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| Infroduction |

e Regulated formal model.

e« Model based on the restrictions on the derivation frees.

o Actual frend in today’s FLT (see (1), (2). (3). (4). (5). (6). (7).
Simple extension of context-free grammars.

One of the ways to increase the generative power of
context-free grammar.

Potentially applicable model.
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e Regulated formal model.

e« Model based on the restrictions on the derivation frees.

o Actual frend in today’s FLT (see (1), (2). (3). (4). (5). (6). (7).
o Simple extension of context-free gramnmars.

One of the ways to increase the generative power of
context-free grammar.

Potentially applicable model.

Generation of not context-free languages of the form
o a"b"c", a"b"c"d", a"b"c"d"e", ...
o a¥elee, efledeNegle™, efleeelarBlea™el, . . .
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| Preliminaries |

Linear grammar

G=(V,T,P,S). where
e Vs an alphabet,
e T C Vis aterminal alphabet,
o Pis a finite set of production rules of the form A — x, where
AceV-T,xeT*NT*, N=V —T,
e Se V —Tisthe starting symbol.
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| Preliminaries |

Linear grammar

G=(V,T,P,S). where
e Vs an alphabet,
e T C Vis aterminal alphabet,
o Pis a finite set of production rules of the form A — x, where
AceV-T,xeT*NT*, N=V —T,
e Se V —Tisthe starting symbol.

Context-free grammar

G=(V,T,P,S), where
e Vis an alphabet,
e T C Vis aterminal alphabet,
e Pis afinite set of production rules of the form A — x, where
AeV -T,xeV*,
e Se V —Tisthe starting symbol.

On n-Path-Controlled Grammars | 6/75



| Preliminaries |

Set of the derivation trees

o let G=(V,T,P,S) be a grammar.

o Let cA(x) denote a set of the derivation frees with fronfier x
with respect to the grammar G starting from S.
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| Preliminaries |

Set of the derivation trees

o let G=(V,T,P,S) be a grammar.

o Let cA(x) denote a set of the derivation frees with fronfier x
with respect to the grammar G starting from S.

e A path sof f ec/A(x) is sequence a;...an, N> 1, of nodes
of t with:
e Oy is the root of 1,
e @ is labeled by starting symbol of G,
e Qpisaleaf of t,
e Qnis labeled by terminal symbol of G,
e foreachi=1,...,n—1,thereis an edge from g; to g;;; in 1.

o Let path(s) denote the word obtained by concatenating
all symbols of the path s (in order from the top).
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| Path-controlled grammars i

o PC grammairs, for short.
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o PC grammairs, for short.

e Based on a new type of the restriction in a derivation (see
Intfroduction in (5)).

Informal idea of PC grammars

A derivation free in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.
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o PC grammairs, for short.

e Based on a new type of the restriction in a derivation (see
Intfroduction in (5)).

Informal idea of PC grammars

A derivation free in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

e Two grammars G and G':

e G generates alanguage over its alphabet of terminals T.
o G’ generates a language over the total alphabet of G.
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| Path-controlled grammars |

o PC grammairs, for short.

e Based on a new type of the restriction in a derivation (see
Intfroduction in (5)).

Informal idea of PC grammars

A derivation free in a context-free grammar is accepted only if
it contains a path described by a string generated by another
context-free grammar.

e Two grammars G and G':

e G generates alanguage over its alphabet of terminals T.
o G’ generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists a
path in t which is described by a string from L(G').
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| n-path-controlled grammars i

e ,PC grammars, for short.
« A generadlization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n > 0 paths in f that are described by the strings from linear
language L(&).
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| n-path-controlled grammars i

e ,PC grammars, for short.
« A generadlization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a
derivation tree t of w with respect to G such that there exists
n > 0 paths in f that are described by the strings from linear
language L(&).
Several types of ,PC grammairs in relation to

o Path-conftrolled grammars,

¢ The pumping lemma for linear languages.
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| n-path-controlled grammars |

Definition of ,PC grammar

An ,PC grammar is a pair (G, G'), where
e G=(V,T,P,S)is acontext-free gramnmair,
o G'=(V',V, P, S)isalinear grammar.
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Definition of ,PC grammar

An ,PC grammar is a pair (G, G'), where
e G=(V,T,P,S)is acontext-free gramnmair,
o G'=(V',V, P, S)isalinear grammar.

