On n-Path-Controlled Grammars

Martin Čermák, Jirí Koutný and Alexander Meduna

Deparment of Information Systems Faculty of Informatin Technology
Brno University of Technology, Faculty of Information Technology Božetěchova 2, Brno 612 00, Czech Republic

- Introduction
- Definitions
- Results
- Examples
- Conclusion
- References

Acknowledgement

This work was partially supported by the FRVŠ MŠMT grant FR2581/2010/G1, the BUT FIT grant FIT-10-S-2, and the research plan MSMOO21630528.

What's going on

- Regulated formal model.
- Model based on the restrictions on the derivation trees.
- Actual trend in today's FLT (see (1), (2), (3), (4), (5), (6), (7)).
- Simple extension of context-free grammars.
- One of the ways to increase the generative power of context-free grammar.
- Potentially applicable model.

What's going on

- Regulated formal model.
- Model based on the restrictions on the derivation trees.
- Actual trend in today's FLT (see (1), (2), (3), (4), (5), (6), (7)).
- Simple extension of context-free grammars.
- One of the ways to increase the generative power of context-free grammar.
- Potentially applicable model.

Motivation

Generation of not context-free languages of the form

- $a^{n} b^{n} c^{n}, a^{n} b^{n} c^{n} d^{n}, a^{n} b^{n} c^{n} d^{n} e^{n}, \ldots$
- $a^{k} b^{\prime} a^{k} b^{\prime}, a^{k} b^{\prime} c^{m} a^{k} b^{\prime} c^{m}, a^{k} b^{\prime} c^{m} d^{n} a^{k} b^{\prime} c^{m} d^{n}, \ldots$

Linear grammar
$G=(V, T, P, S)$, where

- V is an alphabet,
- $T \subseteq V$ is a terminal alphabet,
- P is a finite set of production rules of the form $A \rightarrow x$, where $A \in V-T, x \in T^{*} N T^{*}, N=V-T$,
- $S \in V-T$ is the starting symbol.

Linear grammar

$G=(V, T, P, S)$, where

- V is an alphabet,
- $T \subseteq V$ is a terminal alphabet,
- P is a finite set of production rules of the form $A \rightarrow x$, where $A \in V-T, x \in T^{*} N T^{*}, N=V-T$,
- $S \in V-T$ is the starting symbol.

Context-free grammar

$G=(V, T, P, S)$, where

- V is an alphabet,
- $T \subseteq V$ is a terminal alphabet,
- P is a finite set of production rules of the form $A \rightarrow x$, where $A \in V-T, x \in V^{*}$,
- $S \in V-T$ is the starting symbol.

Set of the derivation trees

- Let $G=(V, T, P, S)$ be a grammar.
- Let ${ }_{G} \triangle(x)$ denote a set of the derivation trees with frontier x with respect to the grammar G starting from S.

Set of the derivation trees

- Let $G=(V, T, P, S)$ be a grammar.
- Let ${ }_{G} \triangle(x)$ denote a set of the derivation trees with frontier x with respect to the grammar G starting from S.

A path

- A path s of $t \epsilon_{G} \triangle(x)$ is sequence $a_{1} \ldots a_{n}, n \geq 1$, of nodes of t with:
- a_{1} is the root of t,
- a_{1} is labeled by starting symbol of G,
- a_{n} is a leaf of t,
- a_{n} is labeled by terminal symbol of G,
- for each $i=1, \ldots, n-1$, there is an edge from a_{i} to a_{i+1} in t.
- Let path(s) denote the word obtained by concatenating all symbols of the path s (in order from the top).
- PC grammars, for short.
- PC grammars, for short.
- Based on a new type of the restriction in a derivation (see Introduction in (5)).
- PC grammars, for short.
- Based on a new type of the restriction in a derivation (see Introduction in (5)).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if it contains a path described by a string generated by another context-free grammar.

- PC grammars, for short.
- Based on a new type of the restriction in a derivation (see Introduction in (5)).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if it contains a path described by a string generated by another context-free grammar.

- Two grammars G and G^{\prime} :
- G generates a language over its alphabet of terminals T.
- G^{\prime} generates a language over the total alphabet of G.
- PC grammars, for short.
- Based on a new type of the restriction in a derivation (see Introduction in (5)).

Informal idea of PC grammars

A derivation tree in a context-free grammar is accepted only if it contains a path described by a string generated by another context-free grammar.

- Two grammars G and G^{\prime} :
- G generates a language over its alphabet of terminals T.
- G^{\prime} generates a language over the total alphabet of G.

More formal idea of PC grammars

A string w generated by G is accepted only if there is a derivation tree t of w with respect to G such that there exists a path in t which is described by a string from $L\left(G^{\prime}\right)$.

- ${ }_{n} P C$ grammars, for short.
- ${ }_{n} P C$ grammars, for short.
- A generalization of PC grammars.
- ${ }_{n} P C$ grammars, for short.
- A generalization of PC grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a derivation tree t of w with respect to G such that there exists $n \geq 0$ paths in t that are described by the strings from linear language $L\left(G^{\prime}\right)$.

- ${ }_{n} P C$ grammars, for short.
- A generalization of $P C$ grammars.

