Formal Verification of the CRC Algorithm Properties *

P. Hlavkd, V. Rehak, A. Smrekd, P.SimeteR, D. Safranek, and T. Vojnat

1 FIT BUT, Brno, Czech Republic

{xhlavk00,smrcka,vojnar }@fit.vutbr.cz
2 FI MU, Brno, Czech Republic
{xrehak,xsafranl,xsimecel }@fi.muni.cz

Abstract. This paper presents the verification of CRC algorithm proesrWe
examine a way of verifying of a CRC algorithm using exhawesttate space ex-
ploration by model checking method. The CRC algorithm iglufee calculation
of a message hash value and we focus on verification of theegyopf finding
minimal Hamming distance between two messages having the kash value.
We deal with 16, 32 and 64 bits CRC generator polynomialss@afly with one
used in the Liberouter project.

1 Introduction

The FlowMon is one of network adaptors developed within thetouter—Programmable
Hardware [8] project, which aim is to create a monitoringlprdor gathering a sum-
mary information of network data flows. The FlowMon [6] keejata of current opened
flows and identifies the flow for every incoming packet via 64cliRC hash value. One

of the common properties of all hash functions is that, ifuhmessage has greater
length than the length of the hash value, it produm@Bsions(or there existolliding
messaggs—different input messages with the same hash value. Thalisians are
undesirable when using hash algorithm for message idaattdit. Our goal is to get
the minimal Hamming distance of two colliding messages.

Owing to the fact that the CRC algorithm has strong matheraBtiasis, most of the
effort is given to verifying of the selected generator paymal, which is the base of the
CRC functionality. One of interesting properties is minlraamming distance of any
two colliding messages. This information is obtained by@RC algorithm simulation
or by formal verification. Exhaustive verification of the ptength polynomials (high
order polynomials) is impossible due to the state spaceosiqu problem and there-
for the simulation approach offers more satisfying resuist exhaustive state space
exploration has also some interesting results for the len§32 bit CRC algorithms
[4] (use of the cluster computer for verifying the propested CRC32-IEEE generator
polynomials). Further information on a similar topic canfband in [2] (special algo-
rithm for calculating minimal Hamming distance of two cdilig messages) and [5]
(finding the most suitable generator polynomial).

We will discuss an unusual way of CRC verification, i.e., we tiee model check-
ing method for exhaustive state space exploration and florendication of the minimal

* This research has been supported by the CESNET activitygfBnomable hardware” [8].

Hamming distance. At first, we will describe some main prtipsrof the CRC algo-
rithm, the second chapter deals with searching collisiding next chapter describes
our implemented model for the algorithm of finding collidingessages and minimal
Hamming distance. We have also realised some experimetiisei non-commercially
model checkers (Cadence SMV [3, 9], NuSMV [1] and Spin [7h)eTast chapter dis-
cusses the most important results of our experiments.

2 Cyclic Redundancy Check

The Cyclic Redundancy Check (CRC) algorithm was origindkyeloped for the de-
tection of line transmission errors. It is designed to be &l easy to implement in a
hardware by using logiEOR(exclusive OR) gates and shifters. The algorithm provides
very good protection from burst errors, which are typicaltfansmission lines. Thanks
to easy implementation, it is useful for error detection baihnot safely rely on data
integrity verification.

Mathematically, the CRC is based on division operation Galpis FieldGF(p").
If n> 1, the elements of th&F(p") can be represented as polynomials which coeffi-
cients belong t&F(p) and the maximum order of polynomials is bounded from above
by n. If p= 2, as for the CRC algorithm, coefficients 6fF(2) are 0 or 1 and the
polynomial can be written as a binary vector.

Ordinary arithmetical operations such as addition, suliva, multiplication, and
division closed orGF(2") are depicted in Figure 1.

Polynomial as a binary vector @F(2")
(0 4+x° 4+ %% +x+1) = (0110011}, = (67),4

(X" 4+ X8+ +x* +1) = (11110001, = (F1) 4
Addition (11114 101= 1010)

CHX+x4+1)+ (P +1) =+ 2 +x+2=x+x
Subtraction (1012 101=1110)
OR+x+1) = (R +1) =X =4+ x+2=x+X +x
Multiplication without modulo reduction (10111 = 1010)
OC+X)(x+1) =3+ 22 +x=x+x
Division with remainder (101% 101-11+ 1)

Cx+1=0C+x)(x+1)+1

Fig. 1. Examples of arithmetical operations ov@F(2")

The result of the CRC algorithm, a so-calledsh valugcommonly also known as
a checksur is defined as the remainder after a division of input mesdaga gen-

erator polynomial oveGF(2"). The generator polynomial is the main CRC algorithm
parameter which influences error detection capabilitielsash quality. The bit length
of a hash value (reminder after a division) depends on therartigenerator polyno-
mial (divisor). If the order of a divisor ia then the order of a reminder is at most 1.
Therefore, the length of a reminder binary representatemgth of a hash value) iz

In a real application, the hash value is computed from thatinpessage extended
with n zero bits appended to the end of an input message and tréedndih input mes-
sage together with its hash value produce a message whiahsibkk by the generator
polynomial. The side, which receives the message with tpem=ged hash value, com-
putes a checksum from the whole incoming message. The imgoméssage is correct,
if the calculated hash value is a zero-valued vector.