Why G’ is a linear grammar?

e Regular paths do not increase the generative power (see
(3) and (5), Prop. 2).

e Linear paths can increase the generative power (see (5)).
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| n-path-controlled grammars | m

Definition of ,PC grammar

An ,PC grammar is a pair (G, G'), where
e G=(V,T,P,S)is acontext-free gramnmair,
o G =(V',V,P, 5)is alinear grammar.

Why G’ is a linear grammar?

e Regular paths do not increase the generative power (see
(3) and (5), Prop. 2).

e Linear paths can increase the generative power (see (5)).

Generated language

L(G,G) ={w e L(G)| there is a set C of n different paths in
t ecA(w) such that for all p € C it holds path(p) € L(G') and all
p € C are divided in the common node of 1}.
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| Obvious facts about the paths i

Clearly

e Each two paths of a derivation free contain at least one
common node.
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| Obvious facts about the paths i

Clearly

e Each two paths of a derivation free contain at least one
common node.

e Fora ,PC grammar (G, &), there is some m¢ € N that
denotes a number of common nodes for all p € C.
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| Obvious facts about the paths i

Clearly

e Each two paths of a derivation free contain at least one
common node.

e Fora ,PC grammar (G, &), there is some m¢ € N that
denotes a number of common nodes for all p € C.

e For each two py, p, € C it holds that path(py) = rDs;,
path(py) = rDsy, where r e N*, D e N, 81,5, € N*T and
[rD] = mc.
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| Obvious facts about the paths i

Clearly

e Each two paths of a derivation free contain at least one
common node.

e Fora ,PC grammar (G, &), there is some m¢ € N that
denotes a number of common nodes for all p € C.

e For each two py, p, € C it holds that path(p;) = rDs;,
path(py) = rDsy, where r e N*, D e N, 81,5, € N*T and
D] = me.

o All the paths s € C are described by the strings of L(&)
which is linear.
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| Obvious facts about the paths i

Clearly

e Each two paths of a derivation free contain at least one
common node.

e Fora ,PC grammar (G, &), there is some m¢ € N that
denotes a number of common nodes for all p € C.

e For each two py, p, € C it holds that path(py) = rDs;,
path(py) = rDsy, where r e N*, D e N, 81,5, € N*T and
D] = me.

o All the paths s € C are described by the strings of L(&)
which is linear.

Pumping lemma for linear languages

If Lis alinear language, then there are p, g € N such that each
string z € L with |z| > p can be written in the form z = uvwxy
with 0 < |vx| < |uvxy| < g, such that uv'wx'y € Lforallj > 1.
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| Types of n-path-controlled grammars i

o Five types of ,PC grammars depending on the value of m¢
in relation to the pumping lemma for L(G').
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| Types of n-path-controlled grammars i

o Five types of ,PC grammars depending on the value of m¢
in relation to the pumping lemma for L(G').

Types of ,PC grammars

« [ PCif C satisfies 0 < mc < |u].

o I'PCif C satisfies |u] < me < |uv|,

o "PC if C satisfies |uv| < me < |uvw|,

o MPCif C satisfies |uvw| < me < |uvwx|,

o YPC if C satisfies [uvwx| < mc < |uvwxy|,
where uvwxy is the shortest path from C.

On n-Path-Controlled Grammars | 28/75



| Types of n-path-controlled grammars i

o Five types of ,PC grammars depending on the value of m¢
in relation to the pumping lemma for L(G').

Types of ,PC grammars

« [ PCif C satisfies 0 < mc < |u].

o I'PC if C satisfies |u| < me < |uv|,

o "PC if C satisfies |uv| < me < |uvw|,

o MPCif C satisfies |uvw| < me < |uvwx|,

o YPC if C satisfies [uvwx| < mc < |uvwxy|,
where uvwxy is the shortest path from C.

