INFINITY 2005 Preliminary Version

Abstract Regular Tree Model Checking

Ahmed Bouajjani, Peter Habermehl
LIAFA, University Paris 7, Case 7014, 2, place Jussieu, B5l5Paris Cedex 05, France

Adam Rogalewicz, To@s Vojnar?
FIT, Brno University of Technology, BeEchova 2, CZ-61266, Brno, Czech Republic

Abstract

Regular (tree) model checking (RMC) is a promising generathod for formal verifi-
cation of infinite-state systems. It encodes configuratiohsystems as words or trees
over a suitable alphabet, possibly infinite sets of configoma as finite word or tree au-
tomata, and operations of the systems being examined ass \fioitd or tree transducers.
The reachability set is then computed by a repeated applicaf the transducers on the
automata representing the currently known set of reactavifigurations. In order to fa-
cilitate termination of RMC, various acceleration scherhase been proposed. One of
them is a combination of RMC with the abstract-check-refineagigm yielding the so-
called abstract regular model checking (ARMC). ARMC haglioglly been proposed for
word automata and transducers only and thus for dealingsyitems with linear (or easily
linearisable) structure. In this paper, we propose a gésatian of ARMC to the case of
dealing with trees which arise naturally in a lot of modeliand verification contexts. In
particular, we first propose abstractions of tree automased on collapsing their states
having an equal language of trees up to some bounded heigjien, Tve propose an ab-
straction based on collapsing states having a non-emmsserttion (and thus “satisfying”)
the same bottom-up tree “predicate” languages. Finallyshaev on several examples that
the methods we propose give us very encouraging verificatisults.

1 Introduction

Regular model checkinpl4,4,5] is a general method for formal verification of
infinite-state systems. Configurations of systems are eattad finite words over
a finite alphabek and transitions are encoded as relations over words. Thad, w
automata oveE can naturally be used to represent and manipulate (infiséts)
of configurations and transducers oV&ruU {c}) x (X U {e}) are used to repre-
sent the transition relation. To verify safety properti@sgachability analysis is
performed by calculating transitive closures of transdsioe images of automata
by iteration of transducers. Termination is usually notrgaéeed and therefore
various acceleration methods have been proposed.

! Email:abou@i af a. j ussi eu. fr,Pet er. Haber nehl @i af a. jussi eu. fr
2 Email:rogal ew@it.vutbr.cz,vojnar@it.vutbr.cz
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

As one of the most successful acceleration methods and sdsavay to cope
with the problem of state space explosion in automata repteg) configurations,
abstract regular model checkindARMC) [8] has been introduced recently. This
generic method uses the well knoabstract-check-refinparadigm within regular
model checking. Abstractions are defined on word automat@senting configu-
rations. Then, an abstract reachability analysis whichuergnteed to terminate is
performed. Suitable refinements of abstractions are deforatie case a spurious
counter-example is encountered. In this way, an abstradetailed just enough to
answer a particular verification question is computed. ARME been successfully
applied to a lot of different systems, like counter autompéaameterised networks
of processes, and programs with lists [

To handle other structures than linear (or easily linebteaones, regulatree
model checking14,6,1,18,2] has been proposed. Instead of words, configurations
are finite trees and instead of word automata, tree autormatasad to represent
sets of configurations. Then, tree transducers model transi Like in the word
case, several acceleration approaches for reachabibltyss exist.

Tree like structures are very common and appear naturaltyany modelling
and verification contexts. For example, in the case of patenzed tree networks,
labelled trees of arbitrary height represent a configunatibthe network: each
process is a hode of the tree and the label its control steéeshlso arise naturally,
e.g., as arepresentation of configurations of multithréadeursive programd4.p),
as a representation structure of heaps,[or when representing structured data
such as XML document$].