3 Hash Collisions

If the length of the incoming message (hash function inmufreater than the length
of the produced hash value then there always exist at leastlistinct input messages
with the same hash value. Such input messages are teltddcollisiongor colliding
messagesWe focused mainly on the minimal number of bits for which tivo collid-
ing messages are different (Hamming distance of collidieggsages) and partly on the
position of such bits.

Minimal Hamming distance is one of the most important paransdor error detec-
tion codes but there is no easy way how to figure it out from aitrary CRC generator
polynomial. However, there are rules for deciding whetimer ¢thosen generator poly-
nomial is capable ofi-bit errors (changes) detection for some selected

Let:

— T(x) be a polynomial (binary vector) representingiaput (incoming message of
orderm— 1 (length of an input vector i (x)| = mbits).

— E(x) be a polynomial (binary vector) of the order— 1 (|E(x)| = |T (x)| = mbits).
Each vector coefficient d& (x) with value 1 corresponds to the input message)
coefficient that has been inverted. In a real applicatiois, flolynomial represents
an errors during message transmission. Therefore, wetsallector as therror
vector

— G(x) be a generator polynomial of the orde¢|/G(x)| = n+ 1 bits).

There is no need to show here the whole complex mathemat©R Gk (see [10] for
further details). For our purposes, the following simptifiequations will be sufficient.
Note that the arithmetical operations in polynomials egpi@n, such as’ or * mod’,
are closed iIrGF(2").

The collision appears when two input messa@igs) # T2(X) have the same hash
value:

Ti1(x) mod G(x) = T2(x) mod G(X) 1)

These two vectors differ in several bits keptix) polynomial.

E(X) = Ta(X) + T2(X) = T2(X) + T1(X) (2)

Let us assume that

T2(x) = Ta(¥) +E(x) ©)
is a colliding message to the original message). From (1) and (2) we get:
T1(x) mod G(x) = (T1(x) + E(x)) mod G(x) 4)
T1(x) mod G(x) = T1(x) mod G(x) + E(x) mod G(x) (5)
which holds if E(x) mod G(x) =0 (6)

Such arE(x) is calledcolliding error vector(colliding error polynomia).

The CRC algorithm is said to be a non-secure hash functioausecthere is an easy
way how to generate any collisions to arbitrary input messdgis could be done by
creating a colliding error polynomial in the following maem

E(x) = ij(x), where|E(X)| =m, |G(X)| =n+1, j € (O;m—n—1), @)

then all inputT (x) + E(x) have the same hash as the original input mes34ggbe-
cause the error polynomi@(x) is divisible by the generator polynomi@i(x). More
complex error patterns could be created using the collidimgr polynomial

E(X) = XiIG(X) + X1 1G(X) + - - - + x0G(x) (8)

which is divisible by the generator polynomi@(x) for arbitraryi > 0 andj; € (O;m—
n). To generate unique collision error polynomials, only ederts when(i < m—n) A
(jk = jm = k= m) are meaningful. See figure 2 for the simple example of a doflis
error polynomial.

Proposition 1. There are2™ " — 1 distinct non-zero collision error polynomials(k)
for the input message length m and the hash lengtiin

Proof. If the input message length s (the order ofT(x) is m— 1) and the length
of generator vector isi+ 1 (the order ofG(x) is n). There existsd, j € (0;m—n)
such that the order of a productG(x) is less tharm (ximaxh = xM-n-1x1 — ym-1),
According to (8), the error polynomials are created as tha siosed inGF(2) of
various combination of product$G(x). Number of such combinations i§'2". There
are no two combinations producing equal error vector, beedue equation

XIPG(X) + XIP1G(X) 4 - - - +XI9G(x) = X G(X) + X 1G(X) + - - - + XOG(x)
ij-i-ij*l-f—---—l—on:Xk’—i—ka*l-i—---—i—XkO (9)

holds only ifp=r AYi € (0;p) : ji =ki. There are one zero-valued veck(x) where no
G(x) is present, so the final number of non-zero collision errdypomials is 2" — 1.

4 Searching the Minimal Hamming Distance

Once we have a set of all existing collision error polynosi(x) generated from a sum
of all possible combinations of products5(x) derived from (8), we can generate every
colliding messagé@>, to an input messagg by applying (3) as depicted in figure 2.