Language families

The family of the languages generated by LIN, CF, PC, ,PC,
LPC,"PC,"pC,VPC, YPC grammars is denoted by LIN, CF, PC,
n-PC, I-n-PC, lI-n-PC, lll-n-PC, IV-n-PC, V-n-PC, respectivelly.
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| Types of n-path-controlled grammars | i

n=0 CF grammar
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| Types of n-path-controlled grammars | i

n=1 PC grammar
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| Types of n-path-controlled grammars | i

n=1 N PC grammar

> € LIN

L
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| Types of n-path-controlled grammars | i

n=1 | ) PCgrammar

>Fiv parts
(by PL for LIN)
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| Types of n-path-controlled grammars | i

n=1 q» PC grammar

II,IV can be
> iterated
(by PL for LIN)
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| Results |

PC =1-PC =1-1-PC = 1I-1-PC = llI-1-PC = IV-1-PC = V-1-PC.
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| Results |

Theorem 1

PC = 1-PC = I-1-PC = lI-1-PC = llI-1-PC = IV-1-PC = V-1-PC.
Proof: The equality clearly follows from the definitions of PC,
nPC,and ,PC, fori= 11l Il IV, V, grammars.

Informally: One path to control means no division of the
conftrolled paths.
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| Results |

Theorem 1
PC = 1-PC =I-1-PC = lI-1-PC = llI-1-PC = IV-1-PC = V-1-PC.

Proof: The equality clearly follows from the definitions of PC,
nPC.,and LPC, fori = I I, 1,1V, V, grammars.

Informally: One path to control means no division of the
conftrolled paths.

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UWUVIUpVy. .. Uopy2Vonialanys, SUCh that O < [Viva... Vapio| < g
and iViUaV, . .. Uapya Vo, olonys € LToralli> 1.
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| Results |

Theorem 1

PC = 1-PC = I-1-PC = lI-1-PC = llI-1-PC = IV-1-PC = V-1-PC.
Proof: The equality clearly follows from the definitions of PC,
nPC,and ,PC, fori= 11l Il IV, V, grammars.

Informally: One path to control means no division of the
conftrolled paths.

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UWUVIUpVy. .. Uopy2Vonialanys, SUCh that O < [Viva... Vapio| < g
and iViUaV, . .. Uapya Vo, olonys € LToralli> 1.

Notice that for n = 0, the Theorem 2 holds for context-free
languages.
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| The idea of Theorem 1 |

n=3 '"PC grammar
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| The idea of Theorem 1 |

n=3 "IPC grammar

-

On n-Path-Controlled Grammars | 44/75




| The idea of Theorem 1 |
n=3 '"PC grammar

2n+2=8

On n-Path-Controlled Grammars | 45/75



| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UViUVy ... Uopi2Voniolonys, SUCh that O < [Viva ... Vopio| < Q
and Uy Vil Vs . . . Uni2Vy, olonys € Lforalli > 1.

Proof Idea:

e Let (G, &) be a "PC-grammar, where
o« G=(V,T,P,S),
o« G =(V,V,P.9).
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UViUVy ... Uopi2Voniolonys, SUCh that O < [Viva ... Vopio| < Q
and Uy Vil Vs . . . Uni2Vy, olonys € Lforalli > 1.

Proof Idea:

e Let (G, &) be a "PC-grammar, where
e G=(V,T,P,Y9),
o« G =(V,V,PS).
o Consider t €(g,c)/A(2). For each path(s) = SA; ... Aya of 1,
where s € C, consider
e the rules A; — X;Ai;1Yy; used when passing from A; to Ay on
this path,
o the rule Ax — xcayi used in the last step of the derivation in G
corresponding to the path s.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form

Z=UW ‘JQ Vo e U2n+2V2n+2U2n+3, such that 0 < |V] Vo... V2n+2| <q
and Uy VilaVy . . . Uni2 Vo, olenys € Lforalli > 1.

Proof Idea:

e Consider that any x;y;, i = 1,..., k, contains a nonterminal B
that do not belong on any path s € C. Clearly, there is
substring z’ of z derived from B.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form

Z=UW QQ Vo e U2,—H_2V2,7+2U2n+3, such that 0 < |V] Vo... V2n+2| <q
and Uy VilaVy . . . Uni2 Vo, olenys € Lforalli > 1.