In this paper, we extend the framework of ARMC from words &ef. We use
bottom-up tree automata and transducers. Like in ARMC, veealistract fixpoint
computations in soménite domain of automata. The abstract fixpoint computa-
tions always terminate and provide overapproximationsefreachability sets. To
achieve this, we define techniques that systematically mgrae automatoi/
to a tree automaton/’ from some finite domain such that’ recognises a super-
set of the language af/. For the case that the computed overapproximation is
too coarse and a spurious counter-example is detected veeffiective principles
allowing the abstraction to be refined such that the new atistomputation does
not encounter the same counter-example.

We, in particular, propose two abstractions for tree autamé&Similarly to
ARMC, both of them are based on collapsing automata statesdiog to a suit-
able equivalence relation. The firstis based on considénogree automata states
equivalent if theilanguages of trees up to a certain fixed heigteg equal. The sec-
ond abstraction is defined by a set of regyleadicate languages . We consider
a statey of a tree automaton/ to “satisfy” a predicate languagdes if the intersec-
tion of Lp with the tree languagé (), q) accepted from the stateis not empty.
Then, two states are equivalent if they satisfy the sameaqatss.

We have implemented the above abstractions in a prototypesing the Tim-
buk [13] tree automata library. We have experimented with the taolarious
parameterized tree network protocols. The results areemepuraging and com-

2

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

pare very well with other tools, which gives us a very goodidasd motivation
for a further development of the method.

2 Regular Tree Languagesand Transducers

This section is a brief introduction to regular tree langesgagnd transducers. A
more detailed description can be found, e.g. i 11].

An alphabet is a finite set of symbolst is calledrankedif there exists aank
functionp : ¥ — N. For eacht € N, ¥;, C X is the set of all symbols with rank
Symbols ofY}, are calledconstantsLet y be a denumerable set of symbols called
variables Tx[x] denotes the set aérmsover: andy. The setTx[0] is denoted
by T%, and its elements are callegound terms A term ¢ from T%[x] is called
linear if each variable occurs at most oncetinTerms inTx || can be viewed as
trees—leaves are labelled by constants and variables amfd@de with: sons is
labelled by a symbol fromx,.

A bottom-up tree automatamver a ranked alphabgtis a tupled = (Q, X, F, §)
where(is a finite set of stated; C () is a set of final states, ards a set of tran-
sitions of the following types: (if (¢1,- .., qn) —s ¢, (i) a —5 ¢, and (i) g —5 ¢
wherea € X, f € 3,,andq, ¢, q1,...,q, € Q.

Note: Below, we call a bottom-up tree automaton simply a tree aatom

Let¢ be a ground term. A run of a tree automatémon¢ is defined as follows.
First, leaves are labelled with states. If a leave is a symbelX, and there is a
rulea —s q € 9, the leave is labelled by. Aninternal nodef € ¥, is labelled by
if there exists a rulg (q1, ¢, - . ., qx) —s q € ¢ and the first son of the node has the
state label;;, the second ong, ..., and the last ong,. Rules of the type —s ¢
are callec-stepsand allow us to change a state label frgto ¢. If the top symbol
is labelled with a state from the set of final stafésthe termt is accepted by the
automatonA.

A set of ground terms accepted by a tree automatas called aregular tree
languageand is denoted by.(A). Let A = (@, X, F,0) be a tree automaton and
q € @ a state, then we define thenguage of the state-gL(A, ¢)—as the set of
ground terms accepted by the tree automatgn= (Q, X, {¢},). The language
L="(A, q) is defined to be the sét € L(A, q) | height(t) < n}.

A bottom-up tree transduces a tupler = (Q, X%, %', F,§) where(is a finite
set of states[” C () is a set of final state$, is an input ranked alphabét; is an
output ranked alphabet, aids a set of transition rules of the following types: (i)
(@), qn(an)) =5 q(u), u € To[{a, .o xn}], (1) () —5 ¢'(u), u €
Twy[{z}], and (iii)a —s q(u), u € Txy wherea € X, f € X, ,21,...,2, € X,
andq, ¢, q1,...,q, € Q.

Note: In the following, we call a bottom-up tree transducer simptyee transducer.
We always use tree transducers with= >7'.

