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Abstract. The paper presents a new approach to formal verification
of generic (i.e. parametrised) hardware designs specified in VHDL. The
proposed approach is based on a translation of such designs to counter
automata and on exploiting the recent advances achieved in the area
of their automated formal verification. We have implemented the pro-
posed translation. Using one of the state-of-the-art tools for verification
of counter automata, we were then able to verify several non-trivial prop-
erties of parametrised VHDL components, including a real-life one.

1 Introduction

Modern hardware description languages (HDL) such as VHDL or Verilog allow
digital hardware to be designed in a way quite close to software programming.
These languages offer many features whose use constitutes a challenge for the
current formal verification technologies. One of such challenges is the possibility
of parametrisation of the designed hardware components by values from a do-
main that is not bounded in advance. Parametrisation is widely used, e.g., when
creating libraries of re-usable hardware components.

In this paper, we propose a novel way of verifying parametrised hardware com-
ponents. Namely, inspired by the recent advances in the technology for verifica-
tion of counter automata, we propose a translation from (a subset of) VHDL [11]
to counter automata on which formal verification is subsequently performed. The
subset of VHDL that we consider is restricted in just a limited way, mostly by
excluding constructions that are anyway usually considered as erroneous, unde-
sirable, and/or not implementable (synthesisable) in hardware.

In the generated counter automata, bit variables are kept track in the con-
trol locations whereas bit-vector (i.e. integer) variables—including parameters—
are mapped to (unbounded) counters. When generating counter automata from
VHDL, we first pre-process the input VHDL specification in order to simplify
it (i.e. to reduce the number of the different constructions that can appear in
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it), then we transform it to an intermediate form of certain behavioural rules
describing the behaviour of particular variables that appear in the given design,
and finally we put the behaviour of all the variables together to form a single
counter automaton.

We concentrate on verifying that certain bad configurations specified by a
boolean VHDL expression (which we call an error condition) over bit as well
bit-vector variables is not reachable. We have built a simple prototype tool im-
plementing the proposed translation. Despite there is a lot of space for optimising
the generated counter automata and despite the fact that reachability analysis
of counter automata is in general undecidable [10], we have already been able to
verify several non-trivial properties of parametrised VHDL components, includ-
ing a real-life component implementing an asynchronous queue designed within
the Liberouter project (which aims at designing new network routing and mon-
itoring systems based on the FPGA technology) [13,9].
Related work. Recently, there have appeared many works on automatic formal
verification of counter automata or programs over integers that can also be
considered as a form of counter automata (see, e.g., [6,18,1,15,8,4]). In the area
of software model checking, there have also appeared works that try to exploit
the advances in the technology of verifying counter automata for a verification of
programs over more complex structures, notably recursive structures based on
pointers [3,7,2]. In this work, we get inspired by the spirit of these works and try
to apply it in the area of verifying generic (parametrised) hardware designs. We
obtain a novel, quite general, and highly automated way of verification of such
components, which can exploit the current and future advances in the technology
of verifying counter automata.

Plan of the paper. In Section 2, we introduce some basics of VHDL, we com-
ment on the VHDL constructions that we do not support, and explain the way
we pre-process VHDL for the further transformations. We also introduce the
notion of counter automata. In Section 3, we provide a translation from (simpli-
fied) VHDL to a certain form of intermediate behavioural rules. In Section 4, we
present a translation from the intermediate format to counter automata. Section
5 comments on the reachability properties that we verify and on the way we fa-
cilitate their checking. In Section 6, we discuss our experimental results. Finally,
in Section 7, we conclude and briefly discuss possible future improvements of our
approach.

2 Hardware Design and Counter Automata Basics

2.1 Hardware Design

Nowadays, most of the digital hardware development is not done on the level of
particular gates or transistors, but rather on the more abstract register transfer
level (RTL). There are several languages for RTL hardware design, also known
as hardware description languages (HDL), out of which the most widely used
are VHDL and Verilog. A design specified in such a language is an input for
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hardware synthesis tools, and also for hardware simulation or verification tools.
A process called synthesis transforms a generic RTL description of a system
to the gate/transistor level of a concrete electronic circuit description. Such
a description serves as an input for the further production of an integrated
circuit (through the so-called place&route process) or as a configuration program
for field programmable gate arrays (FPGA) if they are used to implement the
system.