Proof Idea:

e Consider that any x;y;, i = 1,..., k, contains a nonterminal B
that do not belong on any path s € C. Clearly, there is
substring z’ of z derived from B.

e Since G is context-free, it follows that if |Z'| > k;, for some
ki > 0, then there are two substrings z;, z; of Z’ that can be
pumped.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form

Z= UitV ... UoniaVonialania, SUCh that O < [Vivy... vonio| < g
and Uy VilaVy . . . Uni2 Vo, olenys € Lforalli > 1.

Proof Idea:

e Consider that any x;y;, i = 1,..., k, contains a nonterminal B
that do not belong on any path s € C. Clearly, there is
substring z’ of z derived from B.

e Since G is context-free, it follows that if |Z'| > k;, for some
ki > 0, then there are two substrings z;, z; of Z’ that can be
pumped.

» By the pumping lemma for context-free languages. 21, z,
are bounded in length.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UViUVy ... U2 Voniolons, SUCh that O < [Viva ... Vopio| < g
and Uy Vil Vs . . . Ugni2Vy, olonys € Lforalli> 1.

Proof Idea:

o If L(G) is infinite, the string patfh(s) € L(G') is potentially
arbitrarily long. Thus, if path(s) = UsVsXsysZs with
|usvsxsyszs| > ko, for some kp, > 0, then ugVsX;yszs satisfies
UsVixsylizs € L(G'), fori > 1.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UViUVy ... U2 Voniolons, SUCh that O < [Viva ... Vopio| < g
and Uy Vil Vs . . . Ugni2Vy, olonys € Lforalli> 1.

Proof Idea:

o If L(G) is infinite, the string patfh(s) € L(G') is potentially
arbitrarily long. Thus, if path(s) = UsVsXsysZs with
|usvsxsyszs| > ko, for some kp, > 0, then ugVsX;yszs satisfies
UsVixsylizs € L(G'), fori > 1.

e The derivations starting from the symbols of v and y can be
repeated in G.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=UViUVy ... U2 Voniolons, SUCh that O < [Viva ... Vopio| < g
and Uy Vil Vs . . . Ugni2Vy, olonys € Lforalli> 1.

Proof Idea:

o If L(G) is infinite, the string patfh(s) € L(G') is potentially
arbitrarily long. Thus, if path(s) = UsVsXsysZs with
|UsVsXsYsZs| > ko, fOor some ko > 0, then UsVsxsyszs satisfies
UsVixsylizs € L(G'), fori > 1.

e The derivations starting from the symbols of v and y can be
repeated in G.

« Since (G, &) is "PC grammar, it follows that:

¢ the derivations starting from the symbols of v in G are
common forall s € C,

¢ the derivations starfing from the symbols of y in G are
potentially unique for each s € C.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > O, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=WUV1lpV2 ... Uani2Vanialania, SUCh that O < [vivp ... voniof < g
and Uy ViU Vs . . . Uni2 Vo lenys € Lforalli > 1.

Proof Idea:

o Consider the derivations starting from v in G. This leads to
the pumping of two substrings vy, von o Of z—0ne in the
left-hand side, one in the right-hand side controlled by the
common part of all s € C.
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| Results |

Theorem 2

If L € lI-n-PC, for n = card(C) > O, then there are p, g € N such
that each z € L with |z| > p can be written in the form
Z=WUV1lpVy ... Uoni2Vaniolonis, SUCh that O < [vivo ... vonsof < g
and Uy ViU Vs . . . Uni2 Vo lenys € Lforalli > 1.

Proof Idea:

o Consider the derivations starting from v in G. This leads to
the pumping of two substrings vy, Von o Of Z—one in the
left-hand side, one in the right-hand side controlled by the
common part of all s € C.

o Consider the derivations starting from y in G. This leads to
the pumping of two substrings of z—one in the left-hand
side, one in the right-hand side corresponding to each
s e C. Foreach s,y € C, denote this two substrings v,;,»,
Voiza, i=0,1,...,n—1.Since (G, &) is "PC grammar, we
obtain 2n pumped substrings of z.
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| Results i

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form

Z=UW QQ Vo e U2n+2V2,:,+2U2n+3, such that 0 < |V] Vo... V2n+2| <q
and Uy ViU Vs . . . Ugni2Vy, olenys € Lforalli > 1.

Proof Idea:
¢ By the pumping lemma for context-free languages, the
substrings vy, Ve, ..., Von o are bounded in length.
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| Results i

Theorem 2

If L € lI-n-PC, for n = card(C) > 0, then there are p, g € N such
that each z € L with |z| > p can be written in the form

Z=UW QQ Vo e U2n+2V2,:,+2U2n+3, such that 0 < |V] Vo... V2n+2| <q
and Uy ViU Vs . . . Ugni2Vy, olenys € Lforalli > 1.

Proof Idea:
¢ By the pumping lemma for context-free languages, the
substrings vy, Ve, ..., Von o are bounded in length.

e Thus, the total length of the 2n + 2 pumped substrings of z is
bounded by a constant g.
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| Results i

Corollary 3

llI-n-PC cannot count to 2n + 3, but can count o 2n + 2.
Proof: L = {d'bic'd'e/figl| i > 1} ¢ lI-2-PC, but L € lI-3-PC.
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| Results i

Corollary 3

llI-n-PC cannot count to 2n + 3, but can count o 2n + 2.
Proof: L = {d'bic'd'e/figl| i > 1} ¢ lI-2-PC, but L € lI-3-PC.

Corollary 4
There is an infinite hierarchy of |J;_, Ill-i-PC languages.

Proof: |, I-i-PC c |y MI-i-PC, for n > 0, is proper.
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| Results i

Corollary 3

llI-n-PC cannot count to 2n + 3, but can count o 2n + 2.
Proof: L = {d'bic'd'e/figl| i > 1} ¢ lI-2-PC, but L € lI-3-PC.

Corollary 4

There is an infinite hierarchy of |J;_, Ill-i-PC languages.
Proof: |, I-i-PC c |y MI-i-PC, for n > 0, is proper.

Corollary 5

IlI-n-PC is not closed under concatenation.

Proof: L= {d'd'd'd'dd’|i> 1} € llI-2-PC, but LL ¢ 1lI-2-PC.
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Example 1

Consider PC grammar (G, G'), where

G={SX,Y,U,V,a,b,c,d, e, f},{a,b,c,d,ef},P,YS)
P={S— aSf, S— aX¥f, X— bXc, Y — dYe,

X — U, U — bc, Y =V, V — de}
L(G) ={S"X"Ubu S"Y"Vd|n> 1}

L(G,G) = {abicidielfl] i > 1}
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Example 1
Consider PC grammar (G, G'), where

G={SX,Y,U,V,a,b,c,d, e, f},{a,b,c,d,ef},P,YS)
P={S— aSf, S— aX¥f, X— bXc, Y — dYe,

X — U, U — bc, Y =V, V — de}
L(G) ={S"X"Ubu S"Y"Vd|n> 1}

L(G,G) = {dbicdielfli> 1}

Example of the derivation:

S = aSf = aaSff = aaaSfif = aaaaXYffff = aaaabXcYfff =
aaaabbXccYffff = aaaabbbXcccYffff =

aaaabbbUcccYffff = aaaabbbbccccYfff =
aaaabbbbccccdYeffff = aaaabbbbccccddYeeffff =
aaaabbbbccccdddYeeeffff = aaaabbbbccccdddVeeefff =
aaaabbbbccccddddeeeefff = a*b*cAd*e? 4
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Example 2

Let us have "PC grammar (G, &), n > 0, where

G = ({SYU{A,Bli=1,....mu{ali=1,...,2n+2},
{ali=1.....,2n+2}.P.9)
P I{S — SGQ,H_Q, S— a1AlA; ... An02n+2}U
{Aif1 = A1 Mg, Al — B,
Biy1 = G203 1=0,...,n—1}
L&) = UL {S“ABiay| k > 1}
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Example 2
Let us have "PC grammar (G, &), n > 0, where

G = ({SYU{A,Bli=1,....mu{ali=1,...,2n+2},
{ali=1.....,2n+2}.P.9)
P I{S — SGQ,H_Q, S— a1AlA; ... AnCIQrH_Q}U
{Aif1 = A1 Mg, Al — B,
Biy1 = G203 1=0,...,n—1}
L&) = UL {S“ABiay| k > 1}

Consider a derivation in (G, G'):

k ~k oAk
S= (131 S0 )
= O 1A ... An02n+202n+2
nxk ~k+1 ~kR. ~k Kk K K41
=" oy azBias ... a5,Bra5, . O

2n+2
n kT kT k] Kbl kH 1 kT
=0y G Ay Oy O 1O
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Example 2

Let us have "PC grammar (G, &), n > 0, where

G = ({SYU{A,Bli=1,....mu{ali=1,...,2n+2},
{ali=1.....,2n+2}.P.9)
P I{S — SGQ,H_Q, S— a1AlA; ... AnCIQrH_Q}U
{Aif1 = A1 Mg, Al — B,
Biy1 = G203 1=0,...,n—1}
L&) = UL {S“ABiay| k > 1}

Consider a derivation in (G, G'):

k ~k ek
5= (131 Sie/ )
= O 1A ... An02n+202n+2

nxck k41 kR K i K k]
DO e b i
n

=0y G Ay Oy O 1O

(G, &) = {ak...ak | k>1}.
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Example 3
Let m > 0 with mmod 2 = 0. Let us have ”PC grammar (G, &),
n> 0, where

G:({A})ijq|j: ],am}U{c}a{G/U: ]’am}»P’A])
PZ{A] — A, Al — aA, B—-Baoa, B—-C, C-— O]}U
{Am = Amam, Am — {Bm}"}U
(A= Aa, A —Anli=2,....m—1withimod2=0}U
{A,‘—)CI,’A,’, A,-—>A,-+1|i:3,...,m—1wi’rhimod2:1}u
{B,‘—)G,‘B,', B,-—>B,-,1|i:2,...,mwi’rhimod2:O}u
{B,‘—)B,'O,', B,-—>B,-_1|i:37...,mwi’rhimod2:1}

L(G) = {ANAL . AknglmBin B Cay| k> 0,i=1,...,m}
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Consider a derivation in (G, G'):
Ai=Ral A = of‘“Ag =k gt A, o’2<2 = of‘“Ag,o’z(?

o
=* o"‘“o o .. O Amalkn L g o a
k
=>ok‘+‘akﬁok5.. "B} aky ... o dial
o
:>”X’<m ak‘“o af...ari{af Bm}”a ...og"ofakQ
k
=" o"‘“a a®.. ]{aﬁ‘,qﬂqu}”am ...déajay
Kim— Ko —
:>”X’<m 1 o"‘“o ag ...omf{{oﬁBm_mmf]‘}”o"m. o"é a
Ki+1 m—1 Ko ~Km—2 ko ki Km n
=" q, o a _1{0,,;"0,”_2...02810] .. mgo }
al o a ay
n k1+1 km-] K Km—2 2 km 3 km 1 n
="q, a mf]{a,ﬁ’am_Q.. Cal...ar 30}

al . a ak ol
=0 a"‘“a“o:k5 .. a
afr...afealak

K ~Km—

1 2 Ky ~k+1 Km—3 ~Km—11n
oo a S ooy A A )
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Consider a derivation in (G, G'):
Ai=Ral A = ok‘“Ag =k gt A, o’2<2 = of‘“Ag,o’f

o
= o"‘“o o .. O Amalkn L g o ag?
k
:>ok‘+‘akﬁok5.. "B} aky ... o dial
o
:>”X’<m ok‘“o a®...am i {ak Bm}”a ...oré"’o:ﬁ?ak2
k
=" a’““a a®.. ]{aﬁ‘,q"Bm_1}”am ...déajay
Km— Ko
:>”X’<m ‘ o"‘“o ag ...omf]‘{o,ﬁfme_mmf]‘}”o"m. o"é a
ki+1 m—1 K Km—2 ko ki Km n
=* ditl gl a 71{0,,;"am_2...0281o] .. m3o }
ok o a ag
n k1+1 Km—1 K Km—2 2 km 3 km 1N
=0 gt g a ...amf]{a,,q’om_Q.. Cal...ar 30}

afr .. o a a
n ~Ki+1 k3 k5 Km—1 ¢ ~km ~Km—2 k+1 Km—3 ~Km—1yn
="a"" a, a ...am_]{omarm2 Lagaktl gty
akr .. a a o
K, K, K,
LG, &) ={(arTd ... amar2ams. .. ag)nt]
|k20,1—1,..., m}
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Example 4

Consider m = 4 and PC grammar (G, G'), where

G={AB,C,D,E F G H,I ab,c,d}{a,b,c,d}, P A)
P={A—a0A, A—aB, B—Bb, B— C,

C—cC, C—»D, D-—Dd, D— HHH,

E— Ea, E—|, F— bF, F—E,

G—~>Gc, GoF, H—dH, H—=G, |- a}
L(G) = {A'BC'DVHYG!FSE"Ial r, s, t,u > 0}

(G, &) ={a"cvd*brYa'cWad*b¥avcWad*b¥a'cW a*bY|
v>0,w,x,y >0}
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Example of the derivation:

A= 0dA = aaB = aaBb = aaCb = aacCb = aacDb =
aacDdb = aacHHHdb = aacdHHHdAb = aacdGHHdb =
aacdGcHHdb = aacdFcHHdAb = aacdbFcHHAb =
aacdbEcHHdb = aacdbEacHHdAb = aacdblacHHAb =
aacdbaacHHdb = aacdbaacdHHdb = aacdbaacdGHdAb =
aacdbaacdGcHdb = aacdbaacdfFcHdb =
aacdbaacdbfcHdb = aacdbaacdbEcHdb =
aacdbaacdbEacHdb = aacdbaacdblacHdb =
aacdbaacdbaacHdb = aacdbaacdbaacdHdb =
aacdbaacdbaacdGdb = aacdbaacdbaacdGcdb =
aacdbaacdbaacdFcdb = aacdbaacdbaacdbfcdb =
aacdbaacdbaacdbEcdb = aacdbaacdbaacdbEacdb =
aacdbaacdbaacdblacdb = aacdbaacdbaacdbaacdb
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| Future research ideas |

Investigation of lll-n-PC

"pC grarmmars are potentially usable.
o Generative power?

Closure properties?

Decidability properties?

Parsing properties?

Descriptional complexity?
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"pC grarmmars are potentially usable.
o Generative power?

Closure properties?

Decidability properties?

o Parsing properties?

o Descriptional complexity?

Investigation of 1-n-PC and V-n-PC

e 'PC grammars are equal to concatenation of n
independent PC grammars?

e PC grammars are equal to CF grammars?
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| Future research ideas |

Investigation of lll-n-PC

"pC grarmmars are potentially usable.
o Generative power?

Closure properties?

Decidability properties?

Parsing properties?

Descriptional complexity?

Investigation of 1-n-PC and V-n-PC

e 'PC grammars are equal to concatenation of n
independent PC grammars?

e PC grammars are equal to CF grammars?

Investigation of ll-n-PC and IV-n-PC

i7PC grammars and jj, PC grammars are unusable?

On n-Path-Controlled Grammars | 73/75



| References i

@ K. Culik and H. A. Maurer.
Tree controlled grammars.
Computing, 19:129-139, 1977.

@ J. Dassow and B. Truthe.

Subregularly tree controlled grammars and languages.
In Automata and Fromal Languages - 12th International Conference AFL 2008,
Balatonfured, pages 158-169. Hungarian Academy of Sciences, 2008.

J. Koutny.

Regular paths in derivation trees of context-free grammars.
In Proceedings of EEICT 2009 Volume 4, pages 410-414. FIT BUT, 2009.

J. Koutny.

On n-path-controlled grammars.

In Proceedings of EEICT 2010 Vlolume 5, pages 176-180. FIT BUT, 2010.
S. Marcus, C. Martin-Vide, V. Mitrana, and Gh. P&un.

A new-old class of linguistically motivated regulated grammars.

In CLIN, pages 111-125, 2000.

C. Martin-Vide and V. Mitrana.

Further properties of path-controlled grammars.
In Formal Grammar / Mathematics of Language 2005, pages 219-230. Edimburgh,
2005.

B ch paun.

On the generative capacity of tree controlled grammars.
Computing, 21(3):213-220, 1979.

B B

On n-Path-Controlled Grammars | 74/75



Thank you for your attention!
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