A run of a tree transducer on a ground ternt is similar to a run of a tree
automaton on this term. First, rules of tyfi#) are used. If a leaf is labelled by
a symbola and there is a rule —; q(u) € 9, the leaf is replaced by the term

3

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

u and labelled by the state If a node is labelled by a symbgl, there is a rule
flai(z1), q2(22), - . ., qu(zy)) —s q(u) € 6, the first subtree of the node has the
state label;;, the second ong,, ..., and the last one,, then the symbof and
all subtrees of the given node are replaced according taghemand side of the
rule with the variables, ..., x,, substituted by the corresponding left-hand-side
subtrees. The state labgls assigned to the new tree. Rules of typeare called
e-steps They allow us to replace @state-labelled tree by the right hand side of
the rule and assign the state labeto this new tree with the variablein the rule
substituted by the original tree. A run of a transducer ixessful if the root of a
tree is processed and is labelled by a state ffam

A tree transducer ibnear if all right-hand sides of its rules are linear (no vari-
able occurs more than once). The class of linear bottom-ag transducers is
closed under composition. A tree transducer is cadiedcture-preservindgor a
relabelling) if it does not modify the structure of input trees and jusamdes the
labels of their nodes. By abuse of notation, we identify asdaicerr with the
relation{(¢,t') € Ts, x Ty, | t —} ¢(t') for someq € F'}. Forasetl C Ty, and a
relationR C Ty, x Ty, we denoteR(L) the se{w € T%, | Fw' € L : (v',w) € R}
andR~(L) the set{w € Tx | Fuw’ € L : (w,w’) € R}. If 7 is alinear tree trans-
ducer andL is a regular tree language, then the s€t5) and~—!(L) are regular
and effectively constructiblelfl,10].

Letid C Ty, x Ty, be the identity relation and the composition of relations.
We define recursively the relation8 = id, 7! = 7o 7' and7t* = U, 7. Below,
we supposed C T meaning that’ C 7! for all i > 0.

3 Abstract Regular Tree Model Checking

In this section, we first recall the notion of regular tree ®athecking. Then, we
introduce abstract regular tree model checking by definawgiml abstractions on
tree automata.

3.1 Regular Tree Model Checking

Regular tree model checking),p,14] is a generalisation of regular model checking
[5] to trees. A configuration of a system is encoded as a terra)(treer a ranked
alphabet and a set of such terms as a regular tree automdteransition relation
of a system is encoded as a linear tree transduc@fe are given a tree automaton
Init encoding the set of initial states. For safety propertiegtaf bad states (rep-
resented by a tree automat®ad) is given. Then, the basic verification problem
consists in deciding whether

7*(L(Init)) N L(Bad) = () Q)

This problem is in general undecidable (an iterative comfpar of 7*(L(Init))
does not terminate). Several method2J6] have been proposed to calculate in
some cases’ or 7*(L(Init)). These techniques all compute exact sets or relations.
We tackle the model-checking problem by generalising thetrabt regular model

4

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

checking methodq] to tree automata. This method computes an overapproxima-
tion of 7*(L(Init)) with a precision just sufficient to safely solve the verifioat
problem ().

3.2 Abstract Regular Tree Model Checking

Abstract regular tree model checking (ARTMC) combines faginee model check-
ing with automatic abstraction. The main idea of ARTMC is agpalisation of ab-
stract regular model checking][to regular tree languages. For this, the abstraction
techniques designed for word automata have to be adaptezktadtomata.

We start by recalling the basic framework of abstract regoiadel checking
(here phrased directly for trees).

Let X be a ranked alphabet addsy, the set of all tree automata over We
define an abstraction function as a mappingMy. — Ay, whereAy, C My, and
VM € My, : L(M) C L(a(M)). An abstractionn’ is called arefinemenbf the
abstractiony if VM € My, : L(o/(M)) C L(a(M)). Given a tree transducer
and abstraction, we define a mapping, : My — My asvVM € My, : 7,(M) =
7(a(M)) where7 (M) is a minimal automaton describing the languagé(M)).
An abstraction is finite rangeif the setAy, is finite.

