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Decidable Problems for Context–Free Grammars

Convention
• CNF−CF Ψ denotes the set of all context–free grammars in

Chomsky normal form.
• We supose there exists a fixed encoding and decoding of the

grammars in CNF−CF Ψ.
• 〈G〉 represents the code of G ∈ CNF−CF Ψ.
• 〈G,w〉 denotes (G,w) ∈ CNF−CF Ψ×4∗.
• 〈G,H〉 denotes (G,H) ∈ CNF−CF Ψ× CNF−CF Ψ.
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CF–Emptiness

Problem: CF–Emptiness
Question: Let G ∈ CNF−CF Ψ. Is L(G) empty?
Language: CF–EmptinessL = {〈G〉| G ∈ CNF−CF Ψ,L(G) = ∅}.

Theorem

CF–EmptinessL ∈ TDΦ

Proof:
• Let G ∈ CNF−CF .
• A symbol in G is terminating if it derives a string of terminals.
• L(G) is non–empty iff GS is terminating, where GS denotes start

symbol of G.
• Construct a Turing decider D that works on 〈G〉 in the following

way:
• D decides whether GS is terminating.
• D rejects 〈G〉 if GS is terminating; otherwise, D accepts 〈G〉.
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CF–Membership

Problem: CF–Membership
Question: Let G ∈ CNF−CF Ψ and w ∈ 4∗. Is w member of L(G)?
Language:
CF–MembershipL = {〈G,w〉| G ∈ CNF−CF Ψ,w ∈ 4∗,w ∈ L(G)}.

Lemma

Let G ∈ CNF−CF Ψ. Then, G generates every w ∈ L(G) by making no
more than 2|w | − 1 derivation steps.

Theorem

CF–MembershipL ∈ TDΦ.
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Proof:

• From the Chomsky normal form, CNF−CF Ψ contains no grammar
that generates ε.

• Construct the following Turing decider D that works on every
〈G,w〉 in either of the following two ways:
• Let w = ε.

• Clearly, ε ∈ L(G) iff GS derives ε.
• D decides whether GS dirives ε, and if so, D accepts 〈G,w〉;

otherwise, D rejects 〈G,w〉.
• Let w 6= ε. Then D works on 〈G,w〉 as follows:

• D constructs the set of all sentences that G generates by making no
more than 2|w | − 1 derivation steps;

• If the set contains w , D accepts 〈G,w〉; otherwise, D rejects 〈G,w〉.
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CF–Infiniteness
Problem: CF–Infiniteness
Question: Let G ∈ CNF−CF Ψ. Is L(G) infinite?
Language: CF–InfinitenessL = {〈G〉| G ∈ CNF−CF Ψ,L(G) is infinite}.

Lemma

Let G ∈ CNF−CF be in the Chomsky normal form. L(G) is infinite iff
L(G) contains a sentence x such that k ≤ |x | < 2k with k = 2card(GN).

Theorem

CF–InfinitenessL ∈ TDΦ

Proof:
• Construct a Turing decider D that works on every 〈G,w〉 as

follows:
• D constructs the set of all sentences in G such that k ≤ |x | < 2k

with k − 2card(GN);
• If this set contains w , D accepts 〈G,w〉; otherwise, it rejects 〈G,w〉.
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CF–Finiteness
Problem: CF–Finiteness
Question: Let G ∈ CNF−CF Ψ. Is L(G) finite?
Language: CF–FinitenessL = {〈G〉| G ∈ CNF−CF Ψ,L(G) is finite}.

Corollary

CF–FinitenessL ∈ TDΦ
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Thank you for your attention!
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