• Introduction
Introduction

Theory of Features
Outline

- Introduction
- Theory of Features
- Metarules
- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles

Generalized Phrase Structure Grammar
Outline

- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples
Introduction

- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples
Motivation

Attempt to capture the generalizations made by transformations (in transformational grammar) within context-free grammar.

- We could avoid overgeneration resulting from unrestricted transformations.
- We could use parsing algorithms for CFG.
- (Gazdar et al., 1985)
Generalized Phrase Structure Grammar

Motivation

Attempt to capture the generalizations made by transformations (in transformational grammar) within context-free grammar.

- We could avoid overgeneration resulting from unrestricted transformations.
- We could use parsing algorithms for CFG.
- (Gazdar et al., 1985)

Means

Mechanisms to recreate the effects of transformations within context-free formalism.

- Complex features
 - Capture long-distance dependencies without using movement rules.
- Metarules
 - Allow generalizations.
A phrase structure grammar (PSG) G is a quadruple $G = (N, T, P, S)$, where

- N is a finite set of nonterminals,
- T is a finite set of terminals, $N \cap T = \emptyset$
- $P \subseteq (N \cup T)^* N (N \cup T)^* \times (N \cup T)^*$ is a finite relation – we call each $(x, y) \in P$ a rule (or production) and usually write it as

 \[x \rightarrow y, \]

- $S \in N$ is the start symbol.
Phrase Structure Grammar

Derivation in PSG

Let G be a PSG. Let $u, v \in (N \cup T)^*$ and $p = x \rightarrow y \in P$. Then, we say that uxv directly derives uyv according to p in G, written as $uxv \Rightarrow_G uyv [p]$ or simply

$$uxv \Rightarrow uyv$$

We further define \Rightarrow^+ as the transitive closure of \Rightarrow and \Rightarrow^* as the transitive and reflexive closure of \Rightarrow.

Generated Language

Let G be a PSG. The language generated by G is defined as

$$L(G) = \{ w : w \in T^*, S \Rightarrow^* w \}$$
A context-free grammar is a PSG $G = (N, T, P, S)$ such that every rule in P is of the form:

$$A \rightarrow x$$

where $A \in N$ and $x \in (N \cup T)^*$.
Components of GPSG

1. Grammatical rule format
2. Theory of features
3. Properties of metarules
4. Theory of feature instantiation principles
Components of GPSG

1. Grammatical rule format
2. Theory of features
3. Properties of metarules
4. Theory of feature instantiation principles

Grammatical rule format

- We assume the standard interpretation of context-free phrase structure rules

\[A \rightarrow BC \]

(Chomsky normal form)
- Introduction

- Theory of Features

- Metarules

- Theory of Feature Instantiation Principles

- Examples
Components of GPSG

1. Grammatical rule format
2. Theory of features
3. Properties of metarules
4. Theory of feature instantiation principles

Features

- Two types of features:
 1. Atom-valued
 2. Category-valued
Atom-valued Features

Types of Features

1. Atom-valued
2. Category-valued

Atom-valued Features

- **Boolean** values
- Symbols such as:
 - $[-INF]$ finite, an inflected verb *eats*
 - $[-INV]$ inverted subject-auxiliary inversion, as in *Is John sick?*
 - $[+INF]$ infinitival *to eat*
Category-valued Features

Types of Features

1. **Atom-valued**
2. **Category-valued**

Category-valued Features

- The value is something like a nonterminal symbol (which is itself a feature specification).
- **SUBCAT** – feature that identifies the complement of the verb
- **SLASH**
SLASH Feature

- Represents missing constituent.
- Consider a normal transitive verb phrase VP.
- Then, VP[SLASH = NP], or VP/NP for short, represents this VP when it has an NP missing.
 - “VP with an NP gap”
- S/NP – sentence with a missing NP, etc.
SLASH Feature

- Represents **missing constituent**.

- Consider a normal transitive verb phrase VP.

- Then, VP \[\text{SLASH} = NP \], or VP/NP for short, represents this VP when it has an **NP missing**.
 - “VP with an NP gap”

- S/NP – sentence with a missing NP, etc.

Example

<table>
<thead>
<tr>
<th>VP</th>
<th>VP/NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>hit the floor</td>
<td>hit [e]</td>
</tr>
<tr>
<td></td>
<td>(as in Who did John hit?)</td>
</tr>
</tbody>
</table>
• To handle *wh*-questions (*Who did John hit?*), we need another feature besides *SLASH*.
 • Encode the “questionlike” nature of these sentences.
• + *WH*
To handle *wh*-questions (*Who did John hit?*), we need another feature besides *SLASH*.

- Encode the “questionlike” nature of these sentences.

