
On n-Path-Controlled Grammars

Martin Čermák, Jǐŕı Koutný and Alexander Meduna
Deparment of Information Systems

Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology

Božetěchova 2, Brno 612 00, Czech Republic

Advanced Topics of Theoretical Computer Science

FRVŠ MŠMT FR2581/2010/G1

Outline

Introduction

Definitions

Results

Examples

Conclusion

References

Acknowledgement

This work was partially supported by the FRVŠ MŠMT grant
FR2581/2010/G1, the BUT FIT grant FIT-10-S-2, and the research
plan MSM0021630528.

On n-Path-Controlled Grammars 2 / 75

Introduction

What’s going on

• Regulated formal model.
• Model based on the restrictions on the derivation trees.
• Actual trend in today’s FLT (see [1], [2], [3], [4], [5], [6], [7]).
• Simple extension of context-free grammars.
• One of the ways to increase the generative power of

context-free grammar.
• Potentially applicable model.

Motivation

Generation of not context-free languages of the form
• anbncn, anbncndn, anbncndnen, . . .
• akblakbl , akblcmakblcm, akblcmdnakblcmdn, . . .

On n-Path-Controlled Grammars 3 / 75

Introduction

What’s going on

• Regulated formal model.
• Model based on the restrictions on the derivation trees.
• Actual trend in today’s FLT (see [1], [2], [3], [4], [5], [6], [7]).
• Simple extension of context-free grammars.
• One of the ways to increase the generative power of

context-free grammar.
• Potentially applicable model.

Motivation

Generation of not context-free languages of the form
• anbncn, anbncndn, anbncndnen, . . .
• akblakbl , akblcmakblcm, akblcmdnakblcmdn, . . .

On n-Path-Controlled Grammars 4 / 75

Preliminaries

Linear grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ T ∗NT ∗, N = V − T ,
• S ∈ V − T is the starting symbol.

Context-free grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ V ∗,
• S ∈ V − T is the starting symbol.

On n-Path-Controlled Grammars 5 / 75

Preliminaries

Linear grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ T ∗NT ∗, N = V − T ,
• S ∈ V − T is the starting symbol.

Context-free grammar

G = (V , T ,P, S), where
• V is an alphabet,
• T ⊆ V is a terminal alphabet,
• P is a finite set of production rules of the form A→ x , where

A ∈ V − T , x ∈ V ∗,
• S ∈ V − T is the starting symbol.

On n-Path-Controlled Grammars 6 / 75

Preliminaries

Set of the derivation trees
• Let G = (V , T ,P, S) be a grammar.
• Let G4(x) denote a set of the derivation trees with frontier x

with respect to the grammar G starting from S.

A path

• A path s of t ∈G4(x) is sequence a1 . . .an, n ≥ 1, of nodes
of t with:

• a1 is the root of t ,
• a1 is labeled by starting symbol of G,
• an is a leaf of t ,
• an is labeled by terminal symbol of G,
• for each i = 1, . . . ,n− 1, there is an edge from ai to ai+1 in t .

• Let path(s) denote the word obtained by concatenating
all symbols of the path s (in order from the top).

On n-Path-Controlled Grammars 7 / 75

Preliminaries

Set of the derivation trees
• Let G = (V , T ,P, S) be a grammar.
• Let G4(x) denote a set of the derivation trees with frontier x

with respect to the grammar G starting from S.

A path

• A path s of t ∈G4(x) is sequence a1 . . .an, n ≥ 1, of nodes
of t with:

• a1 is the root of t ,
• a1 is labeled by starting symbol of G,
• an is a leaf of t ,
• an is labeled by terminal symbol of G,
• for each i = 1, . . . ,n− 1, there is an edge from ai to ai+1 in t .

• Let path(s) denote the word obtained by concatenating
all symbols of the path s (in order from the top).

On n-Path-Controlled Grammars 8 / 75

Path-controlled grammars

• PC grammars, for short.

• Based on a new type of the restriction in a derivation (see
Introduction in [5]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 9 / 75

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [5]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 10 / 75

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [5]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:

• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 11 / 75

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [5]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:
• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 12 / 75

Path-controlled grammars

• PC grammars, for short.
• Based on a new type of the restriction in a derivation (see

Introduction in [5]).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

• Two grammars G and G′:
• G generates a language over its alphabet of terminals T .
• G′ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G′).

