
Formal Verification of the CRC Algorithm Properties ⋆

P. Hlávka1, V. Řehák2, A. Smrčka1, P.Šimeček2, D. Šafránek2, and T. Vojnar1

1 FIT BUT, Brno, Czech Republic
{xhlavk00,smrcka,vojnar }@fit.vutbr.cz

2 FI MU, Brno, Czech Republic
{xrehak,xsafran1,xsimece1 }@fi.muni.cz

Abstract. This paper presents the verification of CRC algorithm properties. We
examine a way of verifying of a CRC algorithm using exhaustive state space ex-
ploration by model checking method. The CRC algorithm is used for calculation
of a message hash value and we focus on verification of the property of finding
minimal Hamming distance between two messages having the same hash value.
We deal with 16, 32 and 64 bits CRC generator polynomials, especially with one
used in the Liberouter project.

1 Introduction

The FlowMon is one of network adaptors developed within the Liberouter—Programmable
Hardware [8] project, which aim is to create a monitoring probe for gathering a sum-
mary information of network data flows. The FlowMon [6] keepsdata of current opened
flows and identifies the flow for every incoming packet via 64-bit CRC hash value. One
of the common properties of all hash functions is that, if input message has greater
length than the length of the hash value, it producescollisions(or there existcolliding
messages)—different input messages with the same hash value. These collisions are
undesirable when using hash algorithm for message identification. Our goal is to get
the minimal Hamming distance of two colliding messages.

Owing to the fact that the CRC algorithm has strong mathematical basis, most of the
effort is given to verifying of the selected generator polynomial, which is the base of the
CRC functionality. One of interesting properties is minimal Hamming distance of any
two colliding messages. This information is obtained by theCRC algorithm simulation
or by formal verification. Exhaustive verification of the long-length polynomials (high
order polynomials) is impossible due to the state space explosion problem and there-
for the simulation approach offers more satisfying results. But exhaustive state space
exploration has also some interesting results for the length of 32 bit CRC algorithms
[4] (use of the cluster computer for verifying the properties of CRC32-IEEE generator
polynomials). Further information on a similar topic can befound in [2] (special algo-
rithm for calculating minimal Hamming distance of two colliding messages) and [5]
(finding the most suitable generator polynomial).

We will discuss an unusual way of CRC verification, i.e., we use the model check-
ing method for exhaustive state space exploration and formal verification of the minimal

⋆ This research has been supported by the CESNET activity “Programmable hardware” [8].

Hamming distance. At first, we will describe some main properties of the CRC algo-
rithm, the second chapter deals with searching collisions.The next chapter describes
our implemented model for the algorithm of finding collidingmessages and minimal
Hamming distance. We have also realised some experiments inthree non-commercially
model checkers (Cadence SMV [3, 9], NuSMV [1] and Spin [7]). The last chapter dis-
cusses the most important results of our experiments.

2 Cyclic Redundancy Check

The Cyclic Redundancy Check (CRC) algorithm was originallydeveloped for the de-
tection of line transmission errors. It is designed to be fast and easy to implement in a
hardware by using logicXOR(exclusive OR) gates and shifters. The algorithm provides
very good protection from burst errors, which are typical for transmission lines. Thanks
to easy implementation, it is useful for error detection butcannot safely rely on data
integrity verification.

Mathematically, the CRC is based on division operation overGalois FieldGF(pn).
If n > 1, the elements of theGF(pn) can be represented as polynomials which coeffi-
cients belong toGF(p) and the maximum order of polynomials is bounded from above
by n. If p = 2, as for the CRC algorithm, coefficients ofGF(2) are 0 or 1 and the
polynomial can be written as a binary vector.

Ordinary arithmetical operations such as addition, subtraction, multiplication, and
division closed onGF(2n) are depicted in Figure 1.

Polynomial as a binary vector inGF(2n)

(x6 +x5 +x2 +x+1) = (01100111)2 = (67)16

(x7 +x6 +x5 +x4 +1) = (11110001)2 = (F1)16

Addition (1111+101= 1010)

(x3 +x2 +x+1)+(x2 +1) = x3 +2x2 +x+2 = x3 +x

Subtraction (1011−101= 1110)

(x3 +x+1)− (x2 +1) = x3−x2 +x+2 = x3 +x2 +x

Multiplication without modulo reduction (101·11= 1010)

(x2 +x)(x+1) = x3 +2x2 +x = x3 +x

Division with remainder (1011= 101·11+1)

x3 +x+1 = (x2 +x)(x+1)+1

Fig. 1.Examples of arithmetical operations overGF(2n)

The result of the CRC algorithm, a so-calledhash value(commonly also known as
a checksum), is defined as the remainder after a division of input message by a gen-

erator polynomial overGF(2n). The generator polynomial is the main CRC algorithm
parameter which influences error detection capabilities orhash quality. The bit length
of a hash value (reminder after a division) depends on the order of generator polyno-
mial (divisor). If the order of a divisor isn then the order of a reminder is at mostn−1.
Therefore, the length of a reminder binary representation (length of a hash value) isn.

