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Motivation

I Picture = rectangular two-dimensional (2D) array of symbols

I picture analysis (structure), picture recognition
I tiling patterns, floor designs
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Picture-defining Devices

I Language/picture properties/operations
I 2D regular expressions
I Logic formulas (first-order and monadic second-order)

I Accepting devices
I Four-way automata
I 2D (on-line) tesselation automata (variant of cellular automata)

I 2D grammars
I Isometric - geometric shape of the rewritten portion is preserved

I Array grammars (replaces block of the same size)
I Non-isometric - can alter the geometric shape

I Siromoney Matrix Grammars
I ”Image Grammars”
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Picture

Picture (2D array, picture array) p is a rectangular m × n array over Σ of the
form

p =

p(1, 1) · · · p(1, n)
...

. . .
...

p(m, 1) · · · p(m, n)

I where each p(i, j) ∈ Σ (pixel), 1 ≤ i ≤ m, 1 ≤ j ≤ n.
I |p|row, |p|col denote the number of rows/columns of p.

I Σ∗∗ = set of all rectangular arrays over Σ (λ for empty picture).
I Σ++ = Σ∗∗ − {λ}
I A picture language L ⊆ Σ∗∗
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Operations

I Block (sub-picture)
I Boundary symbol # < Σ.

Picture/Language Operations

I Projection by mapping π : Γ → Σ, where Γ, Σ are alphabets.
I Column concatenation of two pictures (p V q) requires the same

number of rows.
I Row concatenation of two pictures (p 	 q) requires the same number

of columns.
I Column/Row closure L∗V and L∗	 such that L∗∗ = (L∗V)∗	 = (L∗	)∗V

I Clock-wise rotation of a picture (pR)
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Definitions and Examples
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2D Regular Expressions

Recursive definition over alphabet Σ

I Atomic languages: the empty language ∅, {a} with a ∈ Σ.
I 2D Regular operations R = {	,V, ∗	, ∗V,∪,∩, c}.
I The result of � ∈ R applied to regular 2D languge is a regular 2D

language.

I Family: RE
I Modifications: complement-free RE (CFRE), star-free RE (SFRE),

projection of CFRE (PCFRE)
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2D Regular Expressions - Example

I Let Σ = {�,�}
I 2D regular expression over Σ: (((� 	 �)∗	) V ((� 	 �)∗	))∗V

� � � � � �
� � � � � �
� � � � � �
� � � � � �

Figure: A rectangular ”chessboard” with even side-length
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4-way Automata

Extension of finite automata for 2D (Blum, Hewitt 1967)

Definition 1.
Non-deterministic (deterministic) 4-way finite automaton (4NFA, 4DFA) is a
7-tuple A = (Σ, Q, ∆, q0, qa, qr, δ) where
I ∆ = {R, L, U, D} is a set of directions;
I qa, qr ∈ Q are accepting and rejecting state;
I δ : Q − {qa, qr} × Σ → 2Q×∆ (δ : Q − {qa, qr} × Σ → Q × ∆) is the

transition function.

I Starting at position (1,1) in q0, finishing in qa or qr (need not to read
whole picture)

I ”Border sensitive”
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4-way Automata - Example

Example 2.
Let Σ = {0, 1}, L1 ⊆ Σ∗∗ consists of square pictures.
4DFA A1 works in the following way:

I Moves along the diagonal until the bottom-right corner⇒ square.
I Checks that all positions contain a symbol from Σ.
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4-way Automata - Example

Example 3.
Let Σ = {0, 1}, L2 ⊆ Σ∗∗ consists of square pictures of odd side-length with
”1” in the central position.
4NFA A2 works in the following way:

I Moves along the diagonal (one step right, one step down).
I It non-deterministically chooses a point where a symbol is checked to

be 1.
I Continue downwards but to the bottom-left corner.