On n-Path-Controlled Grammars 13 / 75

n-path-controlled grammars

• nPC grammars, for short.

• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 14 / 75

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 15 / 75

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 16 / 75

n-path-controlled grammars

• nPC grammars, for short.
• A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n ≥ 0 paths in t that are described by the strings from linear
language L(G′).

Several types of nPC grammars in relation to
• Path-controlled grammars,
• The pumping lemma for linear languages.

On n-Path-Controlled Grammars 17 / 75

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [5], Prop. 2).
• Linear paths can increase the generative power (see [5]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 18 / 75

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?

• Regular paths do not increase the generative power (see
[3] and [5], Prop. 2).

• Linear paths can increase the generative power (see [5]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 19 / 75

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [5], Prop. 2).
• Linear paths can increase the generative power (see [5]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 20 / 75

n-path-controlled grammars

Definition of nPC grammar

An nPC grammar is a pair (G,G′), where
• G = (V , T ,P, S) is a context-free grammar,
• G′ = (V ′,V ,P ′, S′) is a linear grammar.

Why G′ is a linear grammar?
• Regular paths do not increase the generative power (see

[3] and [5], Prop. 2).
• Linear paths can increase the generative power (see [5]).

Generated language

L(G,G′) = {w ∈ L(G)| there is a set C of n different paths in
t ∈G4(w) such that for all p ∈ C it holds path(p) ∈ L(G′) and all
p ∈ C are divided in the common node of t}.

On n-Path-Controlled Grammars 21 / 75

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.

• For a nPC grammar (G,G′), there is some mC ∈ N that
denotes a number of common nodes for all p ∈ C.

• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,
path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 22 / 75

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.

• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,
path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 23 / 75

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 24 / 75

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 25 / 75

Obvious facts about the paths

Clearly
• Each two paths of a derivation tree contain at least one

common node.
• For a nPC grammar (G,G′), there is some mC ∈ N that

denotes a number of common nodes for all p ∈ C.
• For each two p1,p2 ∈ C it holds that path(p1) = rDs1,

path(p2) = rDs2, where r ∈ N∗, D ∈ N, s1, s2 ∈ N∗T and
|rD| = mC .

• All the paths s ∈ C are described by the strings of L(G′)
which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are p,q ∈ N such that each
string z ∈ L with |z| ≥ p can be written in the form z = uvwxy
with 0 < |vx | ≤ |uvxy | ≤ q, such that uv iwx iy ∈ L for all i ≥ 1.

On n-Path-Controlled Grammars 26 / 75

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 27 / 75

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 28 / 75

Types of n-path-controlled grammars

• Five types of nPC grammars depending on the value of mC
in relation to the pumping lemma for L(G′).

Types of nPC grammars

• I
nPC if C satisfies 0 ≤mC ≤ |u|,

• II
nPC if C satisfies |u| < mC ≤ |uv |,

• III
n PC if C satisfies |uv | < mC ≤ |uvw |,

• IV
n PC if C satisfies |uvw | < mC ≤ |uvwx |,

• V
n PC if C satisfies |uvwx | < mC ≤ |uvwxy |,

where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF , PC, nPC,
I
nPC, II

nPC, III
n PC, IV

n PC, V
n PC grammars is denoted by LIN, CF, PC,

n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

On n-Path-Controlled Grammars 29 / 75

Types of n-path-controlled grammars

n=0 CF grammar

On n-Path-Controlled Grammars 30 / 75

Types of n-path-controlled grammars

n=1 PC grammar

On n-Path-Controlled Grammars 31 / 75

Types of n-path-controlled grammars

∈ LIN

n=1 PC grammar

On n-Path-Controlled Grammars 32 / 75

Types of n-path-controlled grammars

I

II

III

IV

V

n=1

Five parts
(by PL for LIN)

PC grammar

On n-Path-Controlled Grammars 33 / 75

Types of n-path-controlled grammars

I

II

III

IV

V

n=1

II,IV can be
iterated
(by PL for LIN)

PC grammar

On n-Path-Controlled Grammars 34 / 75

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 35 / 75

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 36 / 75

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 37 / 75

Results

Theorem 1

PC = 1-PC = I-1-PC = II-1-PC = III-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC, and i

nPC, for i = I, II, III, IV ,V , grammars.
Informally: One path to control means no division of the
controlled paths.

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.