We build our counter automata-based models from the RTL level description
via an intermediate behavioural model. This model cannot be created from the
gate level as on that level the parametrisation of the system is lost—all the
parameters are already instantiated. Moreover, in our model, we are only inter-
ested in the logical behaviour of the system, not in details such as propagation
delays of the gates or the set of concrete hardware elements used to physically
implement the given system.

Although VHDL and Verilog are different languages, their main expressive
means are quite similar from our point of view of building a counter automaton
model from an RTL hardware description (and running a verification on the
counter automaton). That is why, in this paper, we will discuss only the VHDL
language, which, moreover, has a better support for parametrised designs.

Hardware Design in VHDL. In VHDL [11], a more complex hardware sys-
tem is described in a modular way using components. A component is described
by a definition of its interface and its body. The interface defines the inputs and
outputs of a component as well as its parameters which can make the compo-
nent generic. The body of a component, also known as an architecture, consists
of a declaration of internal variables and a collection of the so-called parallel
statements describing the behaviour of the component.

VHDL offers two types of specifying the design of an architecture—structural
and behavioural. Within a structural description, we view a digital circuit as
a composition of objects that may be composed of other smaller objects. In
terms of the parallel statements, this approach is based on using statements of
instantiations of subcomponents and parallel assignment statements (e.g., even
<= not(a1 xor a2 xor a3);1). On the other hand, the behavioural approach
directly describes the desired functionality of a component using the parallel
statement process that is specified as a sequence of statements like sequential as-
signments or conditionals. We have to, however, note that sequential statements
in VHDL have a different meaning than in typical programming languages—the
sequence they are based on is not the execution sequence, but rather a sequence
of preferences of how to proceed under different circumstances (we will get to
this issue closer later on).

Since there is no way how to efficiently synthesise a hardware design from
complex behavioural requirements, the behavioural description is widely used
for a low-level description of parts of a system (e.g., logic functions, simple

1 From a logical point of view, a variable such as even represents a symbolic name for
the expression assigned to it only.
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registers, counters), while the structural description is used for building more
complex components or the entire system.

Transparent and Synchronous Mode. The so-called transparent and syn-
chronous modes of hardware gates substantially influence the output of the gate.
For example, let us have two gates connected in a cascade. If both gates work in
the transparent mode (such gates are known as latches) and the input changes its
value, the first gate instantly propagates the input to its output (the input of the
second gate), and the same value propagation happens at the second gate. The
result of the transparent mode is that the change of the input of the first gate in-
stantly changes the value of the output of the second gate. Conversely, if both gates
work in the synchronous mode (such gates are known as flip-flops), they propa-
gate their inputs to the output one step at a time—the change of the input values
of the first gate changes its output after one clock period, but this still does not
immediately influence the output of the second gate (its output is changed only
after another clock period). Let us add that some gates may be operated both as
latches as well as flip-flops depending on some of their control inputs.

Not Considered VHDL Constructions and Behaviour. VHDL is a very
rich specification language, and we do not cover it fully. However, most of the
restrictions that we describe below correspond to constructions which are in
theory possible, but are usually not used, represent undesirable design practices,
are often not even synthesisable, or modern synthesis tools [12,14] at least issue
warnings when they are used.

First, we do not support VHDL functions, procedures, delay information, and
asserts which serve for a test-bench specification of the designed hardware and
do not have an influence on the behaviour of the hardware.

Next, we disallow cyclic assignments in the transparent mode in a sequen-
tial description of a behaviour (e.g., q <= not(reset and not(set and q)), or
if (reset = ’1’) then a <= b; b <= a; elsif).2 Such assignments would
complicate our constructions significantly, and in practice, they are anyway un-
desirable as they lead to a possible oscillation of the signals.

