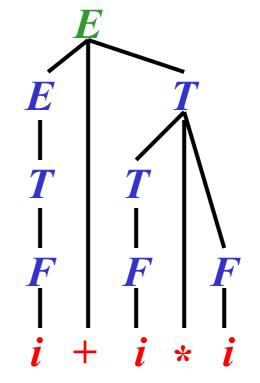
Derivation Tree: Example

 $G = (N, T, P, E), \text{ where } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,\$ $4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Derivation:

 $\underline{E} \Rightarrow \underline{E} + \underline{T}$ [1] $\Rightarrow E + T * F$ [3] $\Rightarrow E + F * F$ [4] $\Rightarrow E + i * F$ [6] \Rightarrow **T** + **i** * **F** [2] \Rightarrow **T** + **i** * **i** [6] $\Rightarrow F + i * i$ [4] $\Rightarrow i + i * i$ [6]

Derivation tree:



Leftmost Derivation

Gist: During a *leftmost derivation step*, the leftmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let $u \in T^*, v \in (N \cup T)^*$. Let $p = A \rightarrow x \in P$ be a rule. Then, uAv directly derives uxv in the *leftmost way* according to p in G, written as $uAv \Rightarrow_{lm} uxv [p]$

Note: We define \Rightarrow_{lm}^+ and \Rightarrow_{lm}^* by analogy with \Rightarrow^+ and \Rightarrow^* , respectively.

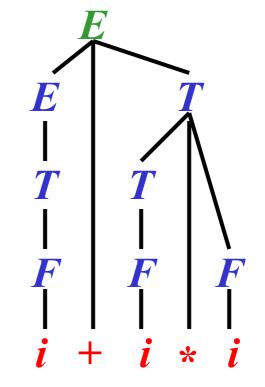
13/50

Leftmost Derivation: Example

 $G = (N, T, P, E), \text{ where } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,\$ $4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Leftmost derivation: $\underline{E} \Rightarrow_{lm} \underline{E} + T$ [1] $\Rightarrow_{lm} \underline{T} + T$ [2] $\Rightarrow_{Im} \underline{F} + T$ [4] $\Rightarrow_{lm} i + \underline{T}$ [6] $\Rightarrow_{lm} i + T * F [3]$ $\Rightarrow_{lm} i + \underline{F} * F$ [4] $\Rightarrow_{lm} i + i * F$ [6] $\Rightarrow_{lm} i + i * i [6]$

Derivation tree:



Rightmost Derivation

Gist: During a *rightmost derivation step*, the rightmost nonterminal is rewritten.

Definition: Let G = (N, T, P, S) be a CFG, let $u \in (N \cup T)^*, v \in T^*$. Let $p = A \rightarrow x \in P$ be a rule. Then, uAv directly derives uxv in the *rightmost way* according to p in G, written as $uAv \Rightarrow_{rm} uxv [p]$

Note: We define \Rightarrow_{rm}^+ and \Rightarrow_{rm}^* by analogy with \Rightarrow^+ and \Rightarrow^* , respectively.

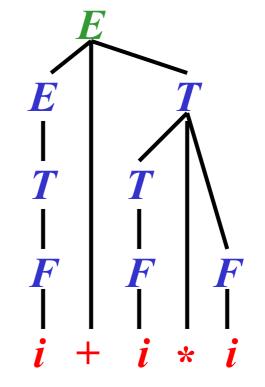
15/50

Rightmost Derivation: Example

 $G = (N, T, P, E), \text{ where } N = \{E, F, T\}, T = \{i, +, *, (,)\},\$ $P = \{1: E \rightarrow E + T, 2: E \rightarrow T, 3: T \rightarrow T * F,\$ $4: T \rightarrow F, 5: F \rightarrow (E), 6: F \rightarrow i \}$

Rightmost derivation: $\underline{E} \Rightarrow_{rm} \underline{E} + \underline{T} \qquad [1]$ $\Rightarrow_{rm} E + T * F$ [3] $\Rightarrow_{rm} E + \underline{T} * i$ [6] $\Rightarrow_{rm} E + F * i$ [4] $\Rightarrow_{rm} \underline{E} + i * i [6]$ $\Rightarrow_{rm} \underline{T} + i * i [2]$ $\Rightarrow_{rm} \underline{F} + i * i$ [4] $\Rightarrow_{rm} i + i * i [6]$

Derivation tree:



Derivations: Summary

• Let $A \to x \in P$ be a rule.

1) Derivation:

Let $\boldsymbol{u}, \boldsymbol{v} \in (N \cup T)^*$: $\boldsymbol{u} A \boldsymbol{v} \Rightarrow \boldsymbol{u} \boldsymbol{x} \boldsymbol{v}$