On n-Path-Controlled Grammars 38 / 75

The idea of Theorem 1

III

n=3 3PC grammarIII

On n-Path-Controlled Grammars 39 / 75

The idea of Theorem 1

II

IV2

III

I

V2 V3V1

IV1 IV3

n=3 3PC grammarIII

On n-Path-Controlled Grammars 40 / 75

The idea of Theorem 1

II

IV2

I

V2 V3V1

III

IV1 IV3

n=3 3PC grammarIII

On n-Path-Controlled Grammars 41 / 75

The idea of Theorem 1

II

IV2

IV1 IV3

n=3 3PC grammarIII

On n-Path-Controlled Grammars 42 / 75

The idea of Theorem 1

II

IV2

IV1 IV3

n=3 3PC grammarIII

On n-Path-Controlled Grammars 43 / 75

The idea of Theorem 1

II

IV2

IV1 IV3

n=3 3PC grammarIII

On n-Path-Controlled Grammars 44 / 75

The idea of Theorem 1

II

IV2

IV1 IV3

n=3

2n+2=8
3PC grammarIII

On n-Path-Controlled Grammars 45 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Let (G,G′) be a III

n PC-grammar, where
• G = (V , T ,P, S),
• G′ = (V ′,V ,P′, S′).

• Consider t ∈(G,G′)4(z). For each path(s) = SA1 . . .Aka of t ,
where s ∈ C, consider

• the rules Ai → xiAi+1yi used when passing from Ai to Ai+1 on
this path,

• the rule Ak → xkayk used in the last step of the derivation in G
corresponding to the path s.

On n-Path-Controlled Grammars 46 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Let (G,G′) be a III

n PC-grammar, where
• G = (V , T ,P, S),
• G′ = (V ′,V ,P′, S′).

• Consider t ∈(G,G′)4(z). For each path(s) = SA1 . . .Aka of t ,
where s ∈ C, consider

• the rules Ai → xiAi+1yi used when passing from Ai to Ai+1 on
this path,

• the rule Ak → xkayk used in the last step of the derivation in G
corresponding to the path s.

On n-Path-Controlled Grammars 47 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.
• By the pumping lemma for context-free languages, z ′1, z

′
2

are bounded in length.

On n-Path-Controlled Grammars 48 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.

• By the pumping lemma for context-free languages, z ′1, z
′
2

are bounded in length.

On n-Path-Controlled Grammars 49 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider that any xiyi , i = 1, . . . , k , contains a nonterminal B

that do not belong on any path s ∈ C. Clearly, there is
substring z ′ of z derived from B.

• Since G is context-free, it follows that if |z ′| ≥ k1, for some
k1 ≥ 0, then there are two substrings z ′1, z

′
2 of z ′ that can be

pumped.
• By the pumping lemma for context-free languages, z ′1, z

′
2

are bounded in length.

On n-Path-Controlled Grammars 50 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 51 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 52 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• If L(G) is infinite, the string path(s) ∈ L(G′) is potentially

arbitrarily long. Thus, if path(s) = usvsxsyszs with
|usvsxsyszs| ≥ k2, for some k2 ≥ 0, then usvsxsyszs satisfies
usv i

sxsy i
szs ∈ L(G′), for i ≥ 1.

• The derivations starting from the symbols of v and y can be
repeated in G.

• Since (G,G′) is III
n PC grammar, it follows that:

• the derivations starting from the symbols of v in G are
common for all s ∈ C,

• the derivations starting from the symbols of y in G are
potentially unique for each s ∈ C.

On n-Path-Controlled Grammars 53 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider the derivations starting from v in G. This leads to

the pumping of two substrings v1, v2n+2 of z—one in the
left-hand side, one in the right-hand side controlled by the
common part of all s ∈ C.

• Consider the derivations starting from y in G. This leads to
the pumping of two substrings of z—one in the left-hand
side, one in the right-hand side corresponding to each
s ∈ C. For each si+1 ∈ C, denote this two substrings v2i+2,
v2i+3, i = 0, 1, . . . ,n− 1. Since (G,G′) is III

n PC grammar, we
obtain 2n pumped substrings of z.

On n-Path-Controlled Grammars 54 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• Consider the derivations starting from v in G. This leads to

the pumping of two substrings v1, v2n+2 of z—one in the
left-hand side, one in the right-hand side controlled by the
common part of all s ∈ C.