We concentrate on analysing reachable stable states of hardware components
only. A stable state is a state which does not change until one or more input
variables change their values. Unstable states arise due to transition and prop-
agation delays of real gates changing their stable states (cf. Fig. 1). In general,
even when we are interested only in stable states, if we do not consider unstable
states at all, there is a risk that we will not capture flaws caused by reading
and registering unstable values. Such a flaw can be caused either (i) by a signal
path that is too long wrt. the clock frequency used, or (ii) by an asynchronous
exchange of signals between two clock domains. However, the need to deal with
the former issue is eliminated simply by taking into account the capabilities of
standard synthesis tools. These tools automatically check that the delay arising

2 A sequential gate works in the transparent mode when its output is controlled only
by the level of the input signals.
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in the longest signal path of a given circuit is safe wrt. the clock frequency used.
The latter issue is a little more complicated but it is still usually solvable by using
simple static analysis to check whether the given circuit uses proper synchroni-
sation approaches (like Gray coding) for all clock domain crossing signals [17].
Hence, below, we do not consider unstable states any further.

process (clk)
begin

if (clk’event and clk=’1’) then
x <= a or b;

end if;
end process;
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Fig. 1. (a) The source code of a simple component and (b) an example of a timed
diagram of its behaviour illustrating the notion of stable and unstable states

Finally, we restrict the use of parameters a bit. Namely, we do not allow a
bit-wise access to variables with a parametric range and we do not allow for
loops over parametrised variables. Both of these restrictions could be lifted,
but they would further complicate our translation to counter automata and also
their analysis (as we would have to introduce a relatively complicated arithmetic
to mask out the particular bits of the values of particular counters). We let
experiments with these feature for our future research.

2.2 Simplifying VHDL Code

To avoid a very complex direct transformation from the rich VHDL language
to the intermediate behavioural model introduced in Section 3 (which is then
translated to counter automata in Section 4), we first simplify a VHDL source
code to a form which is much simpler for all the subsequent steps.

As we mentioned before, VHDL components contain input/output ports, pa-
rameters, and internal variables—here, we consider all of them simply as vari-
ables. VHDL provides two basic types of variables: 1-bit (boolean) variables and
arrays (vectors) of bits. Further, there is also a possibility of user-defined struc-
tured types, but they are used as a form of syntactic sugar only. Therefore,
before any further steps, we decompose structured variables to their elements.
Similarly, if a bit vector variable is accessed bit-wise (i.e. there is at least one
statement in the considered code that accesses single bits of the vector at a
time), we replace the vector variable with its boolean components (if we had not
disallowed the bit-wise access to parametrised-size vectors, we would have had
to use a complex arithmetics to mask out the particular bits—e.g., to get a bit
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value at position p in the bit vector represented by an integer value n, we could
use the expression (n div 2p) mod 2). The remaining vectors may then easily
be mapped to counters of counter automata (whereas all 1-bit variables will be
a part of their control states).

Further, we also remove all structural descriptions of circuits and replace them
by the corresponding behavioural description (in a way similar to macro expan-
sion in the C programming language). This can easily be achieved by unfolding
(or flattening) of the structural description taking into account that a structural
description simply describes from which subcomponents a given component is
build of, what are the values of parameters of the subcomponents, and how the
input/output ports of these subcomponents are connected to the input/output
ports of the component and/or to each other (which is done via the internal
variables of the component). We substitute references to the subcomponents by
their behavioural description, connect their input/output ports to the internal
variables of the component (and/or its input/output ports), and substitute pa-
rameters of the subcomponents by the appropriate arguments (which may be
parameters of the component being processed).

Next, we transform the code such that the only statements that will remain
(and that we will have to consider in the further steps) are the following:

1. Assignment statements of the form signal <= expression; appearing in
an architecture definition as parallel statements or in a process section as
sequential statements.

