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Undecidable Problems

Diagolization

Diagolization–based proof is schematically performed in the following
way:
(1) Assume that PL is decidable, and consider a Turing decider D

such that L(D) = PL.
(2) From D, construct another Turing decider O; then, by using

diagolization technique, apply O on its own description 〈O〉 so
this application results into a contradiction.

(3) The contradiction obtained in (2) implies that the assumption in
(1) is incorrect, so PL is undecidable.
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Undecidable Problems

TM–Halting

Problem: TM–Halting
Question: Let M ∈ TMΨ and w ∈ 4∗. Does M halts on w?
Language: TM–HaltingL = {〈M,w〉| M ∈ TMΨ,w ∈ 4∗,M halts on w}.

Theorem

TM–HaltingL 6∈ TDΦ

Proof I/II:
• Assume that TM–HaltingL is decidable.
• Then, there exists a Turing decider D such that

L(D) = TM–HaltingL.
• From D, construct another Turing decider O that works on every

input w , where w = 〈M〉 with M ∈ TMΨ as follows:
• O replaces w with 〈M,M〉;
• O runs D on 〈M,M〉;
• O accepts iff D rejects, and O rejects iff D accepts.
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Proof II/II:
• That is, O accepts 〈M〉 iff M loops on 〈M〉.
• As O works on every input w , it also works on w = 〈O〉.
• Since O accepts 〈M〉 iff M loops on 〈M〉 for every w = 〈M〉.
• This equivalence holds for w = 〈O〉 as well.
• O accepts 〈O〉 iff O loops on 〈O〉.
• Thus, 〈O〉 ∈ L(O) iff 〈O〉 6∈ L(O)—a contradiction.
• Therefore, TM–HaltingL is undecidable.

Theorem

TDΦ ⊂ TMΦ

Proof:
• Clearly, TDΦ ⊆ TMΦ.
• We know that TM–HaltingL ∈ TDΦ− TMΦ.
• Therefore, TDΦ ⊂ TMΦ.
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Undecidable Problems

TM–Looping

Problem: TM–Looping
Question: Let M ∈ TMΨ and w ∈ 4∗ Does M loops on w?
Language: TM–LoopingL = {〈M,w〉| M ∈ TMΨ,w ∈ 4∗,M loops on w}.

To prove the undecidability of TM–LoopingL, we first establish the
following two theorems.

Theorem

TM–LoopingL is the complement of TM–HaltingL.

Theorem
Let L ⊆ 4∗. L ∈ TDΦ iff both L and ∼ L are in TDΦ.

Proof (only if part):
• Let L be a decidable language.
• Then, there is M ∈ TDΨ such that L(M) = L.
• Change M on Turing machine N ∈ TMΨ where N enters a

non–final state in which it keeps looping exactly when M enters
the final state.
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Proof (if part):
• Let L,∼ L ∈ TMΨ.
• Then, there exist N,O ∈ TMΨ such that L(N) = L and L(O) =∼ L.
• Clearly, for every w ∈ 4∗, w ∈ L(N) or w ∈ L(O) and

L(N) ∩ L(O) = ∅.
• Construct Turing decider M works on every w ∈ 4∗ in the

following way:
• (1) M simultaneously runs N and O on w so M executes by turns

one move in N and O.
• (2) M continues the simulation described in (1) until a move that

would take N or O an accepting configuration, where w ∈ L(N) or
w ∈ L(O).

• (3) Mhalts and either accepts if w ∈ L(N) or rejects if w ∈ L(O).

• Observe that L(M) = L. Futhermore, M always halts, so
M ∈ TDΨ and L ∈ TDΦ.
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Theorem

TM–LoopingL 6∈ TMΦ.

Proof:
• Assume, TM–LoopingL ∈ TMΦ.
• TM–LoopingL is the complement of TM–HaltingL.
• TM–HaltingL ∈ TMΦ.
• TM–LoopingL 6∈ TMΦ, but by assumption, TM–LoopingL ∈ TMΦ—a

contradiction.

Corollary

TM–LoopingL 6∈ TDΦ.
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Reduction
Reduction–based proof is schematically performed in the following
way:
(1) Assume that PL is decidable, and consider a Turing decider D

such that L(D) = PL.
(2) Modify D to another Turing decider that would decide a

well–known undecidable language—a contradiction.
(3) The contradiction obtained in (2) implies that the assumption in

(1) is incorrect, so PL is undecidable.
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TM–Membership

Problem: TM–Membership
Question: Let M ∈ TMΨ and w ∈ 4∗ Is w a member of L(M)?
Language: TM–MembershipL = {〈M,w〉| M ∈ TMΨ,w ∈ 4∗,w ∈ L(M)}.

Theorem

TM–MembershipL 6∈ TDΦ.

Proof:
• Given 〈M,w〉.
• Construct a Turing machine N that coincides with M except that

N accepts x iff M halts on x .
• If there were a Turing decider D for TM–MembershipL, we could use

D and this equivalence to decide TM–HaltingL.
• Therefore, D can not exist.
• Thus, there is no Turing decider for TM–MembershipL.
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Non–TM–Membership

Problem: Non–TM–Membership
Question: Let M ∈ TMΨ and w ∈ 4∗ Is w out of L(M)?
Language:
Non–TM–MembershipL = {〈M,w〉| M ∈ TMΨ,w ∈ 4∗,w 6∈ L(M)}.

Theorem

Non–TM–MembershipL 6∈ TMΦ.

Proof:
• Suppose that Non–TM–MembershipL ∈ TMΦ.
• Clearly, TM–MembershipL ∈ TMΦ.
• As obvious, Non–TM–MembershipL is complement of TM–MembershipL
• Thus, TM–MembershipL would belong to TMΦ.

Corollary

Non–TM–MembershipL 6∈ TDΦ.
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TM–Regularness

Problem: TM–Regularness
Question: Let M ∈ TMΨ and w ∈ 4∗ Is L(M) reular?
Language: TM–RegularnessL = {〈M〉| M ∈ TMΨ,L(M) is regular}.

Theorem

Non–TM–RegularnessL 6∈ TMΦ.

Other Undecidable Problems I/II
Problem: CF–Equivalence
Question: Let G,H ∈ CF Ψ. Are G and H equivalent?
Language: CF–EquivalenceL = {〈G,H〉| G,H ∈ CF Ψ,L(G) = L(H)}.

Problem: CF–Containment
Question: Let G,H ∈ CF Ψ. Does L(G) contains L(H)?
Language: CF–ContainmentL = {〈G,H〉| G,H ∈ CF Ψ,L(H) ⊆ L(G)}.
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Other Undecidable Problems II/II
Problem: CF–Intersection
Question: Let G,H ∈ CF Ψ. Is the intersection of G and H empty?
Language: CF–IntersectionL = {〈G,H〉| G,H ∈ CF Ψ,L(G) ∩ L(H) = ∅}.

Problem: CF–Universality
Question: Let G ∈ CF Ψ. Is L(G) equal to G4∗?
Language: CF–Universality L = {〈G〉| G ∈ CF Ψ,L(G) = G4∗}.

Problem: CF–Ambiguity
Question: Let G ∈ CF Ψ. Is G ambiguous?
Language: CF–Ambiguity L = {〈G〉| G ∈ CF Ψ,G is ambiguous}.
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