Let Init be a tree automaton representing the set of initial configuraand
Bad be a tree automaton representing the set of bad configusatiw, we may
iteratively compute the sequen¢e.(Init));>o. Since we supposgl C , it is
clear that if« is finitary, there existd > 0 such thatr®*1(Init) = 7% (Init).
The definition ofa implies L(7;(Init)) 2 7*(L(Init)). This means that in a
finite number of steps, we can compute an overapproximafioheoreachability
setr*(L(Init)).

If L(7*(Init)) N L(Bad) = (), then the verification probleml) has a pos-
itive answer. Otherwise, the answer to the probldmi¢ not necessarily neg-
ative since during the computation of(L(Init)), the abstractiorx may intro-
duce extra behaviours leading fdBad). Let us examine this case. Assume that
72 (Init) N L(Bad) # (), which means that there is a symbolic path:

Init, 7o(Init), 72(Init),--- 7" (Init), 77" (Init) 2

such thatl.(7(Init)) N L(Bad) # 0. We analyse this path by computing the sets
X, = L(*(Init))NL(Bad), and for every > 0, X, = L(7*(Init))N7=1(Xpy1).
Two cases may occuri)(eitherX, = L(Init)N(7—1)"(X,,) # 0, which means that
the problem {) has anegative answeur (i7) there is & > 0 such thatX;, = (), and
this means that the symbolic pa®) (s actually aspurious counter-examptiie to
the fact that is too coarse. In this last situation, we need to refinend iterate
the procedure. Therefore, our approach is based on thetaefioif abstraction
schemas allowing to compute families of (automaticallyinedble abstractions.

3.3 Abstraction Based on Automata State Equivalence

Below, we discuss two possible tree automata abstractioensas which are based
on tree automata state equivalence. First, tree autonettgssdre split into sev-

5

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

eral equivalence classes by an equivalence relation. Thembstraction function
collapses states from each equivalence class into one g$tatenally, a tree au-
tomata state equivalence schei& defined as follows: To each tree automaton
M = (Q,%, F,§) € My, an equivalence relationt, C QxQ is assigned. Then the
automata abstraction functien; corresponding to the abstraction schefnia de-
fined asvM € My : ag(M) = M/ ~%,. We callE finitary if oz is finitary (i.e.
there is a finite number of equivalence classes). We réfibg making~%, finer.

3.4 Abstraction Based on Languages of Finite Height

We now present the possibility of defining automata statavatgnce schemas
based on comparing automata states wrt. a certain boundeaf pizeir languages.
The abstraction schenid, is a generalisation of a similar schema proposed for
word automata in§]. This schema defines two states of a tree automafoas
equivalent if their languages up to the given heiglatre identical.

Formally, for a tree automatol = (Q, >, F', 9), H,, defines the state equiva-
lence as the equivalene€}, such thatVq;, ¢ € Q : q1 ~%; ¢ & L="(M,q,) =
LSn(M7 QQ)

There is a finite number of languages of trees with a maximightte, and so
this abstraction is finite range. Refining of the abstraatembe done by increasing
the value ofn.

The abstraction schenft, can be implemented in a similar way as minimisa-
tion of tree automata. Just the main loop of the minimisapimtedure is stopped
aftern iterations.

3.5 Abstraction Based on Predicate Languages

We next introduce a predicate-based abstraction sclfgimahich was inspired by
the predicate based abstraction on wog]s [

LetP = {P, P, ..., P,} be a set opredicates Each predicaté® € P is a
tree language represented by a tree automatonlLet (Q, X, F, §) be a tree au-
tomaton, then two stateg, ¢» € @ are equivalent if their languagég M/, ¢;) and
L(M, ¢2) have a nonempty intersection with exactly the same subg@edicates
from the setP.

Formally, for an automato = (Q, 3, F), §), Pp defines the state equivalence
as the equivalence?; such thatvq;,q» € Q : 1 ~}; o & (VP € P : L(P)N
L(M,q1) # 0 4 L(P) N L(M.g2) #0).