2. Conditional (if) statements appearing in process sections as sequential sta-
tements with the following syntax (and the obvious semantics): if cond1
then stmt1; elsif cond2 then stmt2; ... ; else stmtN; end if;

To this end, we rewrite any other statements to one or more assignment and/or
conditional statements of the above form. In particular, this is the case of the
VHDL selected assignments and case statements (cf. Fig. 2). Moreover, it is also
the case of the VHDL for loops as we assume that they cannot be performed
over parametric bit vectors—otherwise, we would have to model their effect by
special purpose loops in our counter automata.

with sel select
sig <= v1 when c1,

v2 when c2,
else v3;

(a)

process(...)
begin

case sel is
when c1 => sig <= v1;
when c2 => sig <= v2;
when others => sig <= v3;

end case;
end process;

(b)

process(..)
begin

if (sel = c1) then
sig <= v1;

elsif (sel = c2) then
sig <= v2;

else
sig <= v3;

end if;
end;

(c)

Fig. 2. A conversion of (a) selected signal assignments and (b) case statements to
(c) if statements
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Normalization of if Statements. After the pre-processing done above, the
architecture of the component being examined is described by a set of par-
allel assignments and a set of processes, every such a process consists of a
sequence of sequential assignments and (possibly nested) if statements. As we
have already said, these sequential statements inside the processes are not ex-
ecuted sequentially—instead, for each variable, the last applicable assignment
is searched and used, and all the statements preceding it are ignored. For ex-
ample, for a sequence v <= e1; if c then v <= e2; endif;, if c holds, one
performs the v <= e2; assignment, otherwise one performs the assignment v
<= e1; (we may assume that the processes consist solely of assignments and—
possibly nested—if statements).

In order to make dealing with the described semantics easier when generat-
ing the intermediate behavioural model, we perform one more pre-processing
step. In particular, we transform each process into a single nested if statement
in which it is clear under which conditions which assignment is to be applied
(e.g., the example we mentioned above will be transformed to the statement if
c then v <= e2; else v <= e1; endif;—more examples will come below).
More precisely, for each sequential process and each variable v assigned by that
process, we do the following steps (we ignore all assignments to other variables
when handling v):

1. We add an empty else branch to each if statement of the given process
that does not have such a branch.

2. Till there is some assignment or if statement s1 in the given process that is
just before an if statement s2 (i.e. s1 and s2 are on the same level of nesting
of if statements), we move s1 to the beginning of the else branch of s2, i.e.
we nest s1 into the else branch of s2 and put it just before the statements
that are already in this branch (cf. Fig. 3(a)).

3. If there are branches of if statements of the given process that do not
contain any statement, we add the implicit assignment v <= v; to each of
them.

4. We reduce every sequence of statements s1; s2; ...; sn; v <= e; within the
given process to just v <= e;. Here, si for 1 ≤ i ≤ n, n ≥ 1, is a sequence
of assignments or if statements. The fact that at the end of the sequence
there is an assignment statement (and not an if statement) is guaranteed
by the transformation done in the previous step.

2.3 Counter Automata

For an integer arithmetic formula ϕ, let FV (ϕ) denote the set of free variables
of ϕ.3 For a set of variables X , let Φ(X) denote the set of integer arithmetic
formulae with free variables from X∪X ′ where X ′ = {x′ | x ∈ X}. If ν : X → Z is
3 We do not further restrict the kind of integer arithmetics used. It naturally follows

from the integer operations used in the hardware design being handled, to which our
translation adds just an implementation of the implicit modulo arithmetics used in
VHDL—we will get back to this issue in the next subsection.
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if c1 then if c2 then
v <= e1; v <= e2;

end if; else
if c2 then --> if c1 then

v <= e2; v <= e1;
else end if;

v <= e3; v <= e3;
end if; end if;

(a)

if c2 then
v <= e2;

else if c2 then
if c1 then v <= e2;
v <= e1; --> else

else v <= e3;
v <= v; end if;

end if;
v <= e3;

end if;

(b)