• Consider the derivations starting from y in G. This leads to
the pumping of two substrings of z—one in the left-hand
side, one in the right-hand side corresponding to each
s ∈ C. For each si+1 ∈ C, denote this two substrings v2i+2,
v2i+3, i = 0, 1, . . . ,n− 1. Since (G,G′) is III

n PC grammar, we
obtain 2n pumped substrings of z.

On n-Path-Controlled Grammars 55 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• By the pumping lemma for context-free languages, the

substrings v1, v2, . . . , v2n+2 are bounded in length.

• Thus, the total length of the 2n + 2 pumped substrings of z is
bounded by a constant q.

On n-Path-Controlled Grammars 56 / 75

Results

Theorem 2

If L ∈ III-n-PC, for n = card(C) ≥ 0, then there are p,q ∈ N such
that each z ∈ L with |z| > p can be written in the form
z = u1v1u2v2 . . .u2n+2v2n+2u2n+3, such that 0 < |v1v2 . . . v2n+2| ≤ q
and u1v i

1u2v i
2 . . .u2n+2v i

2n+2u2n+3 ∈ L for all i ≥ 1.

Proof Idea:
• By the pumping lemma for context-free languages, the

substrings v1, v2, . . . , v2n+2 are bounded in length.
• Thus, the total length of the 2n + 2 pumped substrings of z is

bounded by a constant q.

On n-Path-Controlled Grammars 57 / 75

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 58 / 75

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 59 / 75

Results

Corollary 3

III-n-PC cannot count to 2n + 3, but can count to 2n + 2.

Proof: L = {aibicid iei f igi | i ≥ 1} /∈ III-2-PC, but L ∈ III-3-PC.

Corollary 4

There is an infinite hierarchy of
⋃n

i=0 III-i-PC languages.

Proof:
⋃n

i=0 III-i-PC ⊂
⋃n+1

i=0 III-i-PC, for n ≥ 0, is proper.

Corollary 5

III-n-PC is not closed under concatenation.

Proof: L = {aiaiaiaiaiai | i ≥ 1} ∈ III-2-PC, but LL /∈ III-2-PC.

On n-Path-Controlled Grammars 60 / 75

Examples

Example 1

Consider III
2 PC grammar (G,G′), where

G = ({S,X ,Y ,U,V ,a,b,c,d,e, f}, {a,b,c,d,e, f},P, S)
P = {S → aSf , S → aXYf , X → bXc, Y → dYe,

X → U, U → bc, Y → V , V → de}
L(G′) = {SnXnUb ∪ SnY nVd| n ≥ 1}

L(G,G′) = {aibicid iei f i | i ≥ 1}

Example of the derivation:
S ⇒ aSf ⇒ aaSff ⇒ aaaSfff ⇒ aaaaXYffff ⇒ aaaabXcYffff ⇒
aaaabbXccYffff ⇒ aaaabbbXcccYfffff ⇒
aaaabbbUcccYffff ⇒ aaaabbbbccccYffff ⇒
aaaabbbbccccdYeffff ⇒ aaaabbbbccccddYeeffff ⇒
aaaabbbbccccdddYeeeffff ⇒ aaaabbbbccccdddVeeeffff ⇒
aaaabbbbccccddddeeeeffff = a4b4c4d4e4f 4

On n-Path-Controlled Grammars 61 / 75

Examples

Example 1

Consider III
2 PC grammar (G,G′), where

G = ({S,X ,Y ,U,V ,a,b,c,d,e, f}, {a,b,c,d,e, f},P, S)
P = {S → aSf , S → aXYf , X → bXc, Y → dYe,

X → U, U → bc, Y → V , V → de}
L(G′) = {SnXnUb ∪ SnY nVd| n ≥ 1}

L(G,G′) = {aibicid iei f i | i ≥ 1}

Example of the derivation:
S ⇒ aSf ⇒ aaSff ⇒ aaaSfff ⇒ aaaaXYffff ⇒ aaaabXcYffff ⇒
aaaabbXccYffff ⇒ aaaabbbXcccYfffff ⇒
aaaabbbUcccYffff ⇒ aaaabbbbccccYffff ⇒
aaaabbbbccccdYeffff ⇒ aaaabbbbccccddYeeffff ⇒
aaaabbbbccccdddYeeeffff ⇒ aaaabbbbccccdddVeeeffff ⇒
aaaabbbbccccddddeeeeffff = a4b4c4d4e4f 4