Clearly, sinceP is finite and there is only a finite number of subset$afep-
resenting the predicates with which a given state has a ngtyantersectionPp
is finitary. This schema can be refined by adding new predicates intcetie. s
The following theorem shows that we may eliminate a spurmusmter-example
by extending the predicate sBtby the languages of all states of the tree automa-
ton representing(;,; in the analysis of the spurious counter-example (recatl tha
X = 0) as presented in SectiGh2

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

Theorem 3.1 Let us have any two tree automata = (Qs, 2, Fiy, 0pr) and X =
(Qx,%, Fx,dx) and a finite set of predicate automafas.t. Vgy € Qx : 3P €
P : L(X,qx) = L(P). Then, ifL(M) N L(X) =0, L(ap, (M)) N L(X) = 0 too.

Proof. The proof is a generalisation of the prod] [for word automata. We
prove the theorem by contradiction. Suppdsew,(M)) N L(X) # 0. Let

t € L(ap,(M)) N L(X). Ast is accepted bwp, (M), M must accept it when we
allow it to perform a certain number of “jumps” between ssatgual wrt.~7,—
after accepting a subtree band getting to some € Q,;, M is allowed to jump
to anyq’ € Q) such thaty ~7, ¢’ and go on accepting from there (with or without
further jumps).

Leti > 0 be the minimum number of jumps needed for accepting a tree fro
L(ap,(M))NL(X) in M and lett’ be such a tree. When looking at the acceptance
of ¢/ in M (with some jumps allowed), we can identify maximum subti@gsthat
may be accepted without jumps—in the worst case, they at¢hedeaves. Let us
take any of such subtrees. Such a subtree accepted in somg, from which M/
jumps to somey, and goes on accepting the rest of the input. Suppose thait
accepted in somey € Qx in X. Asty € L(M,q), L(M,q) N L(P) # (for the
predicateP € P for which L(P) = L(X, qx). Moreover, ag; ~%; qa, L(M, g2) N
L(P) # 0 too. This implies there exists € L(P) such that, € L(M, g,) and
tos € L(X,qx). However, this means that the tréethat we obtain from’ by
replacing its subtreg with ¢, and that clearly belongs tb(ap,, (M)) N L(X) can
be accepted i/ with i — 1 jumps, which is a contradiction to the assumption of
being the minimum number of jumps needed. O

The abstraction of an automatdn wrt. the state equivalence based on pred-
icate languageB,» can be implemented as labelling each stat@/oby the pred-
icates with which its language has a non-empty intersectiad then collapsing
states with an equal labelling. Here, let us stress that waimng Pp, it is not
necessary to store each of the newly introduced predicat@esponding to the
states ofX, ; independently and then perform the labelling indepengédotleach
of them. We may keep justy,; and then perform labelling not by jusf,,, but
by each of its states. Moreover, this labelling may be imgetad by one simul-
taneous run through/ and X, which corresponds to an efficient simultaneous
labelling by all the predicates containedXi, ;.

4 Experimentswith ARTMC

In order to be able to practically evaluate the proposed austlof ARTMC, we
have implemented them in a prototype tool. We have based ratotgpe tool
on theTimbuklibrary [13] written in Ocaml. Timbuk provided us with the ba-
sic operations over tree automata needed in ARTMC (such ias untersection,
complementation, etc.). However, we had to extend Timbuk wisupport for tree
transducers. We added two implementations of tree traessitea simpler and
more efficient for structure-preserving transducers an@eercomplex for general
transducers. The latter implementation exploits a decaitipa of a tree trans-

7

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

ducer into three less complicated ones as describetllin [This decomposition
can be performed automatically for any tree transducer.

We have tested our verification methods on several examppgsicols using

a tree-shaped network cited in the literatuté,8,1,2]:

Simple Token ProtocoA token is being passed in a tree-shaped network from a
leave to the root. We check that the token does not disappeaeplicate.
Two-Way Token ProtocoRn analogy to the previous example, but we allow the
token to be passed upwards as well as downwards.

Percolate Protocal A tree-shaped network of processors computes the logical
disjunction of the boolean values that appear in the leadesioWe check that
the computed value is always correct.