Fig. 3. Transformations of sequential statements: (a) moving all statements preceding
an if statement to its else branch, (b) removing statements preceding an assignment
(and thus being useless)

an assignment of FV (ϕ) ⊆ X , we denote by ν |= ϕ the fact that ν is a satisfying
assignment of ϕ. A counter automaton (CA) is a tuple A = 〈X, Q, q0, ϕ0, →〉
where X is a finite set of counters, Q is a finite set of control locations, q0 ∈ Q is
a designated initial location, ϕ0 is an arithmetic formula such that FV (ϕ0) ⊆ X ,
describing an initial assignments of the counters, and →∈ Q × Φ(X) × Q is a
finite set of transition rules.

A configuration of a CA is a pair 〈q, ν〉 ∈ Q × (X → Z). The set of all
configurations is denoted by C. The transition relation

ϕ−→
A

⊆ C × C is defined

by (q, ν)
ϕ−→
A

(q′, ν′) iff there exists a transition q
ϕ−→ q′ such that if σ is an

assignment of FV (ϕ), where σ(x) = ν(x) and σ(x′) = ν′(x), we have that
σ |= ϕ and ν(x) = ν′(x) for all variables x with x′ 
∈ FV (ϕ). We denote by
−→
A

the union
⋃

ϕ∈Φ

ϕ−→
A

, and by ∗−→
A

the reflexive and transitive closure of −→
A

.

A run of A is a sequence of configurations (q0, ν0), (q1, ν1), (q2, ν2) . . . such that
(qi, νi) −→

A
(qi+1, νi+1) for each i ≥ 0 and ν0 |= ϕ0.

2.4 Handling VHDL Integer Variables in Counter Automata

When translating operations on integer variables used in VHDL to operations on
counters, we have to take care of the fact that in VHDL, arithmetical operations
over integers are always implicitly evaluated modulo the range of the appropriate
integer variables. In counter automata, we have to make the modulo computation
explicit (e.g., an assignment v1 <= v2+v3; over integer variables represented on
n bits has to be translated to an assignment of the form v1 := (v2 +v3) mod 2n).

For analysing the generated counter automata, we then, of course, need a tool
that can cope with counter manipulations corresponding both to arithmetical,
logical, and relational operators directly used in the considered VHDL design as
well as to the additional operations stemming from implementing the implicit
modulo computations (and if we add them in the future, then also the bit-wise
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manipulations on integer variables). Given a concrete counter automata analyser,
the translation may need to be adjusted to respect the operations that the tool
supports. If the tool does not offer all the needed operations (nor allows their
implementation based on other supported operations), one has to restrict to
the case when the appropriate integer variables have a fixed range (i.e. are not
parameters) and can also be recorded as a part of the control states of counter
automata.

3 An Intermediate Behavioural Model

In the previous section, we discussed the syntax and semantics of VHDL con-
structions that we will consider in the following, together with the notion of
counter automata that we want to use to model (and analyse) these construc-
tions. In order to make the translation from the simplified VHDL to counter
automata smoother, we make it via an intermediate behavioural model that we
will now present.

3.1 A Definition of the Intermediate Behavioural Model

The intermediate behavioural model of a hardware component is defined as
a triple M = (V, T, B), where V is a set of variables that are typed by a func-
tion T : V → {bool, int}, and B is a set of behavioural rules that describe
the behaviour of a given hardware component and that have a form which we
introduce below.

Let Vi ⊆ V be a set of input ports and Vp ⊆ V a set of parameters. We define
V = V × {last, next, posedge, negedge} to be the set of possible references to
the values of variables from V with the following meaning:

– (v, last) ∈ V refers to the value of v in the last reached (i.e. current) state—
in expressions, we usually abbreviate it simply to v,

– (v, next) ∈ V , abbreviated to v′, denotes the value of v in the next state,
– (v, posedge) ∈ V , abbreviated to ↑v, has the boolean meaning ↑v = ¬v ∧ v′

and denotes the positive edge of a 1-bit variable v (for which T (v) = bool),
– (v, negedge) ∈ V , abbreviated to ↓v, has the boolean meaning ↓v = v ∧ ¬v′

and denotes the negative edge of a 1-bit variable v (for which T (v) = bool).