On n-Path-Controlled Grammars 62 / 75

Examples

Example 2

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 . . .a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 63 / 75

Examples

Example 2

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 . . .a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 64 / 75

Examples

Example 2

Let us have III
n PC grammar (G,G′), n ≥ 0, where

G1 = ({S} ∪ {Ai ,Bi | i = 1, . . . ,n} ∪ {ai | i = 1, . . . , 2n + 2},
{ai | i = 1, . . . , 2n + 2},P, S)

P ={S → a1Sa2n+2, S → a1A1A2 . . .Ana2n+2}∪
{Ai+1 → a2i+2Ai+1a2i+3, Ai+1 → Bi+1,

Bi+1 → a2i+2a2i+3| i = 0, . . . ,n− 1}
L(G′) =

⋃n
i=1{SkAk

i Bia2i | k ≥ 1}

Consider a derivation in (G,G′):

S⇒k ak
1Sak

2n+2
⇒ ak

1a1A1 . . .Ana2n+2ak
2n+2

⇒n×k ak+1
1 ak

2B1ak
3 . . .a

k
2nBnak

2n+1ak+1
2n+2

⇒n ak+1
1 ak+1

2 ak+1
3 . . .ak+1

2n ak+1
2n+1ak+1

2n+2

L(G1,G′) = {ak
1 . . .a

k
2n+2| k ≥ 1}.

On n-Path-Controlled Grammars 65 / 75

Examples

Example 3

Let m ≥ 0 with m mod 2 = 0. Let us have III
n PC grammar (G,G′),

n ≥ 0, where

G = ({Aj ,Bj ,aj | j = 1, . . . ,m} ∪ {C}, {aj | j = 1, . . . ,m},P,A1)
P ={A1 → a1A1, A1 → a1A2, B1 → B1a1, B1 → C, C → a1}∪
{Am → Amam, Am → {Bm}n}∪
{Ai → Aiai , Ai → Ai+1| i = 2, . . . ,m− 1 with i mod 2 = 0}∪
{Ai → aiAi , Ai → Ai+1| i = 3, . . . ,m− 1 with i mod 2 = 1}∪
{Bi → aiBi , Bi → Bi−1| i = 2, . . . ,m with i mod 2 = 0}∪
{Bi → Biai , Bi → Bi−1| i = 3, . . . ,m with i mod 2 = 1}

L(G′) = {Ak1
1 Ak2

2 . . .Akm
m Bkm

m Bkm−1
m−1 . . .B

k2
2 Bk1

1 Ca1| ki ≥ 0, i = 1, . . . ,m}

On n-Path-Controlled Grammars 66 / 75

Examples
Consider a derivation in (G,G′):

A1⇒k1ak1
1 A1 ⇒ ak1+1

1 A2 ⇒k2 ak1+1
1 A2ak2

2 ⇒ ak1+1
1 A3ak2

2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1Amakm
m . . .ak6

6 ak4
4 ak2

2

⇒ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{Bm}nakm
m . . .ak6

6 ak4
4 ak2

2

⇒n×km ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km−1 ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1akm−1

m−1}
nakm

m . . .ak6
6 ak4

4 ak2
2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 B1ak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 Cak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 ak+1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

L(G,G′) = {(ak1+1
1 ak3

3 . . .akm−1
m−1am

makm−2

m−2akm−4
m−4 . . .a

k2
2)n+1

| ki ≥ 0, i = 1, . . . ,m}

On n-Path-Controlled Grammars 67 / 75

Examples
Consider a derivation in (G,G′):

A1⇒k1ak1
1 A1 ⇒ ak1+1

1 A2 ⇒k2 ak1+1
1 A2ak2

2 ⇒ ak1+1
1 A3ak2

2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1Amakm
m . . .ak6

6 ak4
4 ak2

2

⇒ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{Bm}nakm
m . . .ak6

6 ak4
4 ak2

2

⇒n×km ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1}nakm

m . . .ak6
6 ak4

4 ak2
2

⇒n×km−1 ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m Bm−1akm−1

m−1}
nakm

m . . .ak6
6 ak4

4 ak2
2

⇒∗ ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 B1ak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 Cak1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