Idea of n-path-controlled grammars

The string w generated by G is accepted only if there is a derivation tree t of w with respect to G such that there exists $n \geq 0$ paths in t that are described by the strings from linear language $L\left(G^{\prime}\right)$.

Several types of ${ }_{n} P C$ grammars in relation to

- Path-controlled grammars,
- The pumping lemma for linear languages.

Definition of ${ }_{n} P C$ grammar

An ${ }_{n} P C$ grammar is a pair $\left(G, G^{\prime}\right)$, where

- $G=(V, T, P, S)$ is a context-free grammar,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$ is a linear grammar.

Definition of ${ }_{n} P C$ grammar

An ${ }_{n} P C$ grammar is a pair $\left(G, G^{\prime}\right)$, where

- $G=(V, T, P, S)$ is a context-free grammar,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$ is a linear grammar.

Why G^{\prime} is a linear grammar?

Definition of ${ }_{n} P C$ grammar

An ${ }_{n} P C$ grammar is a pair $\left(G, G^{\prime}\right)$, where

- $G=(V, T, P, S)$ is a context-free grammar,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$ is a linear grammar.

Why G^{\prime} is a linear grammar?

- Regular paths do not increase the generative power (see (3) and (5), Prop. 2).
- Linear paths can increase the generative power (see (5)).

Definition of ${ }_{n} P C$ grammar

An ${ }_{n} P C$ grammar is a pair $\left(G, G^{\prime}\right)$, where

- $G=(V, T, P, S)$ is a context-free grammar,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$ is a linear grammar.

Why G^{\prime} is a linear grammar?

- Regular paths do not increase the generative power (see (3) and (5), Prop. 2).
- Linear paths can increase the generative power (see (5)).

Generated language

$L\left(G, G^{\prime}\right)=\{w \in L(G) \mid$ there is a set C of n different paths in $t \in_{G} \triangle(w)$ such that for all $p \in C$ it holds path $(p) \in L\left(G^{\prime}\right)$ and all $p \in C$ are divided in the common node of $t\}$.

Clearly

- Each two paths of a derivation tree contain at least one common node.

Clearly

- Each two paths of a derivation tree contain at least one common node.
- For a ${ }_{n} P C$ grammar $\left(G, G^{\prime}\right)$, there is some $m_{C} \in \mathbb{N}$ that denotes a number of common nodes for all $p \in C$.

Clearly

- Each two paths of a derivation tree contain at least one common node.
- For a ${ }_{n} P C$ grammar $\left(G, G^{\prime}\right)$, there is some $m_{C} \in \mathbb{N}$ that denotes a number of common nodes for all $p \in C$.
- For each two $p_{1}, p_{2} \in C$ it holds that path $\left(p_{1}\right)=r D s_{1}$, $\operatorname{path}\left(p_{2}\right)=r D s_{2}$, where $r \in N^{*}, D \in N, s_{1}, s_{2} \in N^{*} T$ and $|r D|=m_{C}$.

Clearly

- Each two paths of a derivation tree contain at least one common node.
- For a ${ }_{n} P C$ grammar $\left(G, G^{\prime}\right)$, there is some $m_{C} \in \mathbb{N}$ that denotes a number of common nodes for all $p \in C$.
- For each two $p_{1}, p_{2} \in C$ it holds that path $\left(p_{1}\right)=r D s_{1}$, $\operatorname{path}\left(p_{2}\right)=r D s_{2}$, where $r \in N^{*}, D \in N, s_{1}, s_{2} \in N^{*} T$ and $|r D|=m_{C}$.
- All the paths $s \in C$ are described by the strings of $L\left(G^{\prime}\right)$ which is linear.

Clearly

- Each two paths of a derivation tree contain at least one common node.
- For a ${ }_{n} P C$ grammar $\left(G, G^{\prime}\right)$, there is some $m_{C} \in \mathbb{N}$ that denotes a number of common nodes for all $p \in C$.
- For each two $p_{1}, p_{2} \in C$ it holds that path $\left(p_{1}\right)=r D s_{1}$, $\operatorname{path}\left(p_{2}\right)=r D s_{2}$, where $r \in N^{*}, D \in N, s_{1}, s_{2} \in N^{*} T$ and $|r D|=m_{C}$.
- All the paths $s \in C$ are described by the strings of $L\left(G^{\prime}\right)$ which is linear.

Pumping lemma for linear languages

If L is a linear language, then there are $p, q \in \mathbb{N}$ such that each string $z \in L$ with $|z| \geq p$ can be written in the form $z=u v w x y$ with $0<|v x| \leq|u v x y| \leq q$, such that $u v^{i} w x^{i} y \in L$ for all $i \geq 1$.

- Five types of ${ }_{n} P C$ grammars depending on the value of m_{C} in relation to the pumping lemma for $L\left(G^{\prime}\right)$.
- Five types of ${ }_{n} P C$ grammars depending on the value of m_{C} in relation to the pumping lemma for $L\left(G^{\prime}\right)$.

