Universal Turing Machines

Martin Čermák, Jiří Koutný and Alexander Meduna

Deparment of Information Systems
Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology
Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science
FRVŠ MŠMT FR2581/2010/G1

Part I

Universal Turing Machines

There exists a Turing Machine acting as such a universal device, which simulates all machines in ${ }_{T M} \Psi$.

Universal Turing Machine $U \in_{T M} \Psi$
Universal Turing Machine $U \in_{T M} \Psi$ simulates every $M \in_{T M} \Psi$ working on any input w.

- The input of any Turing Machine is always a string.
- How to encode every $M \in \in_{T M} \Psi$ as a string (denoted as $\langle M\rangle$)?

Pinciple

- U has the code of M followed by the code of w as its input (denoted as $\langle M, w\rangle$).
- U decodes M and w to simulate M working on w.
- U accepts $\langle M, w\rangle$ iff M accepts w.

Encoding Mathematically

The encoding should represent a total function code from $T_{M} \Psi$ to ϑ^{*} such that $\operatorname{code}(M)=\langle M\rangle$ for all $M \in_{T M} \Psi$.
The decoding decode of Turing Machines is defined on an arbitrary
but fixed $O \in_{T M} \Psi$, so

- for every $x \in$ range(code), decode $(x)=$ inverse(code($M)$).
- for every $y \in \vartheta^{*}$ - range(code), decode $(y)=O$ so range $($ decode $)=$ тм ψ.
- decode is a total surjection (it maps every string in ϑ^{*}),
- decode may not be an injection (several strings in ϑ^{*} may be decoded to the same machine in $T_{T M} \Psi$),
- code and decode are used to encode and decode the pairs consisting of Turing Machines and input strings.
We just require that the mechanical interpretation of both code and decode is relatively easily performable.
- Consider any $M \in_{T M} \Psi$.
- Rename states in Q to $q_{1}, q_{2}, q_{3}, q_{4}, \ldots, q_{m}$ so $q_{1}=\downarrow, q_{2}=\square, q_{3}=\downarrow$, where $m=\operatorname{card}(Q)$.
- Rename the symbols of $\{\triangleright, \triangleleft\} \cup \Gamma$ to $a_{1}, a_{2}, \ldots, a_{n}$ so $a_{1}=\triangleright, a_{2}=\triangleleft, a_{3}=\square$, where $n=\operatorname{card}(\Gamma)$.
- Introduce the homomorphism h from $Q \cup \Gamma$ to $\{0,1\}^{*}$ as $h\left(q_{i}\right)=10^{i}, 1 \leq i \leq m$, and $h\left(a_{j}\right)=110^{j}, 1 \leq j \leq n$.
- Extend h so it is defined from $(\Gamma \cup Q)^{*}$ to $\{0,1\}^{*}$
- $h(\varepsilon)=\varepsilon$,
- $h\left(X_{1} \ldots X_{k}\right)=h\left(X_{1}\right) \ldots h\left(X_{k}\right)$, where $k \geq 1, X_{I} \in \Gamma \cup Q, 1 \leq I \leq k$.
- Define the mapping code from R to $\{0,1\}^{*}$ so that for each rule $r: x \rightarrow y \in R$, code $(r)=h(x y)$.
- Write the rules of R in an order as $r_{1}, r_{2}, \ldots, r_{0}$ with $0=\operatorname{card}(\mathrm{R})$ (for instance, order them lexicographically).
- Set $\operatorname{code}(R)=\operatorname{code}\left(r_{1}\right) 111 \operatorname{code}\left(r_{2}\right) 111 \operatorname{code}\left(r_{0}\right) 111$.
- From code(R), we obtain code (M) by setting $\operatorname{code}(M)=0^{m} 10^{n} 1 \operatorname{code}(R) 1$.

| A Binary Code for Turing Machines

Let $\operatorname{code}(M)=0^{m} 10^{n} 1 \operatorname{code}(R) 1$

- $0^{m} 1$ states that $m=\operatorname{card}(Q)$,
- $0^{n} 1$ state that $n=\operatorname{card}(\Gamma)$,
- code (R) encodes the rules of R.

Mapping code is total, but inverse(code) is partial.

- Select an arbitrary but fixed $O \in_{T M} \Psi$,
- Extend inverse(code) to the total mapping decode so that for every $x \in\{0,1\}^{*}$:
- if x is a legal code of K in $\tau_{T M} \Psi$, $\operatorname{decode~}(x)=K$,
- otherwise, $\operatorname{decode}(x)=0$.

For $w \in \triangle^{*}, \operatorname{code}(w)=h(w)$

- Select an arbitrary but fixed $y \in \triangle^{*}$,
- Define the total surjection decode so for every $x \in\{0,1\}^{*}$
- if $x \in \operatorname{range}(\operatorname{code})$, decode $(x)=$ inverse $(\operatorname{code}(w))$,
- otherwise, $\operatorname{decode}(z)=y$.

For every $(M, w) \in_{T M} \Psi \times \triangle^{*}$, define $\operatorname{code}(M, w)=\operatorname{code}(M) \operatorname{code}(w)$

- code is a total function,
- Define the total surjection decode so
- $\operatorname{decode}(x y)=\operatorname{decode}(x) \operatorname{decode}(y)$,
- where $\operatorname{decode}(x) \in_{т м} \Psi$ and $\operatorname{decode}(y) \in \triangle^{*}$.