Tree Arbiter Protocal A tree-shaped network is used to implement mutual exclu-
sion among the leave processors. A request to enter theatstction is prop-
agated upwards till a node is found which has a token allowimgto enter the
critical section or which knows where the token is (becatigeainted the token

to one of its children). A node with the token can always séeddken upwards

or grant it to any of its children. We check the mutual exauagproperty.

Leader Election ProtocolOne of a set of processors is to be elected a leader and
a tree-shaped network is used for this purpose. The leagadivaded into can-
didates and non-candidates. The information about theéemds of candidates

is propagated upwards. In the subsequent downward phaa#) &pding from

the root to one of the candidate nodes is non-determinifstisalected and thus

a leader is established. We check that exactly one leadbo&ea.

All the above examples work with a tree-shaped network of edfigtructure.

In order to test the ability of our method to work with nonestiure-preserving
systems, we have consideredimple broadcast protocoln the protocol, the root
sends a message to all leave nodes. They answer and the suaser@ombined
when travelling upwards. An intermediate node may decide¢end the message
downwards and wait for new data. New nodes may dynamicailtytjee network
at leaves and also leave the network in a suitable momenthé&kdhat there is at
most one active message on each path from the root to thesleave

The results of our experiments are summarised in TabM/e performed ex-

periments with both the finite-height abstraction as wellak the predicate-based
abstraction. We considered both forward as well as backwariication—i.e.
starting with the set of initial states and checking that ltlael states cannot be
reached or vice versa. In the table, we always present therlvesult of these two
approaches. For the finite-height abstraction, we consitibe initial height (and
increased it byl if necessary). For the predicate-based abstraction, wedened
the automaton describing the set of bad states as the oti&y} priedicate (or—more
precisely—all the automata that can be obtained from it msimtering each of its
states as the only accepting one). We experimented withrtipyeinitial set of
predicates too—this turned out to be the fastest optiorh®Percolate protocol.

Notice that the predicate-based abstraction is almostyaivbetter than the

finite-height abstraction. This is different from the woralse where the results

8

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

Table 1
Some results of experimenting with ARTMC

Protocol H, Pp

Token passing backwards: 0.08s forwards: 0.06s

Two-way token passing backwards: 1.05 forwards: 0.09s

Percolate backwards: 20.8s forwards: 2.4s
Tree arbiter backwards: 0.31s backwards: 0.34§

Leader election backwards: 2.0§ forwards: 1.74s

Broadcasting backwards: 9.15 forwards: 1.0s

differ. An explanation of this phenomenon is a part of ouufatwork. The ver-
ification times presented in Tablewere obtained on an Intel Centrino 1.6GHz
machine with 768MB of memory. We consider these results gapouraging and
we are now working on a new version of our tool that will be lthea the Mona
library. This gives us hope of even better results and anatapen of a success-
ful applicability of the tool on real-life case studies (nding, e.g., verification of
programs with dynamic linked data structures).

5 Conclusions

In the paper, we have proposed abstract regular tree modekiciy as a generali-
sation of the successful approach of abstract regular nobadeking. In particular,
we have proposed two kinds of abstractions over tree autobazested on collapsing
In some sense equivalent states of these automata. Onealfgtractions decides
which states are equivalent by comparing their languageseet of a bounded
height while the second one compares the states wrt. whistbielanguages sat-
isfy (i.e. have a non-empty intersection with) a set of pratés having the form of
regular tree languages. Both of these abstractions arenatit@lly refinable when
a spurious counter-example is found and allow one to de&lavitoverapproxima-
tion of the state space precise just enough to verify a givepgsty of interest. In
this way, the state explosion in automata representingsthehability set is fought.
The above abstractions were inspired by some of the schesedsiuthe original
ARMC.

We have implemented the proposed methods in a prototypetabévaluated
them on multiple verification examples with very encourggiesults. Currently,
we are building a new and much more elaborate version of olibtsed on the tree
libraries of Mona [L6]. This tool promises even better results and a high potentia
for a successful application on real-life verification peabs.