- \(+WH\)

Example

Now we can differentiate the following NPs:

1. \(-WH[the\ man]\)
2. \(+WH[which\ man]\)
3. \(-WH[John]\)
4. \(+WH[who]\)
• **Extension** of feature specification = larger feature specification containing it
Feature Extension

- **Extension** of feature specification = larger feature specification containing it

Example

- Feature specification:
 \{[+N], [+V]\}
 - The category A - adjective
• **Extension** of feature specification = larger feature specification containing it

Example

• Feature specification:
 \{[+N], [+V]\}
 - The category A - adjective

• Possible extension:
Feature Extension

- **Extension** of feature specification = larger feature specification containing it

Example

- Feature specification:
 \{[+N], [+V]\}
 - The category A - adjective

- Possible extension:
 \{[+N], [+V],
• **Extension** of feature specification = larger feature specification containing it

Example

- Feature specification:
 \{[+N], [+V]\}
 - The category A - adjective

- Possible extension:
 \{[+N], [+V], [+PRED]\}
Feature Extension

- **Extension** of feature specification = larger feature specification containing it

Example

- Feature specification:
 \{ [+N], [+V] \}
 - The category A - adjective

- Possible extension:
 \{ [+N], [+V], [+PRED] \}
 - Adjective in a predicative position

 Mary is \{ [+N], [+V], [+PRED] \} intelligent
Feature Unification

- Similar to the set union operation.
Feature Unification

- Similar to the set union operation.

Example

- Feature specifications:
 \[
 \{[+V], [+PRED]\}
 \{[-N], [+V]\}
 \]
• Similar to the set union operation.

Example

• Feature specifications:
 \{[+V], [+PRED]\}
 \{[−N], [+V]\}

• Unification:
Feature Unification

- Similar to the *set union* operation.

Example

- Feature specifications:

 \[
 \{[+V], [+PRED]\} \\
 \{[−N], [+V]\} \\
 \]

- Unification:

 \[
 \{[+V]\}, \\
 \]
• Similar to the set union operation.

Example

• Feature specifications:
 \{ [+V], [+PRED] \}
 \{ [−N], [+V] \}

• Unification:
 \{ [+V], [+PRED] \}
• Similar to the set union operation.

Example

• Feature specifications:
 \{[+V], [+PRED]\}
 \{[−N], [+V]\}

• Unification:
 \{[+V], [+PRED], [−N]\}
Feature Unification

• Similar to the set union operation.

Example

• Feature specifications:
 \{ [+V], [+PRED] \}
 \{ [−N], [+V] \}

• Unification:
 \{ [+V], [+PRED], [−N] \}
Feature Unification

- Similar to the set union operation.

Example

- Feature specifications:
 \{ [+V], [+PRED] \}
 \{ [−N], [+V] \}

- Unification:
 \{ [+V], [+PRED], [−N] \}

- Note: If features contradict each other, unification is undefined.
- Introduction

- Theory of Features

- **Metarules**

- Theory of Feature Instantiation Principles

- Examples
Metarules

Components of GPSG

1. Grammatical rule format
2. Theory of features
3. Properties of metarules
4. Theory of feature instantiation principles

Metarules

- **Metarule** – function from lexical rules to lexical rules.
- Metarules generate related phrase structure rules.
- Similar function to transformations in transformational grammar.
Passive Metarule

Example

John washes the car.
⇒ The car is washed by John.

• We could write rules to generate the second sentence directly.
• Problem with such approach: no generalization
Passive Metarule

Example

John washes the car.
⇒ The car is washed by John.

- We could write rules to generate the second sentence directly.
- Problem with such approach: no generalization

Passive Metarule

\[VP \to W \text{ NP} \Rightarrow VP[\text{PASSIVE}] \to W(PP[+by]) \]

- For every context-free rule introducing VP as an NP and some variable number of constituents (including the verb) indicated by W, another context-free rule is introduced, such that:
 1. VP is marked with \([+\text{PASSIVE}]\) feature (atom-valued)
 2. NP present in the active form is missing
 3. optimal PP is introduced, marked with \([by]\) feature (atom-valued)
 - “selects preposition by”
- W – varying parameter – standard rewrite rules produced when W is instantiated
Passive Metarule

\[VP \rightarrow W\ NP \Rightarrow VP[\text{PASSIVE}] \rightarrow W(PP[+by]) \]

Example

\[[VP \text{ washes the car}] \quad [VP \text{ washed (by NP)}] \]

- Notice that the passive metarule makes no reference to the subject of the sentence – this is because the semantics for the verb will be different for different instantiations.
- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples
Components of GPSG

1. Grammatical rule format
2. Theory of features
3. Properties of metarules
4. Theory of feature instantiation principles

Theory of Feature Instantiation Principles

- Metarules capture generalizations made by *local* transformations in a transformational grammar.
- This will allow us to handle *long-distance dependencies*.
Phrase structure rules specify that one category is the head of the phrase.