Types of ${ }_{n} P C$ grammars

- ${ }_{n} P C$ if C satisfies $0 \leq m_{C} \leq|u|$,
- ${ }_{n}^{11} P C$ if C satisfies $|u|<m_{C} \leq|u v|$,
- ${ }_{n}^{1 I I} P C$ if C satisfies $|u v|<m_{C} \leq|u v w|$,
- ${ }_{n}^{V} P C$ if C satisfies $|u v w|<m_{C} \leq|u v w x|$,
- ${ }_{n}^{V} P C$ if C satisfies $|u v w x|<m_{C} \leq|u v w x y|$,
where uvwxy is the shortest path from C.
- Five types of ${ }_{n} P C$ grammars depending on the value of m_{C} in relation to the pumping lemma for $L\left(G^{\prime}\right)$.

Types of ${ }_{n} P C$ grammars

- ${ }_{n} P C$ if C satisfies $0 \leq m_{C} \leq|u|$,
- ${ }_{n}^{11} P C$ if C satisfies $|u|<m_{C} \leq|u v|$,
- ${ }_{n}^{I I I} P C$ if C satisfies $|u v|<m_{C} \leq|u v w|$.
- ${ }_{n}^{V} P C$ if C satisfies $|u v w|<m_{C} \leq|u v w x|$,
- ${ }_{n}^{V} P C$ if C satisfies $|u v w x|<m_{C} \leq|u v w x y|$,
where $u v w x y$ is the shortest path from C.

Language families

The family of the languages generated by $L I N, C F, P C,{ }_{n} P C$, ${ }_{n}{ }_{n} P C,{ }_{n}^{I I} P C,{ }_{n}^{I I I} P C,{ }_{n}^{I V} P C,{ }_{n}^{V} P C$ grammars is denoted by LIN, CF, PC, n-PC, I-n-PC, II-n-PC, III-n-PC, IV-n-PC, V-n-PC, respectivelly.

| Types of n-path-controlled grammars

CF grammar

PC grammar

| Types of n-path-controlled grammars

PC grammar

$\mathrm{n}=1$
$\mathrm{n}=1$

Theorem 1
$\mathrm{PC}=\mathrm{I}-\mathrm{PC}=\mathrm{I}-1-\mathrm{PC}=\mathrm{II}-1-\mathrm{PC}=\mathrm{III}-1-\mathrm{PC}=\mathrm{IV}-1-\mathrm{PC}=\mathrm{V}-1-\mathrm{PC}$.

Theorem 1

$\mathbf{P C}=\mathbf{1 - P C}=\mathbf{I}-1-\mathbf{P C}=\mathbf{I I}-1-\mathrm{PC}=\mathrm{III}-1-\mathrm{PC}=\mathrm{IV}-1-\mathrm{PC}=\mathrm{V}-1-\mathrm{PC}$.
Proof: The equality clearly follows from the definitions of $P C$, ${ }_{n} P C$, and ${ }_{n}^{i} P C$, for $i=I, I I, I I I, I V, V$, grammars.
Informally: One path to control means no division of the controlled paths.

Theorem 1

$\mathbf{P C}=\mathbf{1 - P C}=\mathbf{I}-1-\mathbf{P C}=\mathbf{I I}-1-\mathrm{PC}=\mathrm{III}-1-\mathrm{PC}=\mathrm{IV}-1-\mathrm{PC}=\mathrm{V}-1-\mathrm{PC}$.
Proof: The equality clearly follows from the definitions of $P C$, ${ }_{n} P C$, and ${ }_{n}^{i} P C$, for $i=I, I I, I I I, I V, V$, grammars. Informally: One path to control means no division of the controlled paths.

Theorem 2

If $L \in \mathrm{III}-\mathrm{n}-\mathrm{PC}$, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Theorem 1

$\mathbf{P C}=1-\mathrm{PC}=\mathrm{I}-1-\mathrm{PC}=\mathrm{II}-1-\mathrm{PC}=\mathrm{III}-1-\mathrm{PC}=\mathrm{IV}-1-\mathrm{PC}=\mathrm{V}-1-\mathrm{PC}$.
Proof: The equality clearly follows from the definitions of $P C$, ${ }_{n} P C$, and ${ }_{n}^{i} P C$, for $i=I, I I, I I I, I V, V$, grammars. Informally: One path to control means no division of the controlled paths.

Theorem 2

If $L \in \mathrm{III}-\mathrm{n}-\mathrm{PC}$, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Notice that for $n=0$, the Theorem 2 holds for context-free languages.
$\mathrm{n}=3$
${ }_{3}^{11 I P C}$ grammar

${ }_{3}^{1 I I P C}$ grammar

$n=3$
$\mathrm{n}=3$
${ }_{3}^{1 I I P C}$ grammar
${ }_{3}^{1 I I P C}$ grammar
${ }_{3}^{11 I P C}$ grammar
${ }_{3}^{11 I P C}$ grammar