Apart from finishing the new version of our tool, our future nkancludes a
research on the various application domains of ARTMC. Tmeyude, e.g. ver-
ification of programs with dynamic linked data structuresRMC has already

9

BouAjsani, HABERMEHL, ROGALEWICZ, VOJNAR

been shown useful for verification of programs with 1-seletihked dynamic data
structures T]. The use of ARTMC could allow us to handle much more general
structures having a tree form with possibly additional peris defined over it. An-
other promising application area is the domain of XML maiapons. Indeed,
XML documents have a tree structure and most of XML parsexdased on the
tree automata theory—in particular, on hedge auton®té&[irthermore, we intend

to use our approach for programs with abstract data stregtmnd cryptographic
protocols along the lines ol []. For all these applications we plan to study the en-
coding in tree automata and transducers and the possidildgfining application
dependent abstractions.

References

[1] P.A. Abdulla, B. Jonsson, P. Mahata, and J. d'Orso. Raglitee Model Checking.
In Proc. of CAV’'02 LNCS2404, 2002.

[2] P.A. Abdulla, A. Legay, J. d'Orso, and A. Rezin8imulation-Based Iteration of Tree
Transducersin Proc. of TACAS’'05LNCS3440, 2005.

[3] R. Alur, R. Brayton, T. Henzinger, S. Qadeer, S. Rajam&artial-Order Reduction
in Symbolic State Space Exploration. Pmoc. of CAV’'97 LNCS1254, 1997.

[4] B. Boigelot and P. Wolper. Verifying systems with infi@ibut regular state spaces. In
Proc. of CAV’'98 LNCS1427, 1998.

[5] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. RéguModel Checking. In
Proc. of CAV'0Q LNCS1855, 2000.

[6] A. Bouajjani and T. Touili. Extrapolating Tree Transifoations. InProc. of CAV'02
LNCS2404, 2002.

[7] A. Bouajjani, P. Habermehl, P. Moro, T. Vojnarerifying Programs with Dynamic 1-
Selector-Linked Structures in Regular Model CheckingProc. of TACAS'05LNCS
3440, 2005.

[8] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract RiegiModel Checking, In
Proc. CAV’'04 LNCS3114, 2004.

[9] A. Bruggemann-Klein, M. Murata, and D. WoodRegular tree and regular hedge
languages over unranked alphabets: Version Technical Report HKUST-TCSC-
2001-0, The Hongkong University of Science and Technolag,1.

[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D.iemgS. Tison, and M.
Tommasi. Tree Automata Techniques and Applications, 2005.
http://ww. grappa.univ-lille3.fr/tata

[11] J. Engelfriet. Bottom-up and Top-down Tree Transfatioles—A Comparison,
Mathematical System The8,198-231, 1975.

[12] J. Esparza. Grammars as Processesotmal and Natural Computind-NCS2300,
2002.

[13] T. Genet. Timbuk, a tree automata library, 2005.
http://ww.irisa.fr/lande/genet/tinmbuk

[14] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shat@&mbolic Model Checking
with Rich Assertional Languages. Rroc. CAV'97 LNCS1254, 1997.

[15] N. Klarlund and M.I. Schwartzbach. Graph TypesPhoc. of POPL'93 ACM, 1993.

[16] N. Klarlund and A. Mgller.MONA Version 1.4 User ManuaBRICS, Department of
Computer Science, University of Aarhus, Denmark, 2001.

[17] D. Monniaux. Abstracting cryptographic protocols witee automata. I18cience of
Computer Programming/olume 47, Issue 2-3 (May 2003).

[18] A. Pnueli and E. ShahaAcceleration in Verification of Parameterized Tree Netvgork
Technical report MCS02-12, Weizmann Institute of Scieterel, 2004.

10

	Introduction
	Regular Tree Languages and Transducers
	Abstract Regular Tree Model Checking
	Regular Tree Model Checking
	Abstract Regular Tree Model Checking
	Abstraction Based on Automata State Equivalence
	Abstraction Based on Languages of Finite Height
	Abstraction Based on Predicate Languages

	Experiments with ARTMC
	Conclusions
	References