⇒n ak1+1
1 ak3

3 ak5
5 . . .akm−1

m−1{a
km
m akm−2

m−2 . . .a
k2
2 ak+1

1 . . .akm−3

m−3akm−1
m−1}

n

akm
m . . .ak6

6 ak4
4 ak2

2

L(G,G′) = {(ak1+1
1 ak3

3 . . .akm−1
m−1am

makm−2

m−2akm−4
m−4 . . .a

k2
2)n+1

| ki ≥ 0, i = 1, . . . ,m}
On n-Path-Controlled Grammars 68 / 75

Examples

Example 4

Consider m = 4 and III
3 PC grammar (G,G′), where

G = ({A,B,C,D, E, F ,G,H, I,a,b,c,d}, {a,b,c,d},P,A)
P = {A→ aA, A→ aB, B → Bb, B → C,

C → cC, C → D, D → Dd, D → HHH,
E → Ea, E → I, F → bF , F → E,
G→ Gc, G→ F , H → dH, H → G, I → a}

L(G′) = {ArBsCtDuHuGtF sE r Ia| r , s, t ,u ≥ 0}

L(G,G′) = {avcwdxbyavcwdxbyavcwdxbyavcwdxby |
v > 0,w , x , y ≥ 0}

On n-Path-Controlled Grammars 69 / 75

Examples

Example of the derivation:
A⇒ aA⇒ aaB ⇒ aaBb⇒ aaCb⇒ aacCb⇒ aacDb⇒
aacDdb⇒ aacHHHdb⇒ aacdHHHdb⇒ aacdGHHdb⇒
aacdGcHHdb⇒ aacdFcHHdb⇒ aacdbFcHHdb⇒
aacdbEcHHdb⇒ aacdbEacHHdb⇒ aacdbIacHHdb⇒
aacdbaacHHdb⇒ aacdbaacdHHdb⇒ aacdbaacdGHdb⇒
aacdbaacdGcHdb⇒ aacdbaacdFcHdb⇒
aacdbaacdbFcHdb⇒ aacdbaacdbEcHdb⇒
aacdbaacdbEacHdb⇒ aacdbaacdbIacHdb⇒
aacdbaacdbaacHdb⇒ aacdbaacdbaacdHdb⇒
aacdbaacdbaacdGdb⇒ aacdbaacdbaacdGcdb⇒
aacdbaacdbaacdFcdb⇒ aacdbaacdbaacdbFcdb⇒
aacdbaacdbaacdbEcdb⇒ aacdbaacdbaacdbEacdb⇒
aacdbaacdbaacdbIacdb⇒ aacdbaacdbaacdbaacdb

On n-Path-Controlled Grammars 70 / 75

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 71 / 75

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 72 / 75

Future research ideas

Investigation of III-n-PC
III
n PC grammars are potentially usable.
• Generative power?
• Closure properties?
• Decidability properties?
• Parsing properties?
• Descriptional complexity?

Investigation of I-n-PC and V-n-PC

• n
I PC grammars are equal to concatenation of n
independent PC grammars?

• n
V PC grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC
n
II PC grammars and n

IV PC grammars are unusable?

On n-Path-Controlled Grammars 73 / 75

References

K. Čulik and H. A. Maurer.
Tree controlled grammars.
Computing, 19:129–139, 1977.

J. Dassow and B. Truthe.
Subregularly tree controlled grammars and languages.
In Automata and Fromal Languages - 12th International Conference AFL 2008,
Balatonfured, pages 158–169. Hungarian Academy of Sciences, 2008.

J. Koutný.
Regular paths in derivation trees of context-free grammars.
In Proceedings of EEICT 2009 Volume 4, pages 410–414. FIT BUT, 2009.

J. Koutný.
On n-path-controlled grammars.
In Proceedings of EEICT 2010 Volume 5, pages 176–180. FIT BUT, 2010.

S. Marcus, C. Mart́ın-Vide, V. Mitrana, and Gh. Păun.
A new-old class of linguistically motivated regulated grammars.
In CLIN, pages 111–125, 2000.

C. Mart́ın-Vide and V. Mitrana.
Further properties of path-controlled grammars.
In Formal Grammar / Mathematics of Language 2005, pages 219–230. Edimburgh,
2005.

Gh. Păun.
On the generative capacity of tree controlled grammars.
Computing, 21(3):213–220, 1979.

On n-Path-Controlled Grammars 74 / 75

Thank you for your attention!

	Introduction
	Definitions
	Results
	Examples
	Conclusion
	References