$2 n+2=8$

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Let (G, G^{\prime}) be a ${ }_{n}^{\text {III }} P C$-grammar, where
- $G=(V, T, P, S)$,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Let $\left(G, G^{\prime}\right)$ be a ${ }_{n}^{\text {III }} P C$-grammar, where
- $G=(V, T, P, S)$,
- $G^{\prime}=\left(V^{\prime}, V, P^{\prime}, S^{\prime}\right)$.
- Consider $t \in_{\left(G, G^{\prime}\right)} \triangle(z)$. For each path $(s)=S A_{1} \ldots A_{k} a$ of t, where $s \in C$, consider
- the rules $A_{i} \rightarrow x_{i} A_{i+1} y_{i}$ used when passing from A_{i} to A_{i+1} on this path,
- the rule $A_{k} \rightarrow x_{k} a y_{k}$ used in the last step of the derivation in G corresponding to the path s.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form $z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Consider that any $x_{i} y_{i}, i=1, \ldots, k$, contains a nonterminal B that do not belong on any path $s \in C$. Clearly, there is substring z^{\prime} of z derived from B.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form $z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Consider that any $x_{i} y_{i}, i=1, \ldots, k$, contains a nonterminal B that do not belong on any path $s \in C$. Clearly, there is substring z^{\prime} of z derived from B.
- Since G is context-free, it follows that if $\left|z^{\prime}\right| \geq k_{1}$, for some $k_{1} \geq 0$, then there are two substrings $z_{1}^{\prime}, z_{2}^{\prime}$ of z^{\prime} that can be pumped.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Consider that any $x_{i} y_{i}, i=1, \ldots, k$, contains a nonterminal B that do not belong on any path $s \in C$. Clearly, there is substring z^{\prime} of z derived from B.
- Since G is context-free, it follows that if $\left|z^{\prime}\right| \geq k_{1}$, for some $k_{1} \geq 0$, then there are two substrings $z_{1}^{\prime}, z_{2}^{\prime}$ of z^{\prime} that can be pumped.
- By the pumping lemma for context-free languages, $z_{1}^{\prime}, z_{2}^{\prime}$ are bounded in length.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.
Proof Idea:

- If $L(G)$ is infinite, the string path $(s) \in L\left(G^{\prime}\right)$ is potentially arbitrarily long. Thus, if path $(s)=u_{s} v_{s} x_{s} y_{s} z_{s}$ with $\left|u_{s} v_{s} x_{s} y_{s} z_{s}\right| \geq k_{2}$, for some $k_{2} \geq 0$, then $u_{s} v_{s} x_{s} y_{s} z_{s}$ satisfies $u_{s} v_{s}^{i} x_{s} y_{s}^{i} z_{s} \in L\left(G^{\prime}\right)$, for $i \geq 1$.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- If $L(G)$ is infinite, the string path $(s) \in L\left(G^{\prime}\right)$ is potentially arbitrarily long. Thus, if path $(s)=u_{s} v_{s} x_{s} y_{s} z_{s}$ with $\left|u_{s} v_{s} x_{s} y_{s} z_{s}\right| \geq k_{2}$, for some $k_{2} \geq 0$, then $u_{s} v_{s} x_{s} y_{s} z_{s}$ satisfies $u_{s} v_{s}^{i} x_{s} y_{s}^{i} z_{s} \in L\left(G^{\prime}\right)$, for $i \geq 1$.
- The derivations starting from the symbols of v and y can be repeated in G.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- If $L(G)$ is infinite, the string path $(s) \in L\left(G^{\prime}\right)$ is potentially arbitrarily long. Thus, if path $(s)=u_{s} v_{s} x_{s} y_{s} z_{s}$ with $\left|u_{s} v_{s} x_{s} y_{s} z_{s}\right| \geq k_{2}$, for some $k_{2} \geq 0$, then $u_{s} v_{s} x_{s} y_{s} z_{s}$ satisfies $u_{s} v_{s}^{i} x_{s} y_{s}^{i} z_{s} \in L\left(G^{\prime}\right)$, for $i \geq 1$.
- The derivations starting from the symbols of v and y can be repeated in G.
- Since $\left(G, G^{\prime}\right)$ is ${ }_{n}^{\text {II }} P C$ grammar, it follows that:
- the derivations starting from the symbols of v in G are common for all $s \in C$,
- the derivations starting from the symbols of y in G are potentially unique for each $s \in C$.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Consider the derivations starting from v in G. This leads to the pumping of two substrings $v_{1}, v_{2 n+2}$ of z-one in the left-hand side, one in the right-hand side controlled by the common part of all $s \in C$.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- Consider the derivations starting from v in G. This leads to the pumping of two substrings $v_{1}, v_{2 n+2}$ of z-one in the left-hand side, one in the right-hand side controlled by the common part of all $s \in C$.
- Consider the derivations starting from y in G. This leads to the pumping of two substrings of z-one in the left-hand side, one in the right-hand side corresponding to each $s \in C$. For each $s_{i+1} \in C$, denote this two substrings $v_{2 i+2}$, $v_{2 i+3}, i=0,1, \ldots, n-1$. Since $\left(G, G^{\prime}\right)$ is ${ }_{n}^{I I I} P C$ grammar, we obtain $2 n$ pumped substrings of z.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- By the pumping lemma for context-free languages, the substrings $v_{1}, v_{2}, \ldots, v_{2 n+2}$ are bounded in length.

