
New BookNew Book
Elements of Compiler DesignElements of Compiler Design

byby

Alexander MedunaAlexander Meduna

Taylor and Francis Group, New York, 2007
ISBN: 978-1-4200-6323-3

http://www.fit.vutbr.cz/~meduna/books/eocd

2

Author

Professor Alexander Meduna, PhD

Department of Information Systems
Faculty of Information Technology
Brno University of Technology
Božetěchova 2, Brno, the Czech Republic

E-Mail: meduna@fit.vutbr.cz
Phone: +420 54114-1232
Fax: +420 54114-1270
Website: http://www.fit.vutbr.cz/~meduna

3

Subject

Approach
introductory level
both theoretical and practical treatment

Pedagogical Goals
understanding compiler design in theory
learning how to write a compiler in practice

Keywords
compiler writing
lexical analysis
syntax analysis
syntax-directed translation

optimization
code generation
automata theory
formal languages

4

Courses

Primary course
one-term introductory course in compiler design at an
undergraduate level

Secondary course
automata theory and formal languages

5

Theory

Theoretical aspects of this book

formal models underlying compilation phases
formalization of the concepts, methods, and techniques employed
in compilers
mathematical foundations of compilation
formal languages, grammars, automata, and transducers

6

Practice

Practical aspects of this book

implementation of compilation techniques
case study that designs a Pascal-like programming language and
its compiler
many examples and programs
description of software tools, including yacc and lex

7

Features and Their Benefits 1/2

feature: presents the essentials of compiler writing in an easy-
to-follow way
benefit: students grasp compiler construction quickly and clearly

feature: includes intuitive explanations of theoretical concepts,
definitions, algorithms, and compilation techniques
benefit: students easily follow the topics under discussion

feature: examines the mathematical foundations of compiler
design and related topics, such as formal languages, automata,
and transducers
benefit: demonstrates compilation techniques precisely

8

Features and Their Benefits 2/2

feature: demonstrates how theory and practice work together in
a real-world context through the implementation of algorithms,
examples, case studies, and software tools, such as lex and yacc
benefit: enhances comprehension

feature: contains the C++ implementation of a real compiler as
well as a variety of programs and challenging exercises, many of
which are instructively solved
benefit: demonstrates how to write programs to implement the
compilation algorithms

feature: accompanying website provides lecture notes, teaching
tips, homework assignments, errata, exams, solutions, and
implementation of compilers
benefit: enhances comprehension

9

Brief Contents

Preface (14 pages)
Introduction (20 pages)
Lexical Analysis (54 pages)
Syntax Analysis (64 pages)
Deterministic Top-Down Parsing (20 pages)
Deterministic Bottom-Up Parsing (26 pages)
Syntax-Directed Translation and Intermediate Code Generation

(28 pages)
Optimization and Target Code Generation (20 pages)
Conclusion (6 pages)
Appendix (16 pages)
Bibliography (22 pages)
Indices (10 pages)

10

Contents 1/5

Preface

Introduction
Mathematical Preliminaries
Compilation
Rewriting Systems

11

Contents 2/5

Lexical Analysis
Models
Methods
Theory

Syntax Analysis
Models
Methods
Theory

12

Contents 3/5

Deterministic Top-Down Parsing
Predictive Sets and LL Grammars
Predictive Parsing

Deterministic Bottom-Up Parsing
Precedence Parsing
LR Parsing

13

Contents 4/5

Syntax-directed Translation and Intermediate Code
Generation
Bottom-Up Syntax-Directed Translation and Intermediate Code
Generation
Top-Down Syntax-Directed Translation
Semantic Analysis
Symbol Table
Software Tools for Syntax-Directed Translation

14

Contents 5/5

Optimization and Target Code Generation
Tracking the Use of Variables
Optimization of Intermediate Code
Optimization and Generation of Target Code

Conclusion

Appendix: Implementation

Bibliography

Indices

15

Competition 1/5

Book Aho, A.V., Lam, M. S., Sethi, R., Ullman, J. D.: Compilers: Principles,
Techniques, and Tools. Addison Wesley, 2006 (ISBN 0321486811)

How this book differs
too complicated for the undergraduate students

Strength
a revised and updated version of the famous “Dragon Book.”
covers all the major topics in compiler design in depth
used as the basis of a graduate class on compilers