Theorem 4.
The family of 4DFA is strictly included in 4NFA.
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2D Right-Linear Grammar

Definition 5.
A 2D right-linear grammar (2DRLIN, [1]) is a 7-tuple

G = (Vh, Vv, ΣI , Σ, S, Rh, Rv)

where
I Vh and Vv is a finite set of horizontal and vertical nonterminals;
I ΣI ⊆ Vv and Σ is a finite set of intermediates and terminals;
I S ∈ Vh is a starting symbol;
I Rh is a finite set of horizontal rules:

V → AV ′ or V → A where V , V ′ ∈ Vh and A ∈ ΣI ;
I Rv is a finite set of vertical rules:

A→ aA′ or A→ a where A, A′ ∈ Vv and a ∈ Σ.

First, generate string w ∈ ΣI by Rh.
Second, build a picture by Rv in the downward direction.
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Local 2D Languages (LOC)
Bh,k(p) = the set of all blocks of p of size (h, k), where h ≤ m, k ≤ n.

Definition 6.
Let Γ be an alphabet. A 2D language L ⊆ Γ∗∗ is local if there exists a finite
set Φ of tiles over Γ ∪ {#} s.t. L = {p ∈ Γ∗∗| B2,2(p) ⊆ Φ}.

I Φ is the set of allowed blocks or representation by tiles including #.

I λ ∈ L(Φ) iff
# #
# #

∈ Φ

I The family: LOC
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Local 2D Languages (LOC) - Example

Example 7.

Φ =



1 0
0 1

,
0 0
1 0

,
0 1
0 0

,
0 0
0 0

,
# 1
# 0

,
# 0
# 0

,

0 0
# #

,
0 1
# #

,
0 #
1 #

,
0 #
0 #

,
# #
0 0

,
# #
1 0

,

# #
# 1

,
# #
0 #

,
# 0
# #

,
1 #
# #


I L(Φ) contains squares with 1s on the main diagonal positions;

otherwise 0.
I Observe that no square language is a local 2D language over unary

alphabet.
I Generalization: (h, k)-local 2D languages, i.e. LOC is (2, 2)-local 2D

language.
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Tiling Recognizable Languages

Definition 8.
A tiling system (TS) is 4-tuple T = (Σ, Γ, Φ, π), where
I Σ and Γ are two alphabets;
I Φ is finite set of tiles over Γ ∪ #;
I π : Γ → Σ is a projection.

I L recognizable by TS T : L(T ) = π(L′) where L′ = L(Φ) ∈ LOC.
I The family: TS or REC
I Domino system works with B1,2(p̂) and B2,1(p̂) but DS = TS.

Example 9.
Take previous example L(Φ) with Γ = {0, 1} and π(0) = π(1) = a.

Theorem 10.
LOC ⊂ TS
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Pure 2D Context-Free Grammars

Definition 11.
A pure 2D context-free grammar (P2DCFG, [2]) is a 4-tuple

G = (Σ, P1, P2,M0)

where

i) Σ is a finite alphabet of symbols;

ii) P1 = {ci| 1 ≤ i ≤ sc}, where ci is called a column rule table, sc ≥ 0;
each ci is a finite set of CF rules: a→ α, a ∈ Σ,α ∈ Σ∗ s.t. for any
a→ α, b→ β in ci, |α| = |β|;

iii) P2 = {rj| 1 ≤ j ≤ sr}, where rj, is called a row rule table, sr ≥ 0; each rj

is a finite set of CF rules: c→ γR, c ∈ Σ, γ ∈ Σ∗ s.t. for any c→ γR,
d → δR in rj, |γ| = |δ|;

iv) M0 ⊆ Σ∗∗ − {λ} is a finite set of axiom arrays.
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Pure 2D Context-Free Grammars - Derivation
A derivation in a P2DCFG G is defined as follows: Let p, q ∈ Σ∗∗.

p⇒ q

i) either by rewriting in parallel all the symbols in a column of p, each
symbol by a rule in some column rule table

ii) or rewriting in parallel all the symbols in a row of p, each symbol by a
rule in some row rule table.

All the rules used to rewrite a column (or row) have to belong to the
same table.