Theorem 2

If $L \in$ III-n-PC, for $n=\operatorname{card}(C) \geq 0$, then there are $p, q \in \mathbb{N}$ such that each $z \in L$ with $|z|>p$ can be written in the form
$z=u_{1} v_{1} u_{2} v_{2} \ldots u_{2 n+2} v_{2 n+2} u_{2 n+3}$, such that $0<\left|v_{1} v_{2} \ldots v_{2 n+2}\right| \leq q$ and $u_{1} v_{1}^{i} u_{2} v_{2}^{i} \ldots u_{2 n+2} v_{2 n+2}^{i} u_{2 n+3} \in L$ for all $i \geq 1$.

Proof Idea:

- By the pumping lemma for context-free languages, the substrings $v_{1}, v_{2}, \ldots, v_{2 n+2}$ are bounded in length.
- Thus, the total length of the $2 n+2$ pumped substrings of z is bounded by a constant q.

Corollary 3

III-n-PC cannot count to $2 n+3$, but can count to $2 n+2$.
Proof: $L=\left\{a^{i} b^{i} c^{i} d^{i} e^{i} f^{i} g^{i} \mid i \geq 1\right\} \notin \operatorname{III}-2-P C$, but $L \in \operatorname{III}-3-P C$.

Corollary 3

III-n-PC cannot count to $2 n+3$, but can count to $2 n+2$.
Proof: $L=\left\{a^{i} b^{i} c^{i} d^{i} e^{i} f^{i} g^{i} \mid i \geq 1\right\} \notin \operatorname{III}-2-P C$, but $L \in \operatorname{III}-3-P C$.

Corollary 4

There is an infinite hierarchy of $\bigcup_{i=0}^{n}$ III-i-PC languages.
Proof: $\bigcup_{i=0}^{n}$ III-i-PC $\subset \bigcup_{i=0}^{n+1}$ III-i-PC, for $n \geq 0$, is proper.

Corollary 3

III-n-PC cannot count to $2 n+3$, but can count to $2 n+2$.
Proof: $L=\left\{a^{i} b^{i} c^{i} d^{i} e^{i} f^{i} g^{i} \mid i \geq 1\right\} \notin \operatorname{III}-2-P C$, but $L \in \operatorname{III}-3-P C$.

Corollary 4

There is an infinite hierarchy of $\bigcup_{i=0}^{n}$ III-i-PC languages.
Proof: $\bigcup_{i=0}^{n}$ III-i-PC $\subset \bigcup_{i=0}^{n+1}$ III-i-PC, for $n \geq 0$, is proper.

Corollary 5

III-n-PC is not closed under concatenation.
Proof: $L=\left\{a^{i} a^{i} a^{i} a^{i} a^{i} a^{i} \mid i \geq 1\right\} \in \operatorname{III-2-PC}$, but $L L \notin \operatorname{III-2-PC}$.

Example 1

Consider ${ }_{2}^{\text {II }} P C$ grammar (G, G^{\prime}), where
$G=(\{S, X, Y, U, V, a, b, c, d, e, f\},\{a, b, c, d, e, f\}, P, S)$
$P=\{S \rightarrow a S f, \quad S \rightarrow a X Y f, \quad X \rightarrow b X c, \quad Y \rightarrow d Y e$, $X \rightarrow U, \quad U \rightarrow b c, \quad Y \rightarrow V, \quad V \rightarrow d e\}$
$L\left(G^{\prime}\right)=\left\{S^{n} X^{n} \cup b \cup S^{n} Y^{n} V d \mid n \geq 1\right\}$
$L\left(G, G^{\prime}\right)=\left\{a^{i} b^{i} c^{i} d^{i} e^{i} f^{i} \mid i \geq 1\right\}$

Example 1

Consider ${ }_{2}^{\text {II }} P C$ grammar (G, G^{\prime}), where
$G=(\{S, X, Y, U, V, a, b, c, d, e, f\},\{a, b, c, d, e, f\}, P, S)$
$P=\{S \rightarrow a S f, \quad S \rightarrow a X Y f, \quad X \rightarrow b X c, \quad Y \rightarrow d Y e$,
$X \rightarrow U, \quad U \rightarrow b c, \quad Y \rightarrow V, \quad V \rightarrow d e\}$
$L\left(G^{\prime}\right)=\left\{S^{n} X^{n} U b \cup S^{n} Y^{n} V d \mid n \geq 1\right\}$
$L\left(G, G^{\prime}\right)=\left\{a^{i} b^{i} c^{i} d^{i} e^{i} f^{i} \mid i \geq 1\right\}$
Example of the derivation:
$S \Rightarrow a S f \Rightarrow$ aaSff \Rightarrow aaaSfff \Rightarrow aaaaXYffff \Rightarrow aaaabXcYffff \Rightarrow
aaaabbXccYffff \Rightarrow aaaabbbXcccYfffff \Rightarrow
aaaabbbUcccYffff \Rightarrow aaaabbbbccccYffff \Rightarrow aaaabbbbccccdYeffff \Rightarrow aaaabbbbccccddYeeffff \Rightarrow aaaabbbbccccdddYeeeffff \Rightarrow aaaabbbbccccdddVeeeffff \Rightarrow aaaabbbbccccddddeeeeffff $=a^{4} b^{4} c^{4} d^{4} e^{4} f^{4}$