Generating polyG(X) m=12, n=2

inputmessaeg&(x) | 1] o] 1] o i 1 [1] o[1] o 4 4
[2[ol o] [afo]1
. 1l o[1
Collision error vectoiE(x)
1] of 4]
|2l ol o[af fof [ofofdd 44
Colliding messagd(x) | 1] o] 1] 1] 1[o] [o] o] 1] 1] o] o]

Fig. 2. An example of colliding messages differential by equati®y Here, the collision error
polynomial E(x) equals a sum of the fo@®(x) elements multiplied by?, x*, x3, andx®.

The number of bits, in which are two colliding input messades) and Tx(x)
different, is reflected in the collision error polynomia(x). The minimal Hamming
distance is equal to the minimal number of non-zero coeffisiamong all possible
error polynomials.

For the implementation, withiGF(2), we can rewrite the equation 8 to a form:

E(X) = tm-n-1X"""'G(X) + emon-2X""2G(X) + -+ cX’G(x), (10)

wherec; € {0,1} fori € (0,m—n—1)

Then, the generation @&(x) is based on progressive summarisingofG(x), i €
(0,m—n—1). The algorithm of searching the minimal Hamming distancesisich a
calculation, chooses randomly thecoefficients, and counts the non-zero occurrences
of X elements in currently generat&dx).

Our model implements the generation of collision error polyials using shift
and xor operations (Figure 3). It contains a buffer of the sdength as the generating
polynomial. This buffer represents a window to currentingeatedE (x). The symbolic
representation of the algorithm is the following:

polynomial := CRC_generator_polynomial // vector represe nting G(x)
buffer := (0,0,...,0) /I window to generated E(x)
counter := 0 Il counter of min. Hamming distance
carrybit := 0 /I carry bit after shift operation
ci=0 /I current ¢_i coefficient
for i :== 0 to m-n-1 do

c_i := choose_random(0,1)

if c_i then

buffer := buffer xor polynomial
end if

carrybit, buffer := shift_left(buffer)
counter := counter + carrybit
end for

At the end of every iteration, the counter value plus the nenab non-zero bits of
a buffer equals to a number of non-zero bits of currently gateel error messade(x).
Using state space search methods and the number of stepdibgyuihis possible to
find the sequence of shifts and nondeterministic xors of getimg polynomial such that
the number of non-zero bits of the error message will be mahiWe can obtain such
an information by running model checking several times wdiffierent parameters—
we are looking for the maximum number of non-zero bits for ebhihe property (see
Figure 3) is satisfied. This number is equal to the minimal Heang distance for the
configuration of the selected polynomial and the respeatipet message length. Such
an approach is more effective than searching the whole isjppate and searching for
collisions.

Owing to the state space explosion problem in the model ¢hgadgorithm, we
have implemented the described model using model checkadefice SMV [3, 9],
NuSMV [1] and Spin [7]) and tried to figure out the minimal Hanmmgp distances for
several generating polynomial and input message lengths.

#define tested HD 18

module main() {
polynomial : array 0..64 of boolean;
buffer : array 0..64 of boolean;
counter : 0..tested_HD+1; rand : boolean;

polynomial[0] := 1; polynomial[l] := 0; polynomial[2] := 0;
polynomial[4] := 0; . . .; polynomial[64] := 1,
rand := {0,1};

init(counter) := 0;
next(counter) := counter + buffer[0];

init(buffer) := polynomial;
if (rand) { next(buffer) := (buffer << 1) " polynomial; }
else { next(buffer) := (buffer << 1); }

property : assert G(counter+buffer[0]+buffer[1]+...+bu ffer[64]
< tested_HD);

Fig. 3. The sketch of the verification model of CRC algorithm for Cacke SMV. This model is
prepared for testing minimal Hamming distance = 18, which &ettings for the last CRC64-
Liberouter polynomial verification (see Table 1).

5 Experiments

To simplify the model and to reduce space requirements, we maplemented three
separate models for hash value length of 16, 32 and 64 bitsases when we are
searching for general n-bit error detection, we are not ldauwmthe length of the input

message. In other cases, the input message length can beeldunadding a special
counter to the model or by using bounded model checking, lwtiaes not cause any
additional state space extensions.

Table 1 shows some interesting results from the verificabibfive different gen-
erator polynomials. The name and the CRC hash value lengtkpissed in the first
column (e.g., CRC32-IEEE is generator polynomial usedhetet networking for 32
bits checksum). The second and the third column is the gstfior the verification.
Other columns represent the results of verification (timtatesspace and counterex-
ample length). If the last column has no value, the currettingss of model checking
fulfils the property, i.e., counted minimal Hamming distaris smaller than set value
(the second column).

