
Decidability and Decidable Problems
for Finite Automata

Martin Čermák, Jiří Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1

Decidability

Consider any problem P expressed by a language.
• P is associated

• with the set of all its instances Π and
• with a property π.

• Each instance either satisfies or does not sutisfies property π.

Definition
• Given a particular instance i ∈ Π and its string representation 〈i〉.
• P asks whether or not i satisfies π.
• Encoding language of P is defined as

PL = {〈i〉| i ∈ Π, i satisfies π}.

A Turing decider M solves P if
1. M rejects every input that represents no instance from Π and
2. for every 〈i〉 where i ∈ Π, M accepts 〈i〉 iff i satisfies π.

Decidability and Decidable Problems for Finite Automata 2 / 16

Decidability

P is stated as:

Problem: P
Question: a formulation of P
Language: PL

Example

Problem: FA–Emptiness
Question: Let M ∈ FAΨ,L(M) = ∅?
Language: FA–EmptinessL = {〈M〉| M ∈ FAΨ,L(M) = ∅}.

For any finite automaton M, FA–Emptiness asks whether the
language accepted by M is empty.
• Turing decider for FA–EmptinessL can be constructed in a trivial way.

Decidability and Decidable Problems for Finite Automata 3 / 16

Decidability

Definition
I. Let M ∈ TMΨ. M is Turing decider if

• M always halts and
• M–f is a function from x ∈ 4∗ to {ε}.

II. Let L be a lanuage and M ∈ TMΨ be a Turing decider. M is a
Turing decider for L if domain(M–f) = L

III. A language is decidable if there exists a Turing decider for it.
Otherwise, the language is undecidable.

By I, M ∈ TMΨ is a Turing decider if
• it never loops and
• for every x ∈ 4∗, �Ix�⇒∗ �iu� where i ∈ {�,�} and u ∈ �∗.

By II, Turing decider M for a language L satisfies
• for every x ∈ L, �Ix�⇒∗ ��u� in M and
• for every y ∈ 4∗ − L, �Iy�⇒∗ ��v� in M where u, v ∈ �∗.

Decidability and Decidable Problems for Finite Automata 4 / 16

Decidability

Convention
• TDΨ denotes the set of all Turing deciders.
• TDΦ = {L(M)| M ∈ TDΨ}.

Theorem

FAΦ ⊂ CF Φ ⊂ TDΦ

Decidability and Decidable Problems for Finite Automata 5 / 16

Decidability

Example

Let L = {x | x ∈ {a,b, c}∗,occur(x ,a) = occur(x ,b) = occur(x , c)}.
• Consider Turing Machine D such that D ∈ TDΨ and D accepts L.
• D can be designed by this way:

• D repeatedly scans across the tape in a left-to-right way.
• During every single scan, D is erasing the leftmost occurrence of a,

b, and c.
• If � is reached after erasing all these three occurences, D moves

to � and makes another scan.
• If � is reached while least one of the three symbol missing, D

makes final return to � in dependency on whether its tape is blank.

• D is a Turing decider for L, so L is a decidable language.
• Symbolically, D ∈ TDΨ and L ∈ TDΦ.

Decidability and Decidable Problems for Finite Automata 6 / 16

Decidable Problems for Finite Automata

Convention
• CS−FAΨ is the set of all completely specified finite automata.
• 〈M〉 represents the code of M ∈ CS−FAΨ.
• 〈M,w〉 denotes (M,w) ∈ CS−FAΨ×4∗.
• 〈M,N〉 denotes (M,N) ∈ CS−FAΨ× CS−FAΨ.

Decidability and Decidable Problems for Finite Automata 7 / 16

Decidable Problems for Finite Automata

FA–Emptiness

Problem: FA–Emptiness
Question: Let M ∈ CS−FAΨ. Is L(M) empty?
Language: FA–EmptinessL = {〈M〉| M ∈ CS−FAΨ,L(M) = ∅}.

Theorem

FA–EmptinessL ∈ TDΦ

Proof:
• We know that M is completely specified finite automaton.
• Therefore, each of its states is reachable.
• Thus, L(M) = ∅ iff MF = ∅.
• Design a Turing decider D that work on every 〈M〉, where

M ∈ CS−FAΨ:
• D accepts 〈M〉 iff MF = ∅,
• otherwise rejects 〈M〉.

Decidability and Decidable Problems for Finite Automata 8 / 16

Decidable Problems for Finite Automata

FA–Membership

Problem: FA–Membership
Question: Let M ∈ CS−FAΨ and w ∈ 4∗. Is w member of L(M)?
Language:
FA–MembershipL = {〈M,w〉| M ∈ CS−FAΨ,w ∈ 4∗,w ∈ L(M)}.

Theorem

FA–MembershipL ∈ TDΦ

Proof:
• Proper finite automaton M reads an input symbol during every

move.
• After making |w | moves on w ∈ 4∗, M either accepts or rejects

w .
• Design Turing decider D that works on every 〈M,w〉 as follows:

• D runs M on w until M either accepts or rejects w .
• D accepts 〈M,w〉 iff M accepts w , and
• D rejects 〈M,w〉 iff M rejects w .

Decidability and Decidable Problems for Finite Automata 9 / 16

Decidable Problems for Finite Automata

FA–Infiniteness
Problem: FA–Infiniteness
Question: Let M ∈ CS−FAΨ. Is L(M) infinite?
Language: FA–InfinitenessL = {〈M〉| M ∈ CS−FAΨ,L(M) is infinite}.

• M is completely specified finite automaton.
• It is easy to see, L(M) is infinite iff its state diagram contains a

cycle.
• FA–Infiniteness can be reformulated to terms of graph theory.
• Alternatively, it is possible to use pumping lemma for regular

language in the following way:
• For every M ∈ FAΨ, let ∞?L(M) denotes finite language
∞?L(M) = {x |x ∈ L(M), card(MQ) ≤ |x | < 2card(MQ)}.

Lemma

For every M ∈ CS−FAΨ, L(M) is infinite iff ∞?L(M) 6= ∅.

Decidability and Decidable Problems for Finite Automata 10 / 16

Decidable Problems for Finite Automata
Proof: the if part of the equivalence:
• Suppose that ∞?L(M) 6= ∅.
• Take any z ∈ ∞?L(M).
• Pumping lemma constant k equals card()MQ).
• Because card()MQ) ≤ z, z = uvw , where:

• 0 < |v | ≤ |uv | ≤ card()MQ) and
• uvmw ∈ L for all m ≥ 0.

• Hence, L(M) is infinite.

Proof: the only if part of the equivalence:
• Assume that L is infinite.
• Let z be the shortest string such that:

• z ∈ L and |z| ≥ 2card()MQ).
• From Pumping Lemma, z = uvw , where:

• 0 < |v | ≤ |uv | ≤ card()MQ) and
• uvmw ∈ L for all m ≥ 0.

• Take uv0w = uw ∈ L(M).
• Observe that 2card()MQ) ≥ |uw |.
• As 0 < |v | ≤ card()MQ), card()MQ) ≤ uw < 2card()MQ) ≤ |z|,
• so uw ∈ ∞?L(M) and, therefore ∞?L(M) 6= ∅.

Decidability and Decidable Problems for Finite Automata 11 / 16

Decidable Problems for Finite Automata

Theorem

FA–InfinitenessL ∈ TDΦ

Proof:
• Construct a Turing decider D that works on every
〈M〉 ∈ FA–FinitenessL so it first construct ∞?L(M).

• D accepts 〈M〉 iff ∞?L(M) 6= ∅, and
• D rejects 〈M〉 iff ∞?L(M) = ∅

FA–Finiteness
Problem:FA–Finiteness
Question: Let M ∈ CS−FAΨ. Is L(M) finite?
Language: FA–FinitenessL = {〈M〉| M ∈ CS−FAΨ,L(M) is finite}.

Corollary

FA–FinitenessL ∈ TDΦ

Decidability and Decidable Problems for Finite Automata 12 / 16

Decidable Problems for Finite Automata

FA–Equivalence

Problem: FA–Infiniteness
Question: Let M,N ∈ CS−FAΨ. Are M and N equivalent?
Language: FA–EquivalenceL = {〈M,N〉| M,N ∈ CS−FAΨ,L(M) = L(N)}.

Theorem

FA–EquivalenceL ∈ TDΦ

Proof:
• It is easy to prove that L(M) = L(N) iff

• ∅ = (L(M)∩ ∼ L(N)) ∪ (L(N)∩ ∼ L(M)).
• Turing decider D works on every 〈M,N〉 ∈ FA–EquivalenceL:

• From M and N construct finite automaton O such that
L(O) = (L(M)∩ ∼ L(N)) ∪ (L(N)∩ ∼ L(M)).

• D converts O to an equivalent P ∈ CS−FAΨ.
• D decides whether L(P) = ∅.
• If P = ∅, L(M) = L(N) and D accepts 〈M,N〉.
• If P 6= ∅, L(M) 6= L(N) and D rejects 〈M,N〉.

Decidability and Decidable Problems for Finite Automata 13 / 16

References

Wayne Goddard.
Introducing the Theory of Computation.
Jones Bartlett Publishers, 2008.

Jeffrey D. Ullman John E. Hopcroft, Rajeev Motwani.
Introduction to Automata Theory, Languages, and Computation.
Addison Wesley, 2006.

Dexter C. Kozen.
Automata and Computability.
Springer, 2007.

Dexter C. Kozen.
Theory of Computation.
Springer, 2010.

John C. Martin.
Introduction to Languages and the Theory of Computation.
McGraw-Hill Science/Engineering/Math, 2002.

Decidability and Decidable Problems for Finite Automata 14 / 16

Thank you for your attention!

End

	Decidability
	References