Example 2

Let us have ${ }_{n}^{\text {II }} P C$ grammar (G, G^{\prime}), $n \geq 0$, where

$$
\begin{aligned}
& G_{1}=\left(\{S\} \cup\left\{A_{i}, B_{i} \mid i=1, \ldots, n\right\} \cup\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\},\right. \\
&\left.\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\}, P, S\right) \\
& P=\left\{S \rightarrow a_{1} S a_{2 n+2}, S \rightarrow a_{1} A_{1} A_{2} \ldots A_{n} a_{2 n+2}\right\} \cup \\
&\left\{A_{i+1} \rightarrow a_{2 i+2} A_{i+1} a_{2 i+3}, \quad A_{i+1} \rightarrow B_{i+1},\right. \\
&\left.B_{i+1} \rightarrow a_{2 i+2} a_{2 i+3} \mid i=0, \ldots, n-1\right\} \\
& L\left(G^{\prime}\right)=\bigcup_{i=1}^{n}\left\{S^{k} A_{i}^{k} B_{i} a_{2 i} \mid k \geq 1\right\}
\end{aligned}
$$

Example 2

Let us have ${ }_{n}^{\text {III }} P C$ grammar $\left(G, G^{\prime}\right), n \geq 0$, where

$$
\begin{aligned}
& \mathcal{G}_{1}=\left(\{S\} \cup\left\{A_{i}, B_{i} \mid i=1, \ldots, n\right\} \cup\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\},\right. \\
&\left.\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\}, P, S\right) \\
& P=\left\{S \rightarrow a_{1} S a_{2 n+2}, S \rightarrow a_{1} A_{1} A_{2} \ldots A_{n} a_{2 n+2}\right\} \cup \\
&\left\{A_{i+1} \rightarrow a_{2 i+2} A_{i+1} a_{2 i+3}, \quad A_{i+1} \rightarrow B_{i+1},\right. \\
&\left.B_{i+1} \rightarrow a_{2 i+2} a_{2 i+3} \mid i=0, \ldots, n-1\right\} \\
& L\left(G^{\prime}\right)=\bigcup_{i=1}^{n}\left\{S^{k} A_{i}^{k} B_{i} a_{2 i} \mid k \geq 1\right\}
\end{aligned}
$$

Consider a derivation in $\left(G, G^{\prime}\right)$:
$S \Rightarrow^{k} a_{1}^{k} S a_{2 n+2}^{k}$
$\Rightarrow a_{1}^{k} a_{1} A_{1} \ldots A_{n} a_{2 n+2} a_{2 n+2}^{k}$
$\Rightarrow{ }^{n \times k} a_{1}^{k+1} a_{2}^{k} B_{1} a_{3}^{k} \ldots a_{2 n}^{k} B_{n} a_{2 n+1}^{k} a_{2 n+2}^{k+1}$
$\Rightarrow^{n} a_{1}^{k+1} a_{2}^{k+1} a_{3}^{k+1} \ldots a_{2 n}^{k+1} a_{2 n+1}^{k+1} a_{2 n+2}^{k+1}$

Example 2

Let us have ${ }_{n}^{\text {III }} P C$ grammar (G, G^{\prime}), $n \geq 0$, where

$$
\begin{aligned}
& G_{1}=\left(\{S\} \cup\left\{A_{i}, B_{i} \mid i=1, \ldots, n\right\} \cup\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\},\right. \\
&\left.\left\{a_{i} \mid i=1, \ldots, 2 n+2\right\}, P, S\right) \\
& P=\left\{S \rightarrow a_{1} S a_{2 n+2}, S \rightarrow a_{1} A_{1} A_{2} \ldots A_{n} a_{2 n+2}\right\} \cup \\
&\left\{A_{i+1} \rightarrow a_{2 i+2} A_{i+1} a_{2 i+3}, \quad A_{i+1} \rightarrow B_{i+1},\right. \\
&\left.B_{i+1} \rightarrow a_{2 i+2} a_{2 i+3} \mid i=0, \ldots, n-1\right\} \\
& L\left(G^{\prime}\right)=\bigcup_{i=1}^{n}\left\{S^{k} A_{i}^{k} B_{i} a_{2 i} \mid k \geq 1\right\}
\end{aligned}
$$

Consider a derivation in $\left(G, G^{\prime}\right)$:
$S \Rightarrow^{k} a_{1}^{k} S a_{2 n+2}^{k}$
$\Rightarrow a_{1}^{k} a_{1} A_{1} \ldots A_{n} a_{2 n+2} a_{2 n+2}^{k}$
$\Rightarrow{ }^{n \times k} a_{1}^{k+1} a_{2}^{k} B_{1} a_{3}^{k} \ldots a_{2 n}^{k} B_{n} a_{2 n+1}^{k} a_{2 n+2}^{k+1}$
$\Rightarrow^{n} a_{1}^{k+1} a_{2}^{k+1} a_{3}^{k+1} \ldots a_{2 n}^{k+1} a_{2 n+1}^{k+1} a_{2 n+2}^{k+1}$
$L\left(G_{1}, G^{\prime}\right)=\left\{a_{1}^{k} \ldots a_{2 n+2}^{k} \mid k \geq 1\right\}$.