I Picture language: L(G) = {M ∈ Σ∗∗| M0 ⇒
∗ M for some M0 ∈ M0}.

I The family: P2DCFL.
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Pure 2D Context-Free Grammars - Example

Example 12.
P2DCFG G1 = (Σ, P1, P2, {M0}) where Σ = {a, b, e}, P1 = {c}, P2 = {r},
where

c = {a→ bab, e→ aea}, r =
{

e→
e
a

, a→
a
b

}
, M0 =

a e a
b a b

L(G1) = pictures of size (m, 2n + 1), m ≥ 2, n ≥ 1.

a a a e a a a
b b b a b b b
b b b a b b b
b b b a b b b
b b b a b b b

Figure: A picture in L(G1)
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Controlled Pure 2D Context-Free Grammars

Definition 13.
A Controlled P2DCFG is Gc = (G,C) where
I G = (Σ, P1, P2,M0) is a P2DCFG,
I C ⊆ (P1 ∪ P2)∗ is a control language (regular or context-free)

consisting of control strings over labels of tables.

I Derivations M1 ⇒w M2 in Gc as in G except that if w ∈ (P1 ∪ P2)∗ and
w = l1l2 . . . lm, then the tables of rules with labels l1, l2, . . ., and lm are
successively applied starting with M1 to finally yield M2.

I The families: (R)P2DCFL and (CF)P2DCFL
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Leftmost/Uppermost Pure 2D Context-Free Grammars

Definition 14.

I A (l/u)P2DCFG is P2DCFG G = (Σ, P1, P2,M0) with⇒(l/u)
derivations.

I M1 ⇒(l/u) M2 means only the leftmost column or the uppermost row
of M1 is rewritten.

I The family: (l/u)P2DCFL
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Leftmost/Uppermost P2DCFG - Example
Example 15.
(l/u)P2DCFG G2 = (Σ, P1, P2, {M0}) where Σ = {a, b}, P1 = {c}, P2 = {r}
with

c = {a→ ab, b→ ba}, r =
{

a→
a
b

, b→
b
a

}
M0 =

b a
a b

L(G2) consists of pictures p of size (m, n), m ≥ 2, n ≥ 2.

M0 =
b a
a b

⇒(l/u)

b a a
a b b

⇒(l/u)

b a a
a b b
a b b

⇒(l/u)

b a a a
a b b b
a b b b

⇒(l/u)

b a a a a
a b b b b
a b b b b

Figure: A sample derivation under (l/u) mode in G2

23 / 38



Leftmost/Uppermost P2DCFG - Example
Example 15.
(l/u)P2DCFG G2 = (Σ, P1, P2, {M0}) where Σ = {a, b}, P1 = {c}, P2 = {r}
with

c = {a→ ab, b→ ba}, r =
{

a→
a
b

, b→
b
a

}
M0 =

b a
a b

L(G2) consists of pictures p of size (m, n), m ≥ 2, n ≥ 2.

M0 =
b a
a b

⇒(l/u)
b a a
a b b

⇒(l/u)

b a a
a b b
a b b

⇒(l/u)

b a a a
a b b b
a b b b

⇒(l/u)

b a a a a
a b b b b
a b b b b

Figure: A sample derivation under (l/u) mode in G2

23 / 38



Leftmost/Uppermost P2DCFG - Example
Example 15.
(l/u)P2DCFG G2 = (Σ, P1, P2, {M0}) where Σ = {a, b}, P1 = {c}, P2 = {r}
with

c = {a→ ab, b→ ba}, r =
{

a→
a
b

, b→
b
a

}
M0 =

b a
a b

L(G2) consists of pictures p of size (m, n), m ≥ 2, n ≥ 2.