A Binary Code for Turing Machines

Example

Consider Turing Machine $M=(\Sigma, R) \in_{T M} \Psi$, where
$\Sigma=Q \cup \Gamma \cup\{\triangleright, \triangleleft\}, Q=\{\downarrow, \square, A, B, C, D\}, \Gamma=\triangle \cup\{\square\}, \triangle=\{b\}$, and R contains these rules

$$
\begin{aligned}
& \triangleright \triangleleft \rightarrow \square \triangleleft, \triangleright b \rightarrow b A, \\
& A b \rightarrow b B, B b \rightarrow b A, \\
& A \triangleleft \rightarrow C \triangleleft, B \triangleleft \rightarrow D \triangleleft, \\
& b D \rightarrow D \square, b C \rightarrow C \square, \\
& \triangleright C \rightarrow \triangleright \vee, \triangleright D \rightarrow \triangleright \square \\
& L(M)=\{b i \mid i \geq 0, i \text { is even }\}
\end{aligned}
$$

Homomorphism h from $Q \in\{\triangleright, \triangleleft\} \cup \Gamma$ to $\{0,1\}^{*}$:

- $h\left(q_{i}\right)=10^{i}, 1 \leq i \leq 7$, where $q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}$, and q_{7} coincide with $\downarrow, \square, A, B, C, D$, respectively,
- $h\left(a_{i}\right)=110^{j}, 1 \leq j \leq 4$, where a_{1}, a_{2}, a_{3}, and a_{4} coincide with $\triangleright, \triangleleft, \square$, and b, respectively.
Extend h so it is defined from $(Q \cup\{\triangleright, \triangleleft\} \cup \Gamma)^{*}$ to $\{0,1\}^{*}$.

Example

Based on h, define the mapping code from R to $\{0,1\}^{*}$ so for each rule $x \rightarrow y \in R$, $\operatorname{code}(x \rightarrow y)=h(x y)$ (for example, code $(\rightarrow b \rightarrow b A)=1011000011000010000)$.

Take the above order of the rules from R, and set

$$
\operatorname{code}(R)=\operatorname{code}(\triangleright \triangleleft \rightarrow \square \triangleleft) 111 \ldots \operatorname{code}(\triangleright D \rightarrow \triangleright \square) 111
$$

Finally, $\operatorname{code}(M)=0^{7} 10^{2} 1 \operatorname{code}(R) 1$.
For instance, take $w=b b$, and set $\operatorname{code}(b b)=110000110000$.
Thus, $\operatorname{code}(M, w)=0^{7} 10^{2} 1 \operatorname{code}(R) 1111110000110000=\ldots$

Convention

- We suppose there exist a fixed encoding and a fixed decoding of all Turing Machines in $\tau_{M} \Psi$.
- Both code and decode have to be uniquely and mechanically interpretable (not necessarily binary).

Construction of Universal Turing Machines

Universal Turing Machine ${ }_{\text {Accept }} U$ simulates every $M \in_{T M} \Psi$ on $w \in \triangle^{*}$ so Accept U accepts $\langle M, w\rangle$ iff M accepts w.

Universal Turing Machine Accept U

$L($ Accept $M)=\left\{\langle M, w\rangle \mid M \in{ }_{T M} \Psi, w \in \triangle^{*}, w \in L(M)\right\}$
Universal Turing Machine Halt U simulates every $M \in{ }_{T M} \Psi$ on $w \in \triangle^{*}$ so ${ }_{\text {Halt }} U$ accepts $\langle M, w\rangle$ iff M halts on w.

Universal Turing Machine Halt U

$L($ Halt $M)=\left\{\langle M, w\rangle \mid M \in{ }_{T M} \Psi, w \in \triangle^{*}, M\right.$ halts on $\left.w\right\}$

Convention

Accept U works on $\langle M, w\rangle$ so it first interprets $\langle M, w\rangle$ as M and w; then, it simulates the moves of M on w
is simplified to
Accept U runs M on w.

Theorem

There exists Accept $U \in{ }_{T M} \Psi$ such that $L($ Accept $U)=$ Accept L.
Proof. On every input $\langle M, w\rangle$, Accept U works so it runs M on w. Accept U accepts $\langle M, w\rangle$ if and when it finds out that M accepts w; otherwise, ${ }_{\text {Accept }} U$ keeps simulating the moves of M in this way.

Theorem

There exists Halt $U \in_{T M} \Psi$ such that $L($ Halt $U)=$ Halt L.
Proof. On every input $\langle M, w\rangle$, Halt U works so it runs M on w. Halt U accepts $\langle M, w\rangle M$ if M halt w; which means that M either accepts or rejects w. Thus, Halt U loops on $\langle M, w\rangle$ iff M loops on w. Observe that $L($ Halt $U)=$ Halt L.

No Turing Machine can halt on every input and, simultaneously, act as a universal Turing Machine.

围 Wayne Goddard．
Introducing the Theory of Computation．
Jones Bartlett Publishers， 2008.
囯 Jeffrey D．Ullman John E．Hopcroft，Rajeev Motwani． Introduction to Automata Theory，Languages，and Computation． Addison Wesley， 2006.
围 Dexter C．Kozen．
Automata and Computability．
Springer， 2007.
囲 Dexter C．Kozen．
Theory of Computation．
Springer， 2010.
目 John C．Martin．
Introduction to Languages and the Theory of Computation． McGraw－Hill Science／Engineering／Math， 2002.

Thank you for your attention!

End