Example 3

Let $m \geq 0$ with $m \bmod 2=0$. Let us have ${ }_{n}^{I I I} P C$ grammar $\left(G, G^{\prime}\right)$, $n \geq 0$, where

$$
\begin{aligned}
& G=\left(\left\{A_{j}, B_{j}, a_{j} \mid j=1, \ldots, m\right\} \cup\{C\},\left\{a_{j} \mid j=1, \ldots, m\right\}, P, A_{1}\right) \\
& P=\left\{A_{1} \rightarrow a_{1} A_{1}, \quad A_{1} \rightarrow a_{1} A_{2}, \quad B_{1} \rightarrow B_{1} a_{1}, \quad B_{1} \rightarrow C, \quad C \rightarrow a_{1}\right\} \cup \\
&\left\{A_{m} \rightarrow A_{m} a_{m}, \quad A_{m} \rightarrow\left\{B_{m}\right\}\right. \\
&\left\{A_{i} \rightarrow A_{i} a_{i}, \quad A_{i} \rightarrow A_{i+1} \mid i=2, \ldots, m-1 \text { with } i \bmod 2=0\right\} \cup \\
&\left\{A_{i} \rightarrow a_{i} A_{i}, \quad A_{i} \rightarrow A_{i+1} \mid i=3, \ldots, m-1 \text { with } i \bmod 2=1\right\} \cup \\
&\left\{B_{i} \rightarrow a_{i} B_{i}, \quad B_{i} \rightarrow B_{i-1} \mid i=2, \ldots, m \text { with } i \bmod 2=0\right\} \cup \\
&\left\{B_{i} \rightarrow B_{i} a_{i}, \quad B_{i} \rightarrow B_{i-1} \mid i=3, \ldots, m \text { with } i \bmod 2=1\right\} \\
& L\left(G^{\prime}\right)=\left\{A_{1}^{k_{1}} A_{2}^{k_{2}} \ldots A_{m}^{k_{m}} B_{m}^{k_{m}} B_{m-1}^{k_{m-1}} \ldots B_{2}^{k_{2}} B_{1}^{k_{1}} C a_{1} \mid k_{i} \geq 0, i=1, \ldots, m\right\}
\end{aligned}
$$

Consider a derivation in $\left(G, G^{\prime}\right)$:

$$
\begin{aligned}
& A_{1} \Rightarrow{ }^{k_{1}} a_{1}^{k_{1}} A_{1} \Rightarrow a_{1}^{k_{1}+1} A_{2} \Rightarrow{ }^{k_{2}} a_{1}^{k_{1}+1} A_{2} a_{2}^{k_{2}} \Rightarrow a_{1}^{k_{1}+1} A_{3} a_{2}^{k_{2}} \\
& \Rightarrow^{*} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}} A_{m} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{B_{m}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n \times k_{m}} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m-1}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n \times k_{m-1}} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m-1} a_{m-1}^{k_{m-1}}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{*} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} B_{1} a_{1}^{k_{1}} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} C a_{1}^{k_{1}} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} a_{1}^{k_{1}+1} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}}
\end{aligned}
$$

Consider a derivation in $\left(G, G^{\prime}\right)$:

$$
\begin{aligned}
& A_{1} \Rightarrow{ }^{k_{1}} a_{1}^{k_{1}} A_{1} \Rightarrow a_{1}^{k_{1}+1} A_{2} \Rightarrow{ }^{k_{2}} a_{1}^{k_{1}+1} A_{2} a_{2}^{k_{2}} \Rightarrow a_{1}^{k_{1}+1} A_{3} a_{2}^{k_{2}} \\
& \Rightarrow{ }^{*} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}} A_{m} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{B_{m}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n \times k_{m}} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m-1}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n \times k_{m-1}} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} B_{m-1} a_{m-1}^{k_{m-1}}\right\}^{n} a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{*} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} B_{1} a_{1}^{k_{1}} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} C a_{1}^{k_{1}} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}} \\
& \Rightarrow^{n} a_{1}^{k_{1}+1} a_{3}^{k_{3}} a_{5}^{k_{5}} \ldots a_{m-1}^{k_{m-1}}\left\{a_{m}^{k_{m}} a_{m-2}^{k_{m-2}} \ldots a_{2}^{k_{2}} a_{1}^{k_{1}+1} \ldots a_{m-3}^{k_{m-3}} a_{m-1}^{k_{m-1}}\right\}^{n} \\
& a_{m}^{k_{m}} \ldots a_{6}^{k_{6}} a_{4}^{k_{4}} a_{2}^{k_{2}}
\end{aligned}
$$

$$
\begin{aligned}
L\left(G, G^{\prime}\right)= & \left\{\left(a_{1}^{k_{1}+1} a_{3}^{k_{3}} \ldots a_{m-1}^{k_{m-1}} a_{m}^{m} a_{m-2}^{k_{m-2}} a_{m-4}^{k_{m-4}} \ldots a_{2}^{k_{2}}\right)^{n+1}\right. \\
& \left.k_{i} \geq 0, i=1, \ldots, m\right\}
\end{aligned}
$$