M0 =
b a
a b

⇒(l/u)
b a a
a b b

⇒(l/u)

b a a
a b b
a b b

⇒(l/u)

b a a a
a b b b
a b b b

⇒(l/u)

b a a a a
a b b b b
a b b b b

Figure: A sample derivation under (l/u) mode in G2

23 / 38



Leftmost/Uppermost P2DCFG - Example
Example 15.
(l/u)P2DCFG G2 = (Σ, P1, P2, {M0}) where Σ = {a, b}, P1 = {c}, P2 = {r}
with

c = {a→ ab, b→ ba}, r =
{

a→
a
b

, b→
b
a

}
M0 =

b a
a b

L(G2) consists of pictures p of size (m, n), m ≥ 2, n ≥ 2.

M0 =
b a
a b

⇒(l/u)
b a a
a b b

⇒(l/u)

b a a
a b b
a b b

⇒(l/u)

b a a a
a b b b
a b b b

⇒(l/u)

b a a a a
a b b b b
a b b b b

Figure: A sample derivation under (l/u) mode in G2

23 / 38



Leftmost/Uppermost P2DCFG - Example
Example 15.
(l/u)P2DCFG G2 = (Σ, P1, P2, {M0}) where Σ = {a, b}, P1 = {c}, P2 = {r}
with

c = {a→ ab, b→ ba}, r =
{

a→
a
b

, b→
b
a

}
M0 =

b a
a b

L(G2) consists of pictures p of size (m, n), m ≥ 2, n ≥ 2.

M0 =
b a
a b

⇒(l/u)
b a a
a b b

⇒(l/u)

b a a
a b b
a b b

⇒(l/u)

b a a a
a b b b
a b b b

⇒(l/u)

b a a a a
a b b b b
a b b b b

Figure: A sample derivation under (l/u) mode in G2

23 / 38



Survey
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Language Families Hierachy (Recognizing devices)

REC = 2OTA = TS = DS = PCFRE

4NFA

4DFA

2DOTA

RE

CFRE
SFRE

LOC

2DRLIN

Figure: Red edge = incomparable, Green edge = open problem
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Closure Properties (Recognizing devices)

Operations 4DFA 4NFA 2OTA TS
Union + + +
Intersection + + +
Projection + +
Row concatenation - - + +
Column concatenation - - + +
Row/Column Closure - - + +
Complement + ? -
Clock-wise rotation +

Table: Empty cell = unknown, ? = open problem
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Closure Properties (Grammars)

Operations TS 2DRLIN P2DCFL (R)P2DCFL (CF)P2DCFL
Union + - +
Intersection + - -
Projection + + + +
Row concatenation + - -
Column concat. + - -
Row/Col. Closure +
Complement -
C-W rotation +

Table: Empty cell = unknown, ? = open problem

27 / 38



Results
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Comparison of P2DCFL and (l/u)P2DCFL

Theorem 16.
P2DCFL and (l/u)P2DCFL with non-unary alphabet are incomparable but
not disjoint.

Proof.

I {a, b}∗∗ ∈ P2DCFL ∩ (l/u)P2DCFL
I See Example 15: L(G2) ∈ (l/u)P2DCFL − P2DCFL since we need to

rewrite only the first column/row.
I See Example 12: L(G1) ∈ P2DCFL − (l/u)P2DCFL since we need to

rewrite unique middle column and produce the same columns to the
both sides.

�

P2DCFL and (l/u)P2DCFL with unary alphabet are equivalent.
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Closure Properties of (l/u)P2DCFL
Theorem 17.
(l/u)P2DCFL is not closed under union.

Proof.
Let L(G1) ⊆ {a, b, d}∗∗ :

c1 = {b→ ba, a→ ad}, r1 =

{
b→

b
a

, a→
a
d

}
,M1 =

{
b a
a d

}
.

Let L(G2) ⊆ {a, b, e}∗∗ :

c2 = {b→ ba, a→ ae}, r2 =

{
b→

b
a

, a→
a
e

}
,M2 =

{
b a
a e

}
.

I M1∪2 ⊆ M1 ∪M2, P1∪2column requires a→ ad · · · d and a→ ae · · · e.
I But rule tables with these rules can be mixed and generate pictures

not in L(G1) ∪ L(G2).

�
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Closure Properties of (l/u)P2DCFL
Theorem 18.
(l/u)P2DCFL is not closed under intersection.