- **Head** – the category-defining element of the phrase
- **Foot** – the complement of the phrase

Example

\[NP \rightarrow N \text{ Comp} \]

- **Head**: N
- **Foot**: Comp
HEAD and FOOT Features

- Phrase structure rules specify that one category is the **head** of the phrase.
- **Head** – the category-defining element of the phrase
- **Foot** – the complement of the phrase

Example

NP → N Comp

- Head: N
- Foot: Comp

Sets of Features

1. **HEAD features** = \(\{N, V, PLURAL, PERSON, PAST, BAR, \ldots\}\)
2. **FOOT features** = \(\{SLASH, WH\}\)
• Properties of the head elements of rules

• Values: + or –

HEAD Feature Principle

The *HEAD* features of a child node must be identical to the *HEAD* features of the parent.
FOOT Features

- Encode more complex information about the movement of *wh*-phrases and NPs
- Values: categories

FOOT Feature Principle

The FOOT features instantiated on a parent category in a tree must be identical to the unification of the instantiated FOOT feature specifications in all its children.
- Introduction
- Theory of Features
- Metarules
- Theory of Feature Instantiation Principles
- Examples
In transformational grammar, we introduce a transformational rule to move the *wh*-phrase *who* or *what* from the deep structure position (marked with a “trace” *e*) to the front of the sentence.

In GPSG, we can generate the sentence without using transformations.
Example: *wh*-questions

Example

Who drives a Honda?

What does John drive e?

- In transformational grammar, we introduce a transformational rule to move the *wh*-phrase *who* or *what* from the deep structure position (marked with a “trace” *e*) to the front of the sentence.

- In GPSG, we can generate the sentence without using transformations.

Idea

- Encode the “movement” information on the node of the tree directly.

- Pass this information up and down the tree using features.
First, consider a simple sentence such as the following

Example

John drives a Honda.
Example: *wh*-questions

- First, consider a simple sentence such as the following

 Example

 John drives a Honda.

- The rules necessary to build such sentence are:

 \[
 S \rightarrow NP \text{ VP} \\
 VP \rightarrow TV \text{ NP} \\
 \]

- TV – transitive verb, which takes NP as its subject

 \[
 TV = \{ [+V], [-N], [\text{SUBCAT} = NP]\}
 \]
Example: *wh*-questions

- First, consider a simple sentence such as the following

 Example:

 John drives a Honda.

 - The rules necessary to build such sentence are:

 \[
 S \rightarrow NP \ VP \\
 VP \rightarrow TV \ NP \\
 \]

 - TV – transitive verb, which takes NP as its subject

 \[
 TV = \{ [+V], [−N], [SUBCAT = NP] \} \\
 \]

 - In order to generate *wh*-movement sentence, we assign the value *NP* to the feature *SLASH* on the VP node.
 - This indicates that there is a constituent missing.
Example: *wh*-questions

- In GPSG, according to the *FOOT* feature principle, rule of the form $VP \rightarrow NP\ SP$ implies rule of the form $VP/\ NP \rightarrow NP/\ NP$

- Similarly, the rule $S \rightarrow NP\ VP$ allows two other rules:

 $S/\ NP \rightarrow NP\ VP/\ NP$
 $S/\ NP \rightarrow NP/\ NP\ VP$

- Note: *WH* cannot cooccur with *SLASH*
Example: \textit{wh}-questions

- In GPSG, according to the \textit{FOOT} feature principle, rule of the form $\text{VP} \rightarrow \text{NP SP}$ implies rule of the form $\text{VP} / \text{NP} \rightarrow \text{NP} / \text{NP}$

- Similarly, the rule $\text{S} \rightarrow \text{NP VP}$ allows two other rules:
 \[
 \begin{align*}
 \text{S} / \text{NP} & \rightarrow \text{NP VP} / \text{NP} \\
 \text{S} / \text{NP} & \rightarrow \text{NP} / \text{NP} \text{ VP}
 \end{align*}
 \]

- Using the two features \textit{WH} and \textit{SLASH}, we can account for the \textit{wh}-questions.
- Assume that the rules for expanding the sentence are given as follows
 \[
 \begin{align*}
 \text{S} & \rightarrow \text{NP VP} \\
 \text{S} & \rightarrow \text{NP S} / \text{NP}
 \end{align*}
 \]

- We can add the $[+ \textit{WH}]$ feature to S – applying the \textit{FOOT} feature principle, the information will be transmitted down the tree.
- Note: \textit{WH} cannot cooccur with \textit{SLASH}
Example: *wh*-questions

Who drives a Honda?
What does John drive?

\[
S \rightarrow \text{NP VP} \\
S \rightarrow \text{NP S/NP}
\]
References

James Allen:
Natural Language Understanding,
The Benjamin/Cummings Publishing Company. Inc., 2005

Gerald Gazdar, Ewan H. Klein, Geoffery K. Pullum, Ivan A. Sag:
Generalized Phrase Structure Grammar,
Harvard University Press, 1985

Robert N. Moll, Michael A. Arbib, A. J. Kfoury:
An Introduction to Formal Language Theory,
Springer-Verlag, 1988
Thank you for your attention!
End