Example 4

Consider $m=4$ and ${ }_{3}^{\text {III }} P C$ grammar (G, G^{\prime}), where

$$
\begin{aligned}
& G=(\{A, B, C, D, E, F, G, H, I, a, b, c, d\},\{a, b, c, d\}, P, A) \\
& P=\{A \rightarrow a A, A \rightarrow a B, \quad B \rightarrow B b, \quad B \rightarrow C, \\
& C \rightarrow c C, C \rightarrow D, \quad D \rightarrow D d, D \rightarrow H H H, \\
& E \rightarrow E a, E \rightarrow I, \quad F \rightarrow b F, \quad F \rightarrow E, \\
& G \rightarrow G c, G \rightarrow F, \quad H \rightarrow d H, \quad H \rightarrow G, \quad I \rightarrow a\} \\
& L\left(G^{\prime}\right)=\left\{A^{r} B^{s} C^{t} D^{u} H^{u} G^{+} F^{s} E^{r} l a \mid r, s, t, u \geq 0\right\} \\
& L\left(G, G^{\prime}\right)=\left\{a^{v} c^{w} d^{x} b^{y} a^{v} c^{w} d^{x} b^{y} a^{v} c^{w} d^{x} b^{y} a^{v} c^{w} d^{x} b^{y} \mid\right. \\
& \quad v>0, w, x, y \geq 0\}
\end{aligned}
$$

Example of the derivation:
$A \Rightarrow a A \Rightarrow a a B \Rightarrow a a B b \Rightarrow a a C b \Rightarrow a a c C b \Rightarrow a a c D b \Rightarrow$ aacDdb \Rightarrow aacHHHdb \Rightarrow aacdHHHdb \Rightarrow aacdGHHdb \Rightarrow aacdGcHHdb \Rightarrow aacdFcHHdb \Rightarrow aacdbFcHHdb \Rightarrow aacdbEcHHdb \Rightarrow aacdbEacHHdb \Rightarrow aacdblacHHdb \Rightarrow aacdbaacHHdb \Rightarrow aacdbaacdHHdb \Rightarrow aacdbaacdGHdb \Rightarrow aacdbaacdGcHdb \Rightarrow aacdbaacdFcHdb \Rightarrow aacdbaacdbFcHdb \Rightarrow aacdbaacdbEcHdb \Rightarrow aacdbaacdbEacHdb \Rightarrow aacdbaacdblacHdb \Rightarrow aacdbaacdbaacHdb \Rightarrow aacdbaacdbaacdHdb \Rightarrow aacdbaacdbaacdGdb \Rightarrow aacdbaacdbaacdGcdb \Rightarrow aacdbaacdbaacdFcdb \Rightarrow aacdbaacdbaacdbFcdb \Rightarrow aacdbaacdbaacdbEcdb \Rightarrow aacdbaacdbaacdbEacdb \Rightarrow aacdbaacdbaacdblacdb \Rightarrow aacdbaacdbaacdbaacdb

Investigation of III-n-PC

${ }_{n}^{\text {III }} P C$ grammars are potentially usable.

- Generative power?
- Closure properties?
- Decidability properties?
- Parsing properties?
- Descriptional complexity?

Investigation of III-n-PC

${ }_{n}^{I I I} P C$ grammars are potentially usable.

- Generative power?
- Closure properties?
- Decidability properties?
- Parsing properties?
- Descriptional complexity?

Investigation of I-n-PC and V-n-PC

- ${ }_{1} P C$ grammars are equal to concatenation of n independent $P C$ grammars?
- ${ }_{v}^{n} P C$ grammars are equal to CF grammars?

Investigation of III-n-PC

${ }_{n}^{I I I} P C$ grammars are potentially usable.

- Generative power?
- Closure properties?
- Decidability properties?
- Parsing properties?
- Descriptional complexity?

Investigation of I-n-PC and V-n-PC

- ${ }_{1} P C$ grammars are equal to concatenation of n independent $P C$ grammars?
- ${ }_{\vee}^{n} P C$ grammars are equal to CF grammars?

Investigation of II-n-PC and IV-n-PC

${ }_{\| l}^{n} P C$ grammars and ${ }_{N V}^{n} P C$ grammars are unusable?
K. Čulik and H. A. Maurer.

Tree controlled grammars.
Computing, 19:129-139, 1977.
J. Dassow and B. Truthe.

Subregularly tree controlled grammars and languages.
In Automata and Fromal Languages - 12th International Conference AFL 2008,
Balatonfured, pages 158-169. Hungarian Academy of Sciences, 2008.
J. Koutný.

Regular paths in derivation trees of context-free grammars.
In Proceedings of EEICT 2009 Volume 4, pages 410-414. FIT BUT, 2009.
J. Koutný.

On n-path-controlled grammars.
In Proceedings of EEICT 2010 Volume 5, pages 176-180. FIT BUT, 2010.
S. Marcus, C. Martín-Vide, V. Mitrana, and Gh. Păun.

A new-old class of linguistically motivated regulated grammars.
In CLIN, pages 111-125, 2000.

C. Martín-Vide and V. Mitrana.

Further properties of path-controlled grammars.
In Formal Grammar / Mathematics of Language 2005, pages 219-230. Edimburgh, 2005.

Gh. Păun.
On the generative capacity of tree controlled grammars.
Computing, 21 (3):213-220, 1979.

Thank you for your attention!