Proof.

I Let L(G2) from Example 15 is denoted as Lr.

I Ls ⊆ Lr s.t. all pictures are square sized.
I Consider L consisting of sets

1. square pictures with the first row xd · · · d, the first column (xe · · · e)R,
otherwise bs;

2. rectangular picture with the first row yd · · · d, the first column (ye · · · e)R,
otherwise bs;

3. pictures of Ls

I L can be generated by (l/u)P2DCFG G:
c1 = {x→ yd, e→ eb}, c2 = {x→ b, e→ a},

r1 =

{
y→

x
e

, d →
d
b

}
, r2 = {b→ b, d → a},M =

{
x d
e b

}
.

I Observe that L ∩ Lr = Ls, but Ls < (l/u)P2DCFL.

�
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I Consider L consisting of sets

1. square pictures with the first row xd · · · d, the first column (xe · · · e)R,
otherwise bs;

2. rectangular picture with the first row yd · · · d, the first column (ye · · · e)R,
otherwise bs;

3. pictures of Ls

I L can be generated by (l/u)P2DCFG G:
c1 = {x→ yd, e→ eb}, c2 = {x→ b, e→ a},

r1 =

{
y→

x
e

, d →
d
b

}
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Generative Power of Controlled (l/u)P2DCFL

Theorem 19.
(l/u)P2DCFL ⊂ (R)(l/u)P2DCFL ⊂ (CF)(l/u)P2DCFL

Proof.

I Consider Ls from Theorem 18. There is a (R)(l/u)P2DCFG with
control language (cr)∗ generating Ls.

I Consider L(G1) from Example 12 but with sizes (k + 1, 2k + 1), k ≥ 1.
I It can be generated by (CF)(l/u)P2DCFG G with Σ = {a, b, e}:

c1 = {e→ ea, a→ ab}, c2 = {e→ ae, a→ ba}, c3 = {a→ aa, b→ bb},

r =
{

e→
e
a

, a→
a
b

}
,M =

{
e a
a b

}
.

I C = {(c1r)nc2cn
3| n ≥ 0}

I Regular controlled language is not enough. We need to ”remember”
the number of columns generated to the right of the middle one.
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Expressiveness of Controlled (l/u)P2DCFL
Lemma 20.
Ld = {p ∈ {a, b}++| |p|col = |p|row, p(i, j) = b, for i = j, p(i, j) = a for i , j}
can be generated by (R)(l/u)P2DCFG Gd with one control symbol, but
Ld < (l/u)P2DCFL.

Proof.
Consider (l/u)P2DCFG of Gd as ({0, 1, 2}, {c}, {r},

{
1 0
0 1

}
) where

c = {1→ 12, 0→ 00}, r =
{

1→
1
0

, 2→
0
1

, 0→
0
0

}
,

and regular control language (cr)∗.

I (R)(l/u)P2DCFG Gd generates Ld.
I 2 is the only control symbol.
I From [4], there is no P2DCFG with regular control with less than two

control symbols that generates Ld.
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Generative Power of (l/u)P2DCFL

Theorem 21.
(l/u)P2DCFL and LOC are incomparable but not disjoint.

Proof.

I {a}∗∗ ∈ (l/u)P2DCFL ∩ LOC

I Languges with rectangular pictures with even number or rows and
columns ∈ (l/u)P2DCFL − LOC

I Ld ∈ LOC − (l/u)P2DCFL
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Closure Properties (P2DCFL)

Operations TS P2DCFL (l/u)P2DCFL
Union + - -
Intersection + - -
Projection + +
Row concatenation + -
Column concatenation + -

Table: Empty cell = unknown
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Language Families Hierachy (Grammars)

(CF)P2DCFL (CF)(l/u)P2DCFL

(R)(l/u)P2DCFL(R)P2DCFL

P2DCFL (l/u)P2DCFL

REC

LOC

Figure: Red edge = incomparable but not disjoint
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Thanks for your attention!
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