Further, let E be the set of all (well-typed) expressions that one can form
over V using arithmetical (+, −, ∗, ...), relational (=, 
=, <, >, ≤, ≥), and logi-
cal (¬, ∧, ∨, ...) operators, and let C be the subset of E containing all boolean
valued expressions. Let ⊥ ∈ E denotes an empty expression (see below).

We can now introduce the special conditional assignments that are the be-
havioural rules constituting the set B of an intermediate behavioural model. In
particular, B ⊆ C∗ × V × E. We write a behavioural rule b ∈ B as

c → v := e

for c ∈ C∗ being a list of enabling conditions, v ∈ V the variable set by the rule,
and e ∈ E being an expression defining the new value of v. In other words, b
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with c = c1c2...cn says that if c1 ∧ c2 ∧ ... ∧ cn holds for the evaluation of the
variables, v will get a new value obtained by an evaluation of e. If c = ε, we
consider it to be always true, and the assignment v := e is always enabled.

For a behavioural rule b : c → v := e ∈ B, let cond(b) = c denote the enabling
condition of b, var(b) = v denote the variable to be set, and let value(b) = e be
the expression defining the new value of v. For e ∈ E ∪C∗, let F (e) be the set of
references to variables occurring in e. Finally, let B(v) = {b | b ∈ B, var(b) = v}
be the set of behavioural rules over a variable v.

3.2 Extracting Behavioural Rules from the Source Code

The architecture of a VHDL component consists of a set of parallel assignments
and a set of sequential processes. With respect to the simple VHDL transfor-
mations described in Section 2.2, we may assume that the sequential processes
consists of a single if statement for every variable set within it. In order to
obtain the set of behavioural rules B from such a description, we extract the
rules from VHDL statements as follows:

1. For each parallel assignment v <= e;, we add a rule ε → v := e into B.
2. For each sequential process that sets a variable v by a single, possibly nested,

if statement (after the pre-processing, there is no other possibility), we
proceed as follows. For each assignment statement v <= e; that appears on
the leaf level of such a (nested) if statement, we add a rule c′1, c′2, ..., c′n →
v := e into B (n ≥ 1). Here, c1, c2, ..., cn are all the branching conditions that
one tests before reaching v <= e, and c′i = ci if the condition is supposed to
hold (i.e. we are nesting into an if ci or elsif ci branch) whereas c′i = ¬ci if
the condition is supposed not to hold. An example of such a transformation
is shown in Fig. 4.

3.3 Adjustments of Behavioural Rules

The Environment of a Component. To be able to model check a component,
we need a model of its environment too. Currently, we model the environment
to behave in a completely random way. To do that, we extend the intermediate
behavioural model by adding behavioural rules for all component inputs. For
every such an input v ∈ Vi, we add the following behavioural rule ε → v :=
random. Here, random represents a random integer or boolean value. Note that
we have to adjust the form of random such that the CA analyser that want to
use understands it.

Non-state Variables. We are only interested in stable states that are defined
by the so-called state variables. In the hardware developers’ jargon, such variables
are also known as registers or signals which save their value. The remaining
variables are non-state variables whose values are not registered and that, from
our point of view, represent just a symbolic name for some expression. From
a set of behavioural rules, a non-state variable can be identified by the fact
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¬c1, c2 → v := e2
¬c1,¬c2, c3, c4 → v := e3
¬c1,¬c2, c3,¬c4, c5 → v := e4
¬c1,¬c2, c3,¬c4,¬c5 → v := v