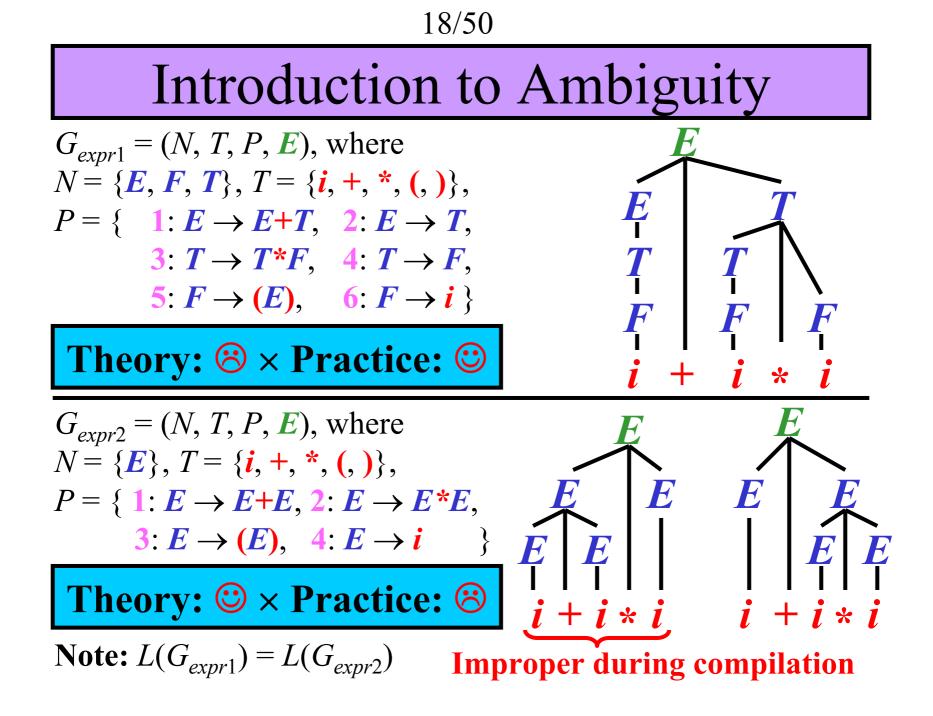
Note: <u>Any</u> nonterminal is rewritten

2) Leftmost derivation:

Let $u \in T^*$, $v \in (N \cup T)^*$: $uAv \Rightarrow_{lm} uxv$ Note: <u>Leftmost</u> nonterminal is rewritten

3) Rightmost derivation: Let $u \in (N \cup T)^*$, $v \in T^*$: $uAv \Rightarrow_{rm} uxv$ Note: <u>Rightmost</u> nonterminal is rewritten

Reduction of the Number of Derivations Gist: Without any loss of generality, we can consider only leftmost or rightmost derivations. **Theorem:** Let G = (N, T, P, S) be a CFG. The next three languages coincide (1) $\{w: w \in T^*, S \Longrightarrow_{lm}^* w\}$ (2) $\{w: w \in T^*, S \Longrightarrow_{rm}^* w\}$ (3) { $w: w \in T^*, S \Rightarrow^* w$ } = L(G)



Grammatical Ambiguity

Definition: Let G = (N, T, P, S) be a CFG. If there exists $x \in L(G)$ with more than one derivation tree, then *G* is *ambiguous*; otherwise, *G* is *unambiguous*.

Definition: A CFL, *L*, is *inherently ambiguous* if *L* is generated by no unambiguous grammar.

Example:

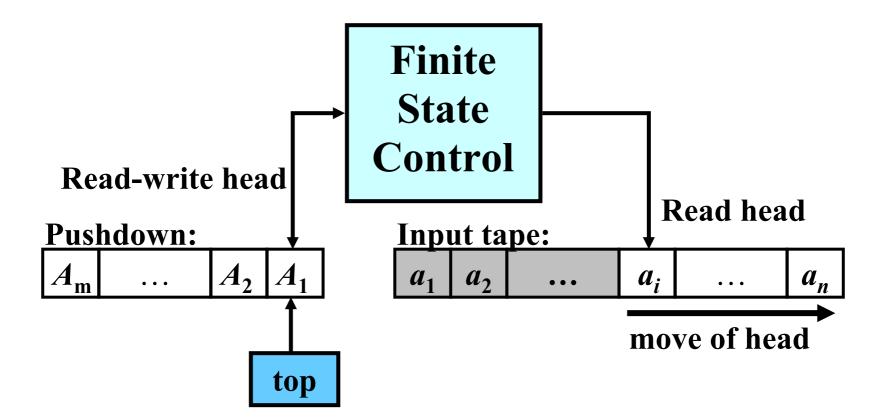
• G_{expr1} is **unambiguous**, because for every $x \in L(G_{expr1})$ there exists **only one derivation tree**

• G_{expr2} is **ambiguous**, because for $i+i*i \in L(G_{expr2})$ there exist **two derivation trees**

• $L_{expr} = L(G_{expr1}) = L(G_{expr2})$ is not inherently ambiguous because G_{expr1} is unambiguous

Pushdown Automata (PDA)

Gist: An FA extended by a pushdown store.



Pushdown Automata: Definition

Definition: A pushdown automaton (PDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, R, s, S, F)$, where

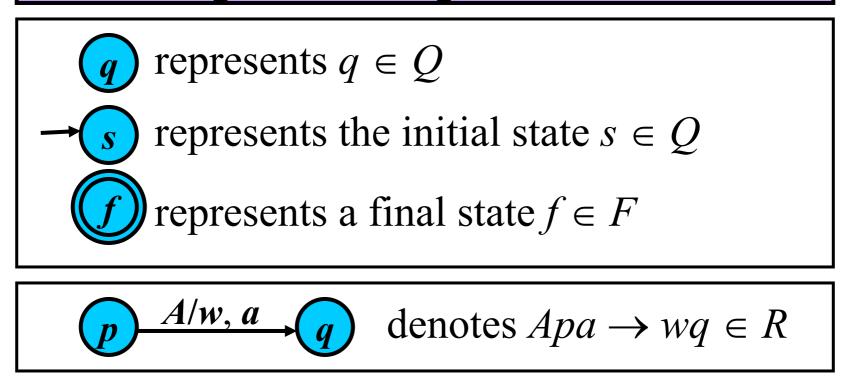
- *Q* is a *finite set of states*
- Σ is an *input alphabet*
- Γ is a *pushdown alphabet*
- *R* is a *finite set of rules* of the form: $Apa \rightarrow wq$ where $A \in \Gamma$, $p, q \in Q$, $a \in \Sigma \cup \{\varepsilon\}, w \in \Gamma^*$
- $s \in Q$ is the start state
- $S \in \Gamma$ is the *start pushdown symbol*
- $F \subseteq Q$ is a set of *final states*

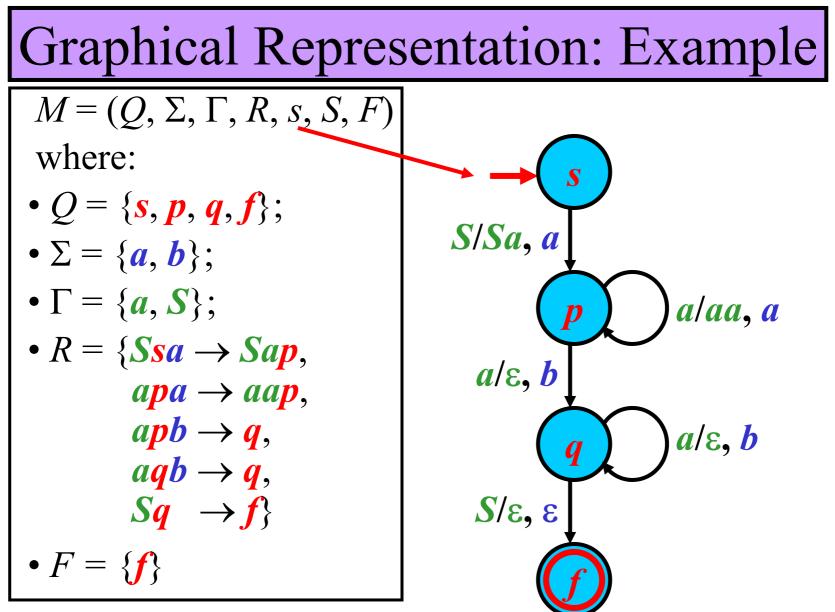
Notes on PDA Rules

Mathematical note on rules:

- Strictly mathematically, *R* is a relation from $\Gamma \times Q \times (\Sigma \cup \{\varepsilon\})$ to $\Gamma^* \times Q$
- Instead of $(Apa, wq) \in R$, however, we write $Apa \rightarrow wq \in R$
- Interpretation of Apa → wq: if the current state is p, current input symbol is a, and the topmost symbol on the pushdown is A, then M can read a, replace A with w and change state p to q.
- Note: if $a = \varepsilon$, no symbol is read

Graphical Representation

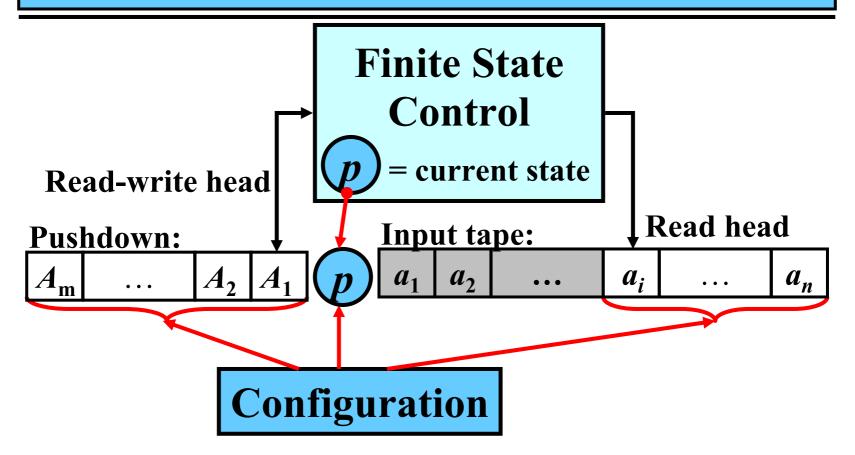




PDA Configuration

Gist: Instantaneous description of PDA

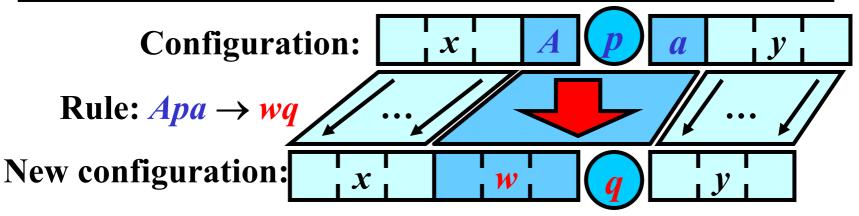
Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. A configuration of M is a string $\chi \in \Gamma^* Q \Sigma^*$



Move

Gist: A computational step made by a PDA Definition: Let *xApay* and *xwqy* be two configurations of a PDA, *M*, where $x, w \in \Gamma^*, A \in \Gamma, p, q \in Q, a \in \Sigma \cup \{\varepsilon\}, \text{ and } y \in \Sigma^*.$ Let $r = Apa \rightarrow wq \in R$ be a rule. Then, *M* makes a *move* from *xApay* to *xwqy* according to *r*, written as $xApay \mid -xwqy [r]$ or, simply, *xApay* $\mid -xwqy$.

Note: if $a = \varepsilon$, no input symbol is read



Sequence of Moves 1/2

Gist: Several consecutive computational steps

Definition: Let χ be a configuration. *M* makes *zero moves* from χ to χ ; in symbols, $\chi \mid -^0 \chi$ [ε] or, simply, $\chi \mid -^0 \chi$

Definition: Let $\chi_0, \chi_1, ..., \chi_n$ be a sequence of configurations, $n \ge 1$, and $\chi_{i-1} \models \chi_i [r_i], r_i \in R$, for all i = 1, ..., n; that is, $\chi_0 \models \chi_1 [r_1] \models \chi_2 [r_2] ... \models \chi_n [r_n]$ Then *M* makes *n* moves from χ_0 to χ_n , $\chi_0 \models^n \chi_n [r_1...r_n]$ or, simply, $\chi_0 \models^n \chi_n$

Sequence of Moves 2/2

If
$$\chi_0 \models^n \chi_n [\rho]$$
 for some $n \ge 1$, then
 $\chi_0 \models^+ \chi_n [\rho]$ or, simply, $\chi_0 \models^+ \chi_n$
If $\chi_0 \models^n \chi_n [\rho]$ for some $n \ge 0$, then
 $\chi_0 \models^* \chi_n [\rho]$ or, simply, $\chi_0 \models^* \chi_n$

Example: Consider

 $\begin{array}{ll} AApabc & [-ABqbc & [1: Apa \rightarrow Bq], \text{ and} \\ ABqbc & [-ABCrc & [2: Bqb \rightarrow BCr]. \\ Then, & AApabc & [-^2ABCrc & [1 2], \\ AApabc & [-^+ABCrc & [1 2], \\ AApabc & [-^*ABCrc & [1 2]. \end{array} \end{array}$

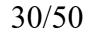
29/50

Accepted Language: Three Types

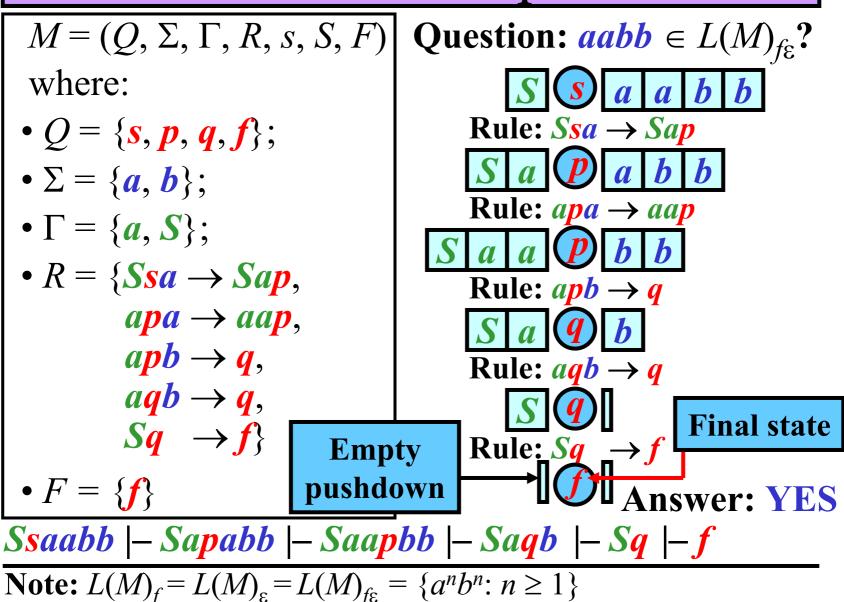
Definition: Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA.

- 1) The language that M accepts by final state, denoted by $L(M)_f$, is defined as $L(M)_f = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z \in \Gamma^*, f \in F\}$
- 2) The language that M accepts by empty pushdown, denoted by $L(M)_{\varepsilon}$, is defined as $L(M)_{\varepsilon} = \{w: w \in \Sigma^*, Ssw \mid -^* zf, z = \varepsilon, f \in Q\}$

3) The language that M accepts by final state and empty pushdown, denoted by L(M)_{fε}, is defined as L(M)_{fε} = {w: w ∈ Σ*, Ssw |-* zf, z = ε, f ∈ F}



PDA: Example

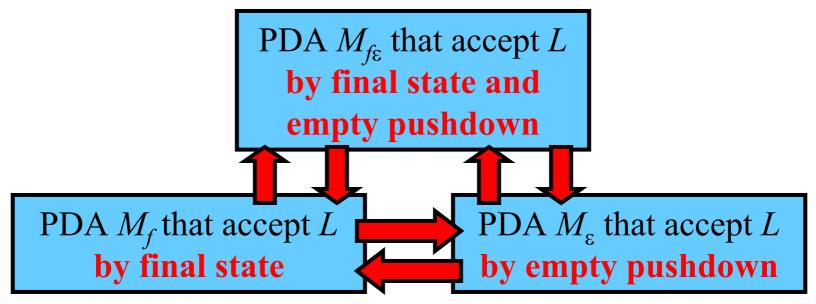


Three Types of Acceptance: Equivalence

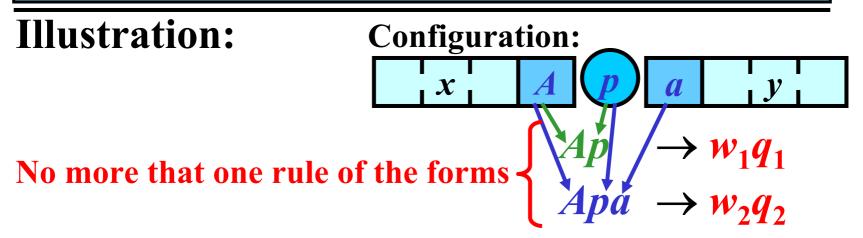
Theorem:

- $L = L(M_f)_f$ for a PDA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for a PDA $M_{f\epsilon}$
- $L = L(M_{\varepsilon})_{\varepsilon}$ for a PDA $M_{\varepsilon} \Leftrightarrow L = L(M_{f\varepsilon})_{f\varepsilon}$ for a PDA $M_{f\varepsilon}$
- $L = L(M_f)_f$ for a PDA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ for a PDA M_{ϵ}

Note: There exist these conversions:



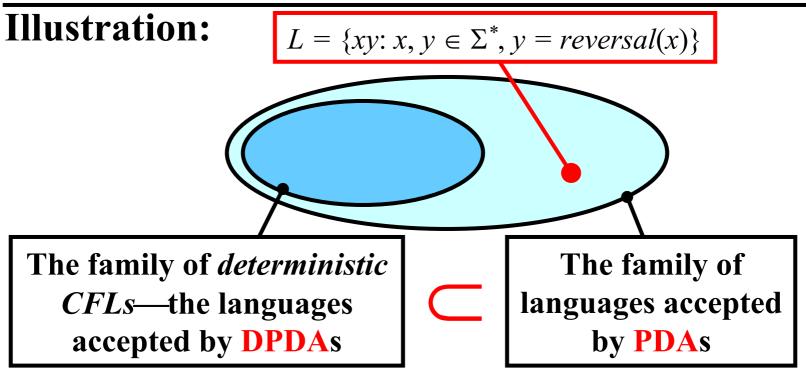
Deterministic PDA (DPDA) **Gist: Deterministic PDA makes no more than** one move from any configuration. **Definition:** Let $M = (Q, \Sigma, \Gamma, R, s, S, F)$ be a PDA. *M* is a *deterministic PDA* if for each rule $Apa \rightarrow wq \in R$, it holds that $R - \{Apa \rightarrow wq\}$ contains no rule with the left-hand side equal to *Apa* or *Ap*.



PDAs are Stronger than DPDAs

Theorem: There exists no DPDA $M_{f\epsilon}$ that accepts $L = \{xy: x, y \in \Sigma^*, y = reversal(x)\}$

Proof: See page 431 in [Meduna: Automata and Languages]



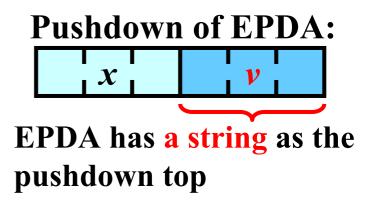
Extended PDA (EPDA)

Gist: The pushdown top of an EPDA represents a string rather than a single symbol.

Definition: An Extended Pushdown automaton (EPDA) is a 7-tuple $M = (Q, \Sigma, \Gamma, R, s, S, F)$, where $Q, \Sigma, \Gamma, s, S, F$ are defined as in an PDA and R is a *finite set of rules* of the form: $\nu pa \rightarrow wq$, where $\nu, w \in \Gamma^*, p, q \in Q, a \in \Sigma \cup \{\varepsilon\}$

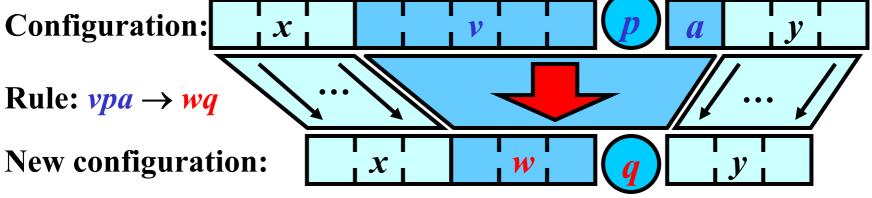
Illustration: Pushdown of PDA:

PDA has a single symbols as the pushdown top

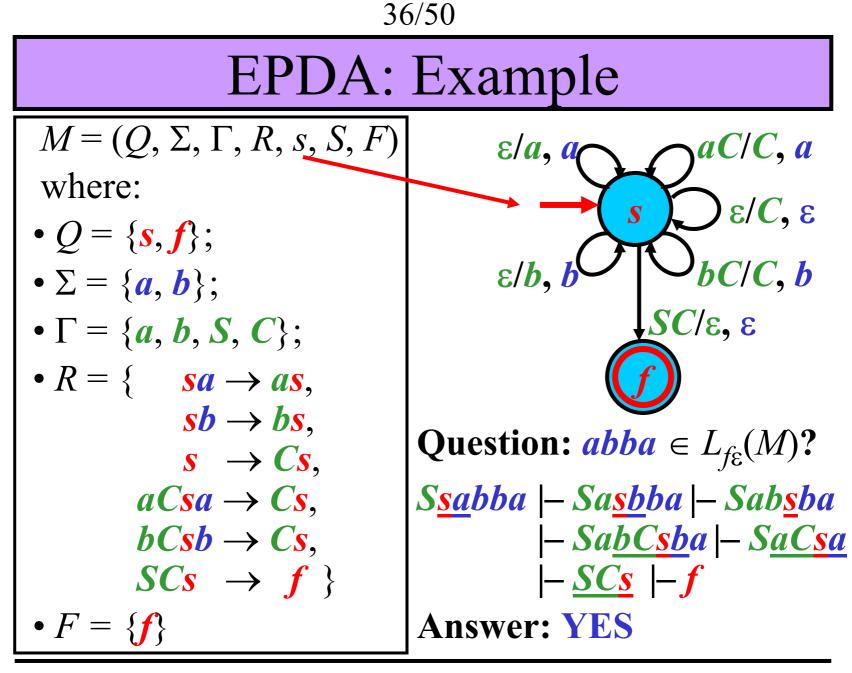


Move in EPDA

Definition: Let *xvpay* and *xwqy* be two configurations of an EPDA, *M*, where *x*, *v*, $w \in \Gamma^*$, *p*, $q \in Q$, $a \in \Sigma \cup \{\varepsilon\}$, and $y \in \Sigma^*$. Let $r = vpa \rightarrow wq \in R$ be a rule. Then, *M* makes a *move* from *xvpay* to *xwqy* according to *r*, written as *xvpay* |-xwqy[r] or *xvpay* |-xwqy.



Note: $|-^n$, $|-^+$, $|-^*$, $L(M)_f$, $L(M)_{\varepsilon}$, and $L(M)_{f\varepsilon}$ are defined analogically to the corresponding definitions for PDA.



Note: $L(M)_f = L(M)_{\varepsilon} = L(M)_{f\varepsilon} = \{xy: x, y \in \Sigma^*, y = \operatorname{reversal}(x)\}$

Three Types of Acceptance: Equivalence

Theorem:

- $L = L(M_f)_f$ for an EPDA $M_f \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for an EPDA $M_{f\epsilon}$
- $L = L(M_{\epsilon})_{\epsilon}$ for an EPDA $M_{\epsilon} \Leftrightarrow L = L(M_{f\epsilon})_{f\epsilon}$ for an EPDA $M_{f\epsilon}$
- $L = L(M_f)_f$ for an EPDA $M_f \Leftrightarrow L = L(M_{\epsilon})_{\epsilon}$ for an EPDA M_{ϵ}

Note: There exist these conversion:

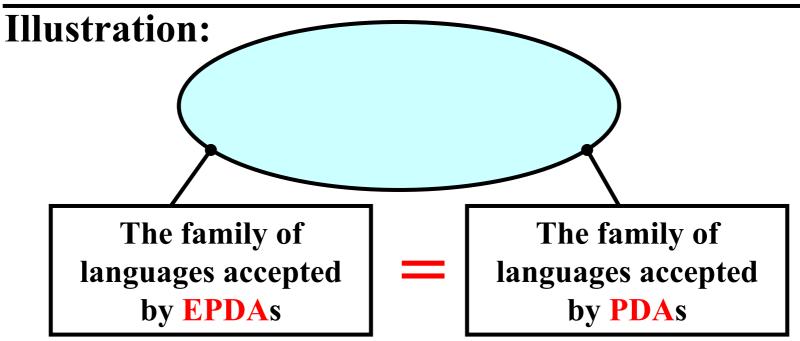


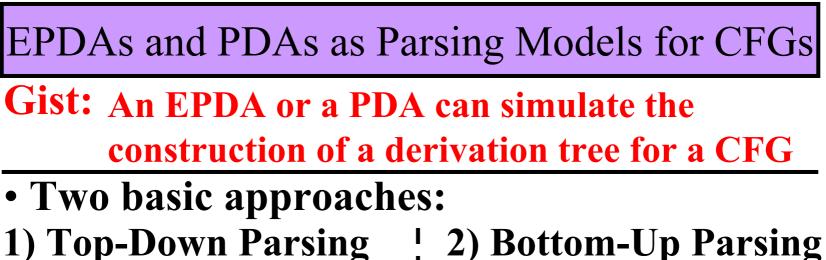
38/50

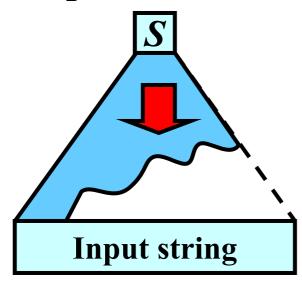
EPDAs and PDAs are Equivalent

Theorem: For every EPDA *M*, there is a PDA *M*', and $L(M)_f = L(M')_f$.

Proof: See page 419 in [Meduna: Automata and Languages]

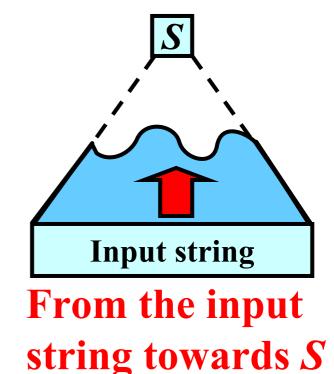


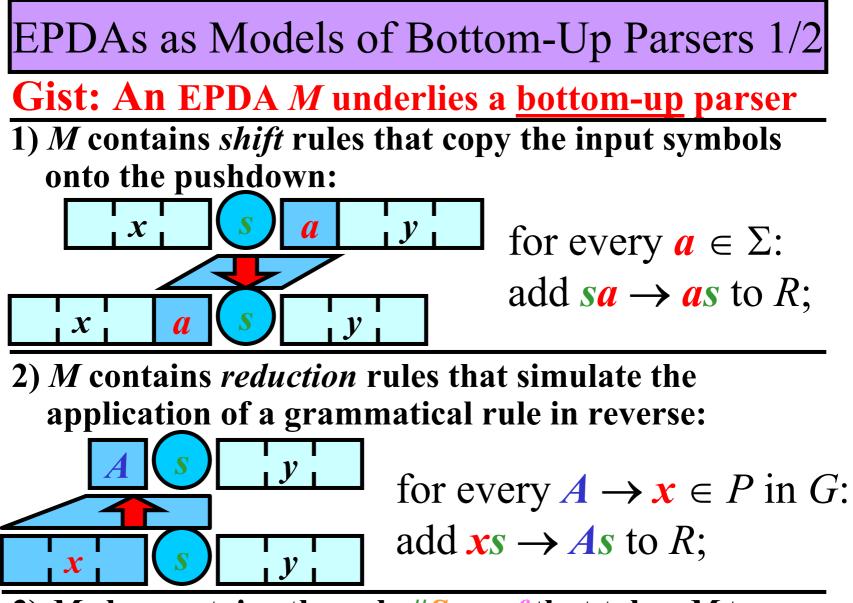




From S towards the input string

2) Bottom-Up Parsing

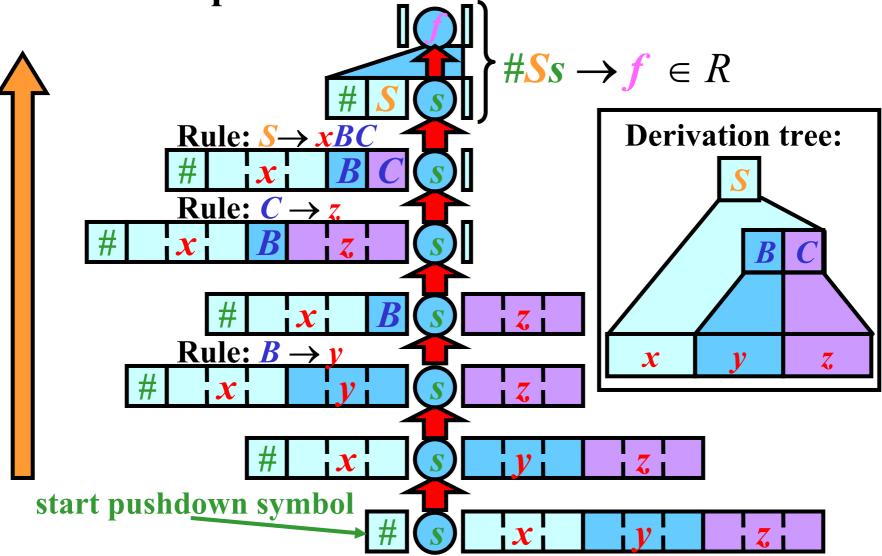




3) *M* also contains the rule $\#Ss \rightarrow f$ that takes *M* to a final state f

EPDAs as Models of Bottom-Up Parsers 2/2

Bottom-up construction of a derivation tree:



42/50

Algorithm: From CFG to EPDA

- **Input:** CFG G = (N, T, P, S)
- **Output:** EPDA $M = (Q, \Sigma, \Gamma, R, s, \#, F); L(G) = L(M)_f$
- Method:
- $Q := \{s, f\};$
- $\Sigma := T$;
- $\Gamma := N \cup T \cup \{\#\};$
- Construction of *R*:
 - for every $a \in \Sigma$, add $sa \to as$ to R;
 - for every $A \rightarrow x \in P$, add $xs \rightarrow As$ to R;
 - add $\#Ss \rightarrow f$ to R;

• $F := \{ f \};$

43/50

From CFG to EPDA: Example 1/2

•
$$G = (N, T, P, S)$$
, where:
 $N = \{S\}, T = \{(,)\}, P = \{S \rightarrow (S), S \rightarrow ()\}$
Objective: An EPDA *M* such that $L(G) = L(M)_f$

 $M = (Q, \Sigma, \Gamma, R, s, \#, F) \text{ where:}$ $Q = \{s, f\}; \Sigma = T = \{(,)\}; \Gamma = N \cup T \cup \{\#\} = \{S, (,), \#\}$ $\overset{``(" \in T \quad ``)" \in T \quad S \rightarrow (S) \in P \quad S \rightarrow () \in P$ $R = \{\underline{s(\rightarrow (s, s) \rightarrow)s}, (S) \underline{s} \rightarrow Ss, () \underline{s} \rightarrow Ss, \#Ss \rightarrow f\}$

shift rules

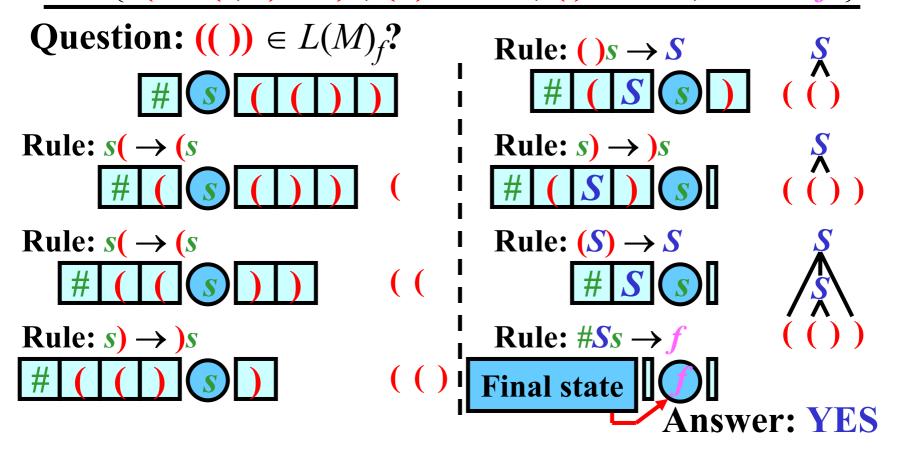
reduction rules

 $F = \{ \mathbf{f} \}$

44/50

From CFG to EPDA: Example 2/2

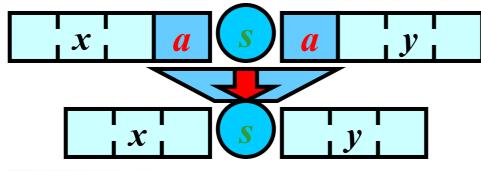
 $M = (Q, \Sigma, \Gamma, R, s, \#, F), \text{ where:}$ $Q = \{s, f\}, \Sigma = T = \{(,)\}, \Gamma = \{(,), S, \#\}, F = \{f\}$ $R = \{s(\rightarrow (s, s) \rightarrow)s, (S)s \rightarrow Ss, ()s \rightarrow Ss, \#Ss \rightarrow f\}$



PDAs as Models of Top-Down Parsers 1/2

Gist: An PDA *M* underlies a <u>top-down</u> parser

1) *M* contains *popping* rules that pops the top symbol from the pushdown and reads the input symbol if both coincide:



for every $a \in \Sigma$: add $asa \rightarrow s$ to R;

2) *M* contains *expansion* rules that simulate the application of a grammatical rule:

$$A \otimes y \qquad \text{for every } A \to a_1 \dots a_n \in P \text{ in } G,$$