In a real application, the hash value is computed from the input message extended
with n zero bits appended to the end of an input message and transmitted. An input mes-
sage together with its hash value produce a message which is divisible by the generator
polynomial. The side, which receives the message with the appended hash value, com-
putes a checksum from the whole incoming message. The incoming message is correct,
if the calculated hash value is a zero-valued vector.

3 Hash Collisions

If the length of the incoming message (hash function input) is greater than the length
of the produced hash value then there always exist at least two distinct input messages
with the same hash value. Such input messages are calledhash collisions(or colliding
messages). We focused mainly on the minimal number of bits for which the two collid-
ing messages are different (Hamming distance of colliding messages) and partly on the
position of such bits.

Minimal Hamming distance is one of the most important parameters for error detec-
tion codes but there is no easy way how to figure it out from an arbitrary CRC generator
polynomial. However, there are rules for deciding whether the chosen generator poly-
nomial is capable ofn-bit errors (changes) detection for some selectedn.

Let:

– T(x) be a polynomial (binary vector) representing aninput (incoming) message of
orderm−1 (length of an input vector is|T(x)| = m bits).

– E(x) be a polynomial (binary vector) of the orderm−1 (|E(x)| = |T(x)| = mbits).
Each vector coefficient ofE(x) with value 1 corresponds to the input messageT(x)
coefficient that has been inverted. In a real application, this polynomial represents
an errors during message transmission. Therefore, we call this vector as theerror
vector

– G(x) be a generator polynomial of the ordern (|G(x)| = n+1 bits).

There is no need to show here the whole complex mathematics ofCRCs (see [10] for
further details). For our purposes, the following simplified equations will be sufficient.
Note that the arithmetical operations in polynomials expression, such as ‘+’ or ‘ mod ’,
are closed inGF(2n).

The collision appears when two input messagesT1(x) 6= T2(x) have the same hash
value:

T1(x) mod G(x) = T2(x) mod G(x) (1)

These two vectors differ in several bits kept inE(x) polynomial.

E(x) = T1(x)+T2(x) = T2(x)+T1(x) (2)

Let us assume that
T2(x) = T1(x)+E(x) (3)

is a colliding message to the original messageT1(x). From (1) and (2) we get:

T1(x) mod G(x) = (T1(x)+E(x)) mod G(x) (4)

T1(x) mod G(x) = T1(x) mod G(x)+E(x) mod G(x) (5)

which holds if E(x) mod G(x) = 0 (6)

Such anE(x) is calledcolliding error vector(colliding error polynomial).
The CRC algorithm is said to be a non-secure hash function because there is an easy

way how to generate any collisions to arbitrary input message. This could be done by
creating a colliding error polynomial in the following manner:

E(x) = x jG(x), where|E(x)| = m, |G(x)| = n+1, j ∈ 〈0;m−n−1〉, (7)

then all inputT(x)+ E(x) have the same hash as the original input messageT(x) be-
cause the error polynomialE(x) is divisible by the generator polynomialG(x). More
complex error patterns could be created using the collidingerror polynomial

E(x) = x j i G(x)+x j i−1G(x)+ · · ·+x j0G(x) (8)

which is divisible by the generator polynomialG(x) for arbitraryi > 0 and j i ∈ 〈0;m−
n). To generate unique collision error polynomials, only elements when(i < m−n)∧
(jk = jm ⇒ k = m) are meaningful. See figure 2 for the simple example of a collision
error polynomial.

Proposition 1. There are2m−n−1 distinct non-zero collision error polynomials E(x)
for the input message length m and the hash length n+1.

Proof. If the input message length ism (the order ofT(x) is m− 1) and the length
of generator vector isn+ 1 (the order ofG(x) is n). There existsx j , j ∈ 〈0;m− n)
such that the order of a productx j G(x) is less thanm (x jmaxxn = xm−n−1xn = xm−1).
According to (8), the error polynomials are created as the sum closed inGF(2) of
various combination of productsx j G(x). Number of such combinations is 2m−n. There
are no two combinations producing equal error vector, because the equation

x jpG(x)+x jp−1G(x)+ · · ·+x j0G(x) = xkr G(x)+xkr−1G(x)+ · · ·+xk0G(x)

x jp +x jp−1 + · · ·+x j0 = xkr +xkr−1 + · · ·+xk0 (9)

holds only ifp= r∧∀i ∈ 〈0;p〉 : j i = ki . There are one zero-valued vectorE(x) where no
G(x) is present, so the final number of non-zero collision error polynomials is 2m−n−1.