Weakness
written in somewhat dry and encyclopedic way

16

Competition 2/5

Book Cooper, K. D. Engineering a Compiler. Morgan Kaufmann, 2004
(ISBN 155860698X)

How this book differs
concentrates its attentions only on the back end of a compiler
cannot be used at an undergraduate level

Strength
has a nice layout and gives many examples
all topics are well connected to each other
helpful for an advanced computer programmer

Weakness
avoids any mathematical formalism and theoretical concepts
text is wordy

17

Competition 3/5

Book Bal, H., Grune, D., Jacobs C., and Langendoen, K.: Modern Compiler
Design. Wiley, 2000 (ISBN 0471976970)

How this book differs
beyond the level of bachelor students
necessary to supplement this book, such as Chapter 3 about attribute
grammars, with other books on compilers

Strength
covers a broad range of concepts used in modern compilers
explains the compilation of object-oriented, functional, logic, parallel, and
distributed languages
describes the implementation of optimization techniques in detail

Weakness
algorithms are written in a difficult-to-follow pseudo-code
exercises at the end of each chapter are rather poor

18

Competition 4/5

Book Parsons, T. W.: Introduction to Compiler Construction. Computer
Science, 1992 (ISBN 0716782618)

How this book differs
describes all formal notions in a very informal way
difficult to understand how these notions are related to the process of
compilation

Strength
provides a throughout introduction to compiler design
contains all the essential material concerning compilers

Weakness
presents all concepts in an obscure way
reader can hardly grasp the principles of compiler writing
examples are too trivial and somewhat dated
contains many minor mistakes and misprints

19

Competition 5/5

Book Fischer, C. and LeBlanc, R.: Crafting a Compiler with C. Addison
Wesley, 1991 (ISBN 0805321667)

How this book differs
beyond the level of bachelor students

Strength
approaches to writing compilers by using C
includes numerous programs
covers many advanced topics concerning code generation, optimization,
and real-world parsing
good reference

Weakness
necessary to supplement this book with books on automata

20

A Sample: Precedence Parsing 1/10

Operations REDUCE and SHIFT
In a G-based bottom-up parser, where G = (GΣ, GR) is a grammar, we
use two operations, REDUCE and SHIFT, which modify the current pd
top as follows:

REDUCE(A → x) makes a reduction according to A → x ∈GR
SHIFT pushes ins onto pd and advances to the next input symbol

Algorithm 5.2 Operator Precedence Parser

Input
a grammar G = (Σ, R)
a G-op-table
ins = w with w ∈GΔ*

Output
ACCEPT if w ∈ L(G), and REJECT if w ∉ L(G)

21

A Sample: Precedence Parsing 2/10

Method
begin

set pd to u;
repeat

case G-op-table [pd-top-terminal, ins1] of
⎟ : SHIFT;
⎣ : SHIFT;
⎦ : if G contains a rule A → x with x = G-op-handle then

REDUCE(A → x);
else REJECT; {no rule to reduce by}

: REJECT; {G-op-table-detected error}
☺ : ACCEPT;

end; {case}
until ACCEPT or REJECT;

end.

22

A Sample: Precedence Parsing 3/10

Case Study
C → C ∨C
C → C ∧C
C → (C)
C → i

Operator Precedence Table

 ∧ ∨ i ()
∧ ⎦ ⎦ ⎣ ⎣ ⎦ ⎦
∨ ⎣ ⎦ ⎣ ⎣ ⎦ ⎦
i ⎦ ⎦ ⎦ ⎦
(⎣ ⎣ ⎣ ⎣ ⎟
) ⎦ ⎦ ⎦ ⎦

⎣ ⎣ ⎣ ⎣ ☺

23

A Sample: Precedence Parsing 4/10

Operator Precedence Parsing

Configuration Table Entry Parsing Action
i ∧ (i ∨ i) [, i] = ⎣ SHIFT

 i ∧ (i ∨ i) [i, ∧] = ⎦ REDUCE(C → i)
 C ∧ (i ∨ i) [,∧] = ⎣ SHIFT
 C ∧ (i ∨ i) [∧, (] = ⎣ SHIFT
 C ∧ (i ∨ i) [(, i] = ⎣ SHIFT
 C ∧ (i ∨ i) [i, ∨] = ⎦ REDUCE(C → i)
 C ∧ (C ∨ i) [(, ∨] = ⎣ SHIFT
 C ∧ (C ∨ i) [∨, i] = ⎣ SHIFT
 C ∧ (C ∨ i) [i,)] = ⎦ REDUCE(C → i)
 C ∧ (C ∨ C) [∨,)] = ⎦ REDUCE(C → C ∨ C)
 C ∧ (C) [(,)] = ⎟ SHIFT
 C ∧ (C) [),] = ⎦ REDUCE(C → (C))
 C ∧ C [∧,] = ⎦ REDUCE(C → C ∧ C)
 C [,] = ☺ ACCEPT

24

A Sample: Precedence Parsing 5/10

Construction of Parse Tree by Operator-Precedence Parser

Configuration Rule Parse Tree
i ∧ (i ∨i)

 i ∧ (i ∨i) C → i C〈i〉∧(i ∨i)
 C ∧ (i ∨i)
 C ∧ (i ∨i)
 C ∧ (i ∨i)
 C ∧ (i ∨i) C → i C〈i〉∧(C〈i〉 ∨ i)
 C ∧ (C ∨i)
 C ∧ (C ∨ i)
 C ∧ (C ∨ i) C → i C〈i〉∧(C〈i〉 ∨ C〈i〉)
 C ∧ (C ∨ C) C → C ∨C C〈i〉∧(C〈C〈i〉 ∨ C〈i〉〉)
 C ∧ (C)
 C ∧ (C) C → (C) C〈i〉∧ C〈(C〈C〈i〉 ∨C〈i〉〉)〉
 C ∧ C C → C ∧C C〈C〈i〉∧ C〈(C〈C〈i〉 ∨C〈i〉〉)〉
 C

25

A Sample: Precedence Parsing 6/10

Construction of an Operator Precedence Table

I. if a is an operator that has a higher mathematical precedence than
operator b, then a⎦b and b ⎣a

II. if a and b are left-associative operators of the same precedence, then
a⎦b and b⎦a
if a and b are right-associative operators of the same precedence,
then a ⎣b and b ⎣a

III. if a can legally precede operand i, then a ⎣i
if a can legally follow i, then i⎦a

IV. if a can legally precede (, then a ⎣(
if a can legally follow (, then (⎣a
if a can legally precede), then a⎦)
if a can legally follow), then)⎦a

26

A Sample: Precedence Parsing 7/10

Precedence Table with Error-Recovery Routines

 ∧ ∨ i ()
∧ ⎦ ⎦ ⎣ ⎣ ⎦ ⎦
∨ ⎣ ⎦ ⎣ ⎣ ⎦ ⎦
i ⎦ ⎦ ⎦ ⎦
(⎣ ⎣ ⎣ ⎣ ⎟
) ⎦ ⎦ ⎦ ⎦

⎣ ⎣ ⎣ ⎣ ☺

27

A Sample: Precedence Parsing 8/10

Table-Detected Errors

configuration: pd1 = i and ins1 = i
diagnostic: missing operator between two i s
recovery: change pd1 to C, then push ∧ onto the pd top

configuration: pd1 = i and ins1 = (
diagnostic: missing operator between i and (
recovery: change pd1 to C, then push ∧ onto the pd top

...

28

A Sample: Precedence Parsing 9/10

Reduction Errors

configuration: pd1 = (and ins1 =)
diagnostic: no expression between parentheses
recovery: push C onto the pd top

configuration: pd1 ∈ {∧, ∨} and ins1 ∉ {i, (}
diagnostic: missing right operand
recovery: push C onto the pd top

...

29

A Sample: Precedence Parsing 10/10

Operator Precedence Parsing with Error-Recovery Routines

Configuration Table E. Parsing Action
i (i ∨) [, i] = ⎣ SHIFT

i (i ∨) [i, (] = table-detected error and rec.
C ∧ (i ∨) [∧, (] = ⎣ SHIFT
C ∧ (i ∨) [(, i] = ⎣ SHIFT
C ∧ (i ∨) [i, ∨] = ⎦ REDUCE(C → i)
C ∧ (C ∨) [(, ∨] = ⎦ SHIFT
C ∧ (C ∨) [∨,)] = ⎦ Reduction error and recovery
C ∧ (C ∨C) [∨,)] = ⎦ REDUCE(C → C ∨ C)
C ∧ (C) [(,)] = ⎟ SHIFT
C ∧ (C) [),] = ⎦ REDUCE(C → (C))
C ∧ C [∧,] = ⎦ REDUCE(C → C ∧ C)
C [,] = ☺ REJECT because of errors and

30

Bibliographical Notes in Detail

… Aho, A. V. and Ullman, J. D. [1969a], Aho, A. V. and Ullman, J. D.
[1969b], Barnett, M. P. and Futrelle, R. P. [1962], Conway, M. E.
[1963], de Bakker, J. W. [1969], Evey, J. [1963], Ginsburg, S. and
Rice, H. G. [1962], Hartmanis, J., Lewis, P. M., II, and Stearns, R. E.
[1965], Irons, E. T [1961], Johnson, W. L., Porter, J. H., Ackley, S.
I., and Ross, D. T. [1968], Kasami, T. [1965], Knuth, D. E. [1967a],
Knuth, D. E. [1967b], Korenjak, A. J. and Hopcroft. J. E. [1966],
Kurki-Suonio, R. [1964], Landin, P. J. [1965], Lewis, P. M., II and
Stearns, R. E. [1968], McCarthy, J. [1960], McCarthy, J. and Painter,
J. [1967], Naur, P. (ed.) [1960], Oettinger, A. G. [1961], and van
Wijngaarden, A. (ed.) [1969]. During the last three decades of the
twentieth century, the basic knowledge concerning the construction
of compilers was summarized in the books Aho, A. V. and Ullman, J.
D. [1972], Aho, A. V. and Ullman, J. D. [1973], Aho, A. V. and
Ullman, J. D. [1977], Aho, A. V., Lam, M. S., Sethi, R. and Ullman, J.
D. [2007], Alblas, H. [1996], Appel, A. W. [1998], Bergmann, S.
[1994], Elder, J. [1994], Fischer, C. N. [1991], Fischer, C. [1999]…

31

Topics Not Covered in This Book 1/4

Lexical Analysis
acceleration of the scanning process: scanning ahead on the input
to recognize and buffer several next lexemes
buffering these lexemes by using various economically data-
organized methods (pairs of cyclic buffers)
theory of finite automata
minimization of the number of states in any deterministic finite
automata

Syntax Analysis
time and space complexity of parsing algorithms
general parsers based upon tables
Earley Parsing Algorithm

32

Topics Not Covered in This Book 2/4

Deterministic Top-Down Parsing
k-symbol lookahead
LL(k) parsers based upon LL(k) grammars
automatic top-down parser generator

Deterministic Bottom-Up Parsing
generalized precedence parser
varies constructions of the LR tables and the corresponding LR
parsers
canonical LR parsers
lookahead LR parsers
the Brute-Force lookahead LR parsers
shift-reduce and reduce-reduce problems discussed in detail

33

Topics Not Covered in This Book 3/4

Syntax-Directed Translation and Intermediate Code
Generation
top-down syntax-directed translation discussed in detail
semantic pushdown
stack-implemented tree-structured and hash-structured symbol
tables
more software tools, such as SLK and bison

Optimization and Target Code Generation
time and space complexity
optimizing compiler
run-time memory management
static memory management
dynamic memory management
stack storage and heap storage

34

Topics Not Covered in This Book 4/4

Theory
deterministic parsers of non-context-free languages
conditional grammars
regulated grammars

Design
compiler design based upon computational cooperation,
distribution, concurrence, and parallelism
functional, logic, and object-oriented languages and their
compilers

35

Discussion and End

	Author
	Subject
	Courses
	Theory
	Practice
	Features and Their Benefits 1/2
	Features and Their Benefits 2/2
	Brief Contents
	Contents 1/5
	Contents 2/5
	Contents 3/5
	Contents 4/5
	Contents 5/5
	Competition 1/5
	Competition 2/5
	Competition 3/5
	Competition 4/5
	Competition 5/5
	A Sample: Precedence Parsing 1/10
	A Sample: Precedence Parsing 2/10
	A Sample: Precedence Parsing 3/10
	A Sample: Precedence Parsing 4/10
	A Sample: Precedence Parsing 5/10
	A Sample: Precedence Parsing 6/10
	A Sample: Precedence Parsing 7/10
	A Sample: Precedence Parsing 8/10
	A Sample: Precedence Parsing 9/10
	A Sample: Precedence Parsing 10/10
	Bibliographical Notes in Detail
	Topics Not Covered in This Book 1/4
	Topics Not Covered in This Book 2/4
	Topics Not Covered in This Book 3/4
	Topics Not Covered in This Book 4/4
	Discussion and End