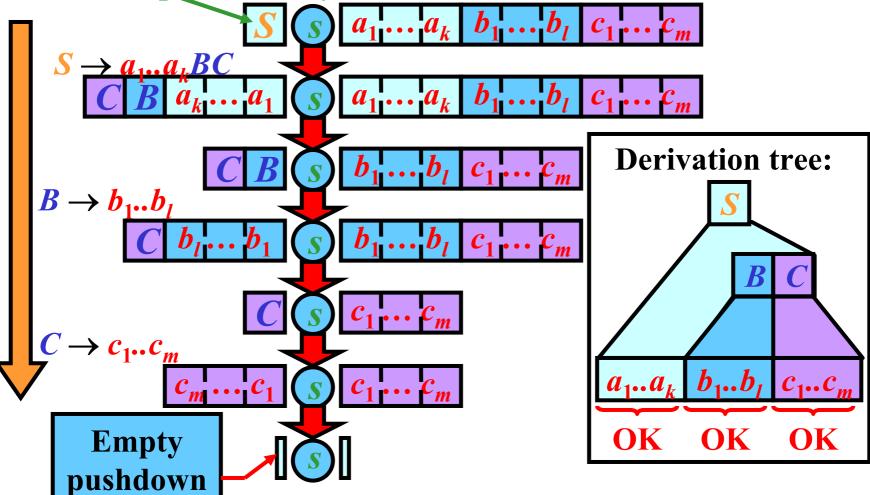
add
$$As \to a_n \dots a_1 s \text{ to } R;$$

$$= \text{reversal}(a_1 \dots a_n)$$

PDAs as Models of Top-Down Parsers 2/2

Top-down construction of a derivation tree:

start pushdown symbol



47/50

Algorithm: From CFG to PDA

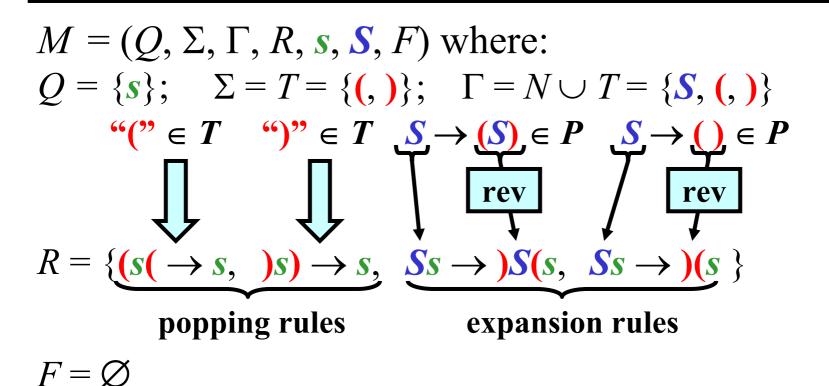
- **Input:** CFG G = (N, T, P, S)
- **Output:** PDA $M = (Q, \Sigma, \Gamma, R, s, S, F); L(G) = L(M)_{\varepsilon}$
- Method:
- $Q := \{s\};$
- $\Sigma := T$;
- $\Gamma := N \cup T$;
- Construction of *R*:
 - for every $a \in \Sigma$, add $asa \rightarrow s$ to R;
 - for every $A \rightarrow x \in P$, add $As \rightarrow ys$ to R, where y = reversal(x);

• $F := \emptyset;$

48/50

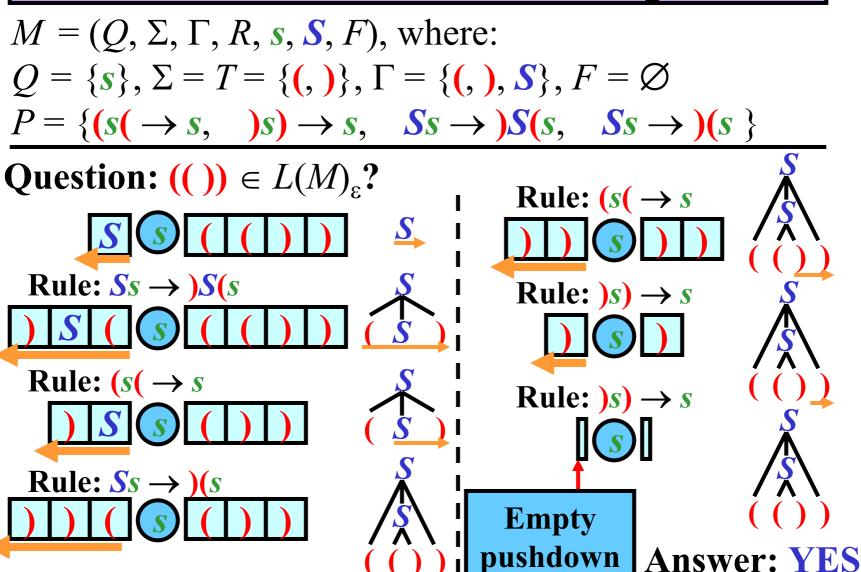
From CFG to PDA: Example 1/2

• G = (N, T, P, S), where: $N = \{S\}, T = \{(,)\}, P = \{S \rightarrow (S), S \rightarrow ()\}$ Objective: An PDA *M* such that $L(G) = L(M)_{c}$



49/50

From CFG to PDA: Example 2/2



Models for Context-free Languages

Theorem: For every CFG G, there is an PDA M such that $L(G) = L(M)_{\varepsilon}$.

Proof: See the previous algorithm.

Theorem: For every PDA *M*, there is a CFG *G* such that $L(M)_{\varepsilon} = L(G)$.

Proof: See page 486 in [Meduna: Automata and Languages]

Conclusion: The fundamental models for context-free languages are
1) Context-free grammars 2) Pushdown automata