4 Searching the Minimal Hamming Distance

Once we have a set of all existing collision error polynomialsE(x) generated from a sum
of all possible combinations of productsx jG(x) derived from (8), we can generate every
colliding messageT2 to an input messageT1 by applying (3) as depicted in figure 2.

1 0 1 0 1 1

1 10

1 10

1 10

101

1 10

1 0 1 0 1 1

1 1 1 1 1 1 1 10000

m = 12, n = 2

0 11 0 1 11 0 010 0

Collision error vectorE(x)

Input messaegeT1(x)

Generating polyG(x)

Colliding messageT2(x)

Fig. 2. An example of colliding messages differential by equation (8). Here, the collision error
polynomialE(x) equals a sum of the fourG(x) elements multiplied byx0, x1, x3, andx6.

The number of bits, in which are two colliding input messagesT1(x) and T2(x)
different, is reflected in the collision error polynomialE(x). The minimal Hamming
distance is equal to the minimal number of non-zero coefficients among all possible
error polynomials.

For the implementation, withinGF(2), we can rewrite the equation 8 to a form:

E(x) = cm−n−1xm−n−1G(x)+cm−n−2xm−n−2G(x)+ · · ·+c0x0G(x), (10)

whereci ∈ {0,1} for i ∈ 〈0,m−n−1〉

Then, the generation ofE(x) is based on progressive summarising ofcixiG(x), i ∈
〈0,m−n−1〉. The algorithm of searching the minimal Hamming distance uses such a
calculation, chooses randomly theci coefficients, and counts the non-zero occurrences
of xi elements in currently generatedE(x).

Our model implements the generation of collision error polynomials using shift
and xor operations (Figure 3). It contains a buffer of the same length as the generating
polynomial. This buffer represents a window to currently generatedE(x). The symbolic
representation of the algorithm is the following:

polynomial := CRC_generator_polynomial // vector represe nting G(x)
buffer := (0,0,...,0) // window to generated E(x)
counter := 0 // counter of min. Hamming distance
carrybit := 0 // carry bit after shift operation
c_i := 0 // current c_i coefficient
for i := 0 to m-n-1 do

c_i := choose_random(0,1)
if c_i then

buffer := buffer xor polynomial
end if
carrybit, buffer := shift_left(buffer)
counter := counter + carrybit

end for

At the end of every iteration, the counter value plus the number of non-zero bits of
a buffer equals to a number of non-zero bits of currently generated error messageE(x).
Using state space search methods and the number of steps bounding, it is possible to
find the sequence of shifts and nondeterministic xors of generating polynomial such that
the number of non-zero bits of the error message will be minimal. We can obtain such
an information by running model checking several times withdifferent parameters—
we are looking for the maximum number of non-zero bits for which the property (see
Figure 3) is satisfied. This number is equal to the minimal Hamming distance for the
configuration of the selected polynomial and the respectiveinput message length. Such
an approach is more effective than searching the whole inputspace and searching for
collisions.

Owing to the state space explosion problem in the model checking algorithm, we
have implemented the described model using model checkers (Cadence SMV [3, 9],
NuSMV [1] and Spin [7]) and tried to figure out the minimal Hamming distances for
several generating polynomial and input message lengths.

#define tested_HD 18
module main() {

polynomial : array 0..64 of boolean;
buffer : array 0..64 of boolean;
counter : 0..tested_HD+1; rand : boolean;

polynomial[0] := 1; polynomial[1] := 0; polynomial[2] := 0;
polynomial[4] := 0; . . .; polynomial[64] := 1;

rand := {0,1};

init(counter) := 0;
next(counter) := counter + buffer[0];

init(buffer) := polynomial;
if (rand) { next(buffer) := (buffer << 1) ˆ polynomial; }
else { next(buffer) := (buffer << 1); }

property : assert G(counter+buffer[0]+buffer[1]+...+bu ffer[64]
< tested_HD);

}

Fig. 3. The sketch of the verification model of CRC algorithm for Cadence SMV. This model is
prepared for testing minimal Hamming distance = 18, which isa settings for the last CRC64-
Liberouter polynomial verification (see Table 1).

5 Experiments

To simplify the model and to reduce space requirements, we have implemented three
separate models for hash value length of 16, 32 and 64 bits. Incases when we are
searching for general n-bit error detection, we are not bounding the length of the input

message. In other cases, the input message length can be bounded by adding a special
counter to the model or by using bounded model checking, which does not cause any
additional state space extensions.

Table 1 shows some interesting results from the verificationof five different gen-
erator polynomials. The name and the CRC hash value length isexpressed in the first
column (e.g., CRC32-IEEE is generator polynomial used in ethernet networking for 32
bits checksum). The second and the third column is the settings for the verification.
Other columns represent the results of verification (time, state space and counterex-
ample length). If the last column has no value, the current settings of model checking
fulfils the property, i.e., counted minimal Hamming distance is smaller than set value
(the second column).