¬c1,¬c2,¬c3 → v := e5

c1 → v := e1
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Fig. 4. Synthesis of behavioural rules wrt. the conditions passed till a certain assign-
ment can be fired: (a) a normalized VHDL if statement, (b) the tree representing
branching conditions, (c) the set of behavioural rules for variable v

that its value is set by a rule with the empty enabling condition (i.e. by an
unconditional assignment4). The remaining variables are then state variables.
The only exception are input variables whose values are defined and held by
the environment of the modelled component. Formally, v ∈ V \ Vi is a non-
state variable iff cond(b) = ε for the rule b ∈ B such that B(v) = {b}. Let
further Vs = Vi ∪ {v | v ∈ V, cond(b) 
= ε} be the set of state variables. Before
generating counter automata, we change the intermediate behavioural model to
use the state variables only. We remove the non-state variables v defined by rules
ε → v := e present in B by iteratively searching for references to such variables
in enabling conditions and value expressions of the rules in B and by replacing
these references by e.

Behavioural Rules Over 1-bit Variables. Next, for technical reasons allow-
ing us to ease the subsequent construction of CA from intermediate behavioural
rules, we prefer to have all the manipulation of 1-bit state variables in guards of
the rules. That is why, we transform every behavioural rule b : c → v := e over
a 1-bit state variable v ∈ Vs, T (v) = bool, to the rule bnew : c, v′ = e → v := e.

Triggers of Behavioural Rules. Let V↑↓ = V ∩ (V × {posedge, negedge})
be the set of edges of the values of variables from V . We define a mapping
R : B → {τ} ∪ V↑↓ that assigns each rule either τ in case the rule models an
assignment in the transparent mode or a signal edge (i.e. a trigger) that activates
the rule if it models an assignment in the synchronous mode. Formally, for b ∈ B,
let R(b) = τ iff F (cond(c))∩V↑↓ = ∅, and let R(b) = t iff F (cond(b))∩V↑↓ = {t}
for some t ∈ V↑↓. Note that this definition is correct as due to the hardware

4 Note that as we require the rules not to be in a conflict, this is the only rule that is
setting the value of such a variable.
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description principles, there can be at most one positive or negative edge variable
reference in a behavioural rule condition. Designs violating this requirement are
exposed during the synthesis process.

For each rule b ∈ B that works in the transparent mode, i.e. R(b) = τ , we
adjust the condition and assignment part of b such that each variable reference
that appears there refers to the future. This is, we change every variable reference
v that appears in value(b) or cond(b) to v′. The reference to the future assures
that the rule is evaluated using values of variables that are computed at the
same time step as the one at which we perform the evaluation (and not a step
before as in the case of the synchronous mode). This is because gates working in
the transparent mode immediately propagate their input values to the output.
We can afford to use this transformation as we excluded the possibility of cyclic
dependencies of the values of variables in the transparent mode. That is why, the
variables changing in the transparent mode can be ordered according to their
dependencies and evaluated in the given order starting with variables that are
assigned a constant value (which happens, e.g., when the circuit is being reset) or
from variables which are not changing at the given time step. For an illustration
of this behaviour, see Fig. 5.

0
action trigger
data flow

�� � �
�
��

�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

�

v

x

y y=1

x=1

0

current nextunstable

v

x

y

0

current nextunstable

y′=¬x′=1

x=1

y=1 y′=¬x=0

x′=0

1

x′=0

1

11
0

b1 : c → y := ¬x

c: v =’1’, R(b1) = R(b2) = τ
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c: ↑v, R(b1) = R(b2) = ↑v

(b)

processing y := ¬0processing y := ¬1

b2 : c → x := 0

Fig. 5. A timing diagram illustrating the differences between the transparent and syn-
chronous mode. For the transparent mode (a), both x and y are controlled by the level
of the variable v, which causes a continuous change of their values (y is set to the
negation of x via b1, y is set to 0 via b2). Due to the propagation delays of hardware
which implements such a behaviour, there are several changes of the values until they
are all stabilised, which we are, however, not interested in. The important thing to
notice is that the resulting value of x is ¬y′ and not ¬y. On the other hand, in the
synchronous mode (b), an edge triggers a change of the value of v, which holds until
the next triggering event. In this case, the resulting value of x is ