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Decidability

Consider any problem P expressed by a language.
• P is associated

• with the set of all its instances Π and
• with a property π.

• Each instance either satisfies or does not sutisfies property π.

Definition
• Given a particular instance i ∈ Π and its string representation 〈i〉.
• P asks whether or not i satisfies π.
• Encoding language of P is defined as

PL = {〈i〉| i ∈ Π, i satisfies π}.

A Turing decider M solves P if
1. M rejects every input that represents no instance from Π and
2. for every 〈i〉 where i ∈ Π, M accepts 〈i〉 iff i satisfies π.
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Decidability

P is stated as:

Problem: P
Question: a formulation of P
Language: PL

Example

Problem: FA–Emptiness
Question: Let M ∈ FAΨ,L(M) = ∅?
Language: FA–EmptinessL = {〈M〉| M ∈ FAΨ,L(M) = ∅}.

For any finite automaton M, FA–Emptiness asks whether the
language accepted by M is empty.
• Turing decider for FA–EmptinessL can be constructed in a trivial way.
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Decidability

Definition
I. Let M ∈ TMΨ. M is Turing decider if

• M always halts and
• M–f is a function from x ∈ 4∗ to {ε}.

II. Let L be a lanuage and M ∈ TMΨ be a Turing decider. M is a
Turing decider for L if domain(M–f ) = L

III. A language is decidable if there exists a Turing decider for it.
Otherwise, the language is undecidable.

By I, M ∈ TMΨ is a Turing decider if
• it never loops and
• for every x ∈ 4∗, �Ix�⇒∗ �iu� where i ∈ {�,�} and u ∈ �∗.

By II, Turing decider M for a language L satisfies
• for every x ∈ L, �Ix�⇒∗ ��u� in M and
• for every y ∈ 4∗ − L, �Iy�⇒∗ ��v� in M where u, v ∈ �∗.
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Decidability

Convention
• TDΨ denotes the set of all Turing deciders.
• TDΦ = {L(M)| M ∈ TDΨ}.

Theorem

FAΦ ⊂ CF Φ ⊂ TDΦ
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Decidability

Example

Let L = {x | x ∈ {a,b, c}∗,occur(x ,a) = occur(x ,b) = occur(x , c)}.
• Consider Turing Machine D such that D ∈ TDΨ and D accepts L.
• D can be designed by this way:

• D repeatedly scans across the tape in a left-to-right way.
• During every single scan, D is erasing the leftmost occurrence of a,

b, and c.
• If � is reached after erasing all these three occurences, D moves

to � and makes another scan.
• If � is reached while least one of the three symbol missing, D

makes final return to � in dependency on whether its tape is blank.

• D is a Turing decider for L, so L is a decidable language.
• Symbolically, D ∈ TDΨ and L ∈ TDΦ.
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Decidable Problems for Finite Automata

Convention
• CS−FAΨ is the set of all completely specified finite automata.
• 〈M〉 represents the code of M ∈ CS−FAΨ.
• 〈M,w〉 denotes (M,w) ∈ CS−FAΨ×4∗.
• 〈M,N〉 denotes (M,N) ∈ CS−FAΨ× CS−FAΨ.
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Decidable Problems for Finite Automata

FA–Emptiness

Problem: FA–Emptiness
Question: Let M ∈ CS−FAΨ. Is L(M) empty?
Language: FA–EmptinessL = {〈M〉| M ∈ CS−FAΨ,L(M) = ∅}.

Theorem

FA–EmptinessL ∈ TDΦ

Proof:
• We know that M is completely specified finite automaton.
• Therefore, each of its states is reachable.
• Thus, L(M) = ∅ iff MF = ∅.
• Design a Turing decider D that work on every 〈M〉, where

M ∈ CS−FAΨ:
• D accepts 〈M〉 iff MF = ∅,
• otherwise rejects 〈M〉.
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Decidable Problems for Finite Automata

FA–Membership

Problem: FA–Membership
Question: Let M ∈ CS−FAΨ and w ∈ 4∗. Is w member of L(M)?
Language:
FA–MembershipL = {〈M,w〉| M ∈ CS−FAΨ,w ∈ 4∗,w ∈ L(M)}.

Theorem

FA–MembershipL ∈ TDΦ

Proof:
• Proper finite automaton M reads an input symbol during every

move.
• After making |w | moves on w ∈ 4∗, M either accepts or rejects

w .
• Design Turing decider D that works on every 〈M,w〉 as follows:

• D runs M on w until M either accepts or rejects w .
• D accepts 〈M,w〉 iff M accepts w , and
• D rejects 〈M,w〉 iff M rejects w .
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Decidable Problems for Finite Automata

FA–Infiniteness
Problem: FA–Infiniteness
Question: Let M ∈ CS−FAΨ. Is L(M) infinite?
Language: FA–InfinitenessL = {〈M〉| M ∈ CS−FAΨ,L(M) is infinite}.

• M is completely specified finite automaton.
• It is easy to see, L(M) is infinite iff its state diagram contains a

cycle.
• FA–Infiniteness can be reformulated to terms of graph theory.
• Alternatively, it is possible to use pumping lemma for regular

language in the following way:
• For every M ∈ FAΨ, let ∞?L(M) denotes finite language
∞?L(M) = {x |x ∈ L(M), card(MQ) ≤ |x | < 2card(MQ)}.

Lemma

For every M ∈ CS−FAΨ, L(M) is infinite iff ∞?L(M) 6= ∅.
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Decidable Problems for Finite Automata
Proof: the if part of the equivalence:
• Suppose that ∞?L(M) 6= ∅.
• Take any z ∈ ∞?L(M).
• Pumping lemma constant k equals card()MQ).
• Because card()MQ) ≤ z, z = uvw , where:

• 0 < |v | ≤ |uv | ≤ card()MQ) and
• uvmw ∈ L for all m ≥ 0.

• Hence, L(M) is infinite.

Proof: the only if part of the equivalence:
• Assume that L is infinite.
• Let z be the shortest string such that:

• z ∈ L and |z| ≥ 2card()MQ).
• From Pumping Lemma, z = uvw , where:

• 0 < |v | ≤ |uv | ≤ card()MQ) and
• uvmw ∈ L for all m ≥ 0.

• Take uv0w = uw ∈ L(M).
• Observe that 2card()MQ) ≥ |uw |.
• As 0 < |v | ≤ card()MQ), card()MQ) ≤ uw < 2card()MQ) ≤ |z|,
• so uw ∈ ∞?L(M) and, therefore ∞?L(M) 6= ∅.
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Decidable Problems for Finite Automata

Theorem

FA–InfinitenessL ∈ TDΦ

Proof:
• Construct a Turing decider D that works on every
〈M〉 ∈ FA–FinitenessL so it first construct ∞?L(M).

• D accepts 〈M〉 iff ∞?L(M) 6= ∅, and
• D rejects 〈M〉 iff ∞?L(M) = ∅

FA–Finiteness
Problem:FA–Finiteness
Question: Let M ∈ CS−FAΨ. Is L(M) finite?
Language: FA–FinitenessL = {〈M〉| M ∈ CS−FAΨ,L(M) is finite}.

Corollary

FA–FinitenessL ∈ TDΦ
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Decidable Problems for Finite Automata

FA–Equivalence

Problem: FA–Infiniteness
Question: Let M,N ∈ CS−FAΨ. Are M and N equivalent?
Language: FA–EquivalenceL = {〈M,N〉| M,N ∈ CS−FAΨ,L(M) = L(N)}.

Theorem

FA–EquivalenceL ∈ TDΦ

Proof:
• It is easy to prove that L(M) = L(N) iff

• ∅ = (L(M)∩ ∼ L(N)) ∪ (L(N)∩ ∼ L(M)).
• Turing decider D works on every 〈M,N〉 ∈ FA–EquivalenceL:

• From M and N construct finite automaton O such that
L(O) = (L(M)∩ ∼ L(N)) ∪ (L(N)∩ ∼ L(M)).

• D converts O to an equivalent P ∈ CS−FAΨ.
• D decides whether L(P) = ∅.
• If P = ∅, L(M) = L(N) and D accepts 〈M,N〉.
• If P 6= ∅, L(M) 6= L(N) and D rejects 〈M,N〉.
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