The result of the verification for the input messagem, hash lengthn+1, and the min-
imal number of non-zero bitse of the error polynomial is either (i) the prove that there
is not any collision in selected polynomialG(x) between two input messages, which
differ in e bits, (ii) or the counterexample of the lengthp which shows the collision for
the input message lengthp+n+1.

The space requirements of the verification depends exponentially on the length of
the input message and also on the length of the hash value. Foreach of the selected
hash lengths we have tried to figure out the maximal input message length, which can be
successfully verified. Then, on average input message lengths, we have tried to compare
two selected polynomials for each hash length.

6 Conclusion

In this paper, we have discussed the model checking approachof exhaustive verification
of the CRC algorithm property. We have introduced a basis of the CRC algorithm and
its weakness in the field of data integrity. The main problem still remains in searching
of minimal Hamming distance of colliding messages for the CRC with generator poly-
nomials with order greater or equal 64. The proposed approach has been implemented
in NuSMV, Spin and Cadence SMV model checkers (Cadence SMV gives the best re-
sults). The future work can be focused on the algorithm of finding the best generator
polynomialG(x).

References

1. A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSMV: a new Symbolic Model Veri-
fier. InProceedings of the International Conference on Computer-Aided Verification, volume
1999, pages 495–499. Springer Verlag, 2005.

2. Peter Kazakov. Fast Calculation of the Number of Minimum-weight Words of CRC Codes.
volume 47, pages 1190–1195, 2001.

3. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
ISBN 0-7923-9380-5.

4. Philip Koopman. 32-Bit Cyclic Redundancy Codes for Internet Applications. InDSN ’02:
Proceedings of the 2002 International Conference on Dependable Systems and Networks,
pages 459–472, Washington, DC, USA, 2002. IEEE Computer Society.

G
(x

)
po

ly
no

m
ia

l

In
pu

tl
en

gt
h

[b
its

]

m
in

im
al

H
am

m
in

g
di

st
an

ce

C
he

ck
in

g
tim

e
[s

]

B
D

D
no

de
s

S
ta

te
sp

ac
e

S
te

ps
of

co
un

te
re

xa
m

pl
e

CRC16-CCITT 1023 2 181.20 24508002.09·106 -2

CRC16-CCITT 2047 2 830.65 56480368.37·106 -2

CRC16-CCITT ∞ 2 197.44 -1 19657132752
CRC16-CCITT ∞ 3 185.06 -1 262143 -2

CRC16-CCITT ∞ 4 - - - 1
CRC16-Baicheva 127 2 1.15 -1 32515 -2

CRC16-Baicheva 1023 2 1.94 -1 36183 136
CRC16-Baicheva 63 4 51.16 48081851.97·106 -2

CRC16-Baicheva 127 4 44.28 29319071.06·106 -2

CRC16-Baicheva 255 4 43.87 31740451.06·106 136
CRC32-IEEE 1263 4 614.33 -1 -1 -2

CRC32-IEEE 32 6 246.83 248667003.07·106 -2

CRC32-IEEE 32 8 596.32 356895005.08·106 -2

CRC32-IEEE 32 10 132.32 162858732.47·106 22
CRC64-Liberouter 15 14 20.92 5750812 65535 -2

CRC64-Liberouter 15 16 21.13 5751059 65535 -2

CRC64-Liberouter 15 18 2.19 376830 8191 13
CRC64-ECMA 15 24 33.25 5750915 65535 -2

CRC64-ECMA 15 26 9.36 1762147 16383 14
1 – Could not be figured for chosen verification tool (NuSMV)
2 – No counterexample found, there is not any error vectorE(x) with chosen parameters.
3 – Bounded model checking was used.

Table 1.Examples of results for selected polynomials. Most of them are from the Cadence SMV
model checker

5. Philip Koopman and Tridib Chakravarty. Cyclic Redundancy Code (CRC) Polynomial Se-
lection For Embedded Networks. InDSN ’04: Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks (DSN’04), page 145, Washington, DC, USA,
2004. IEEE Computer Society.

6. J. Kořenek and T. Pečenka M.Žadnı́k. NetFlow Probe Intended for High-Speed Networks.
In Proceedings of the 15th International Conference on Field-Programmable Logic and Ap-
plications, pages 695–698. IEEE Computer Society, 2005.

7. Bell Labs.SPIN Model Checker. http://spinroot.com/spin/whatispin.html.
8. Liberouter Project Homepage. http://www.liberouter.org/.
9. Ken McMillan. Cadence SMV Manual, 2006. http://www.cis.ksu.edu/santos/smv-doc/.

10. Andrew Tanenbaum.Computer Networks (fourth edition). Prentice Hall, Upper Saddle
River, NJ, 2003. ISBN 0-13-038488-7.