The result of the verification for the input messagédash lengtim+ 1, and the min-
imal number of non-zero bits of the error polynomial is either (i) the prove that there
is notany collision in selected polynomi&(x) between two input messages, which
differ in e bits, (ii) or the counterexample of the lengtdtwhich shows the collision for
the input message lengpgt- n+ 1.

The space requirements of the verification depends expiafigran the length of
the input message and also on the length of the hash valueagbr of the selected
hash lengths we have tried to figure out the maximal input aggskength, which can be
successfully verified. Then, on average input messagetisnge have tried to compare
two selected polynomials for each hash length.

6 Conclusion

In this paper, we have discussed the model checking appad@shaustive verification
of the CRC algorithm property. We have introduced a basi®#ef@RC algorithm and
its weakness in the field of data integrity. The main probléihremains in searching
of minimal Hamming distance of colliding messages for theOQG/Kth generator poly-
nomials with order greater or equal 64. The proposed apprbas been implemented
in NuSMV, Spin and Cadence SMV model checkers (Cadence SM&dhe best re-
sults). The future work can be focused on the algorithm ofifigdhe best generator
polynomialG(x).

References

1. A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NuSM&nhew Symbolic Model Veri-
fier. In Proceedings of the International Conference on Computded\Verificationvolume
1999, pages 495-499. Springer Verlag, 2005.

2. Peter Kazakov. Fast Calculation of the Number of Minimweight Words of CRC Codes.
volume 47, pages 1190-1195, 2001.

3. Kenneth L. McMillan. Symbolic Model CheckingKluwer Academic Publishers, 1993.
ISBN 0-7923-9380-5.

4. Philip Koopman. 32-Bit Cyclic Redundancy Codes for In&trApplications. INDSN '02:
Proceedings of the 2002 International Conference on DepleledSystems and Netwoyks
pages 459-472, Washington, DC, USA, 2002. IEEE Computeefoc

Steps of counterexample

G(x) polynomial
Input length [bits]
Checking time [s]
BDD nodes
State space

18120 245080(2.09-10° 2
83065 56480368.37-10° -2

CRC16-CCITT |1023
CRC16-CCITT |2047

CRC16-CCITT 0| 219744 -1l 19657132752
CRC16-CCITT 0| 3|185.06) 1262143 -2
CRC16-CCITT 0 - - - 1
CRC16-Baicheval 127 1.15 A 32514 2
CRC16-Baicheva|1023 2| 1.94 1| 36183 136

2

51.16) 480818%1.97-10° -
4428 29319071.06-10°| -2
43.87| 317404%1.06-10°| 136
61433 1 A2
CRC32-IEEE 32| 624683(248667003.07-10°| -2
CRC32-IEEE 32| 8|59632(356895005.08-10°| -2
CRC32-IEEE 32/10/13232|162858732.47- 10° 22
CRC64-Liberouter 15|14 20.92| 5750812 65534 2
CRC64-Liberouter 15/16| 21.13| 5751059 65534 2
CRC64-Liberouter 15|18 2.19] 37683(8191 13
CRC64-ECMA 15|24 3325 575091% 65535 2
CRC64-ECMA 15/26| 9.36] 1762147 16383 14
1 _ Could not be figured for chosen verification tool (NUSMV)
2 _ No counterexample found, there is not any error veEtor with chosen parameters.
3 — Bounded model checking was used.
Table 1. Examples of results for selected polynomials. Most of theafieom the Cadence SMV
model checker

CRC16-Baicheva] 63
CRC16-Baicheval 127
CRC16-Baicheval 255
CRC32-IEEE [126°

0o AEDSD N R W o Mnimal Hamming distance

= =

o

Philip Koopman and Tridib Chakravarty. Cyclic Redundaf@ode (CRC) Polynomial Se-
lection For Embedded Networks. SN '04: Proceedings of the 2004 International Con-
ference on Dependable Systems and Networks (DSNi@dg 145, Washington, DC, USA,
2004. IEEE Computer Society.

6. J. Korenek and T. Pegenka Madnik. NetFlow Probe Intended for High-Speed Networks.
In Proceedings of the 15th International Conference on Fletdgrammable Logic and Ap-
plications pages 695-698. IEEE Computer Society, 2005.

Bell Labs.SPIN Model Checkerhttp://spinroot.com/spin/whatispin.html.

Liberouter Project Homepage. http://www.liberouteg/o

Ken McMillan. Cadence SMV Manug2006. http://www.cis.ksu.edu/santos/smv-doc/.

. Andrew Tanenbaum.Computer Networks (fourth editian)Prentice Hall, Upper Saddle
River, NJ, 2003. ISBN 0-13-038488-7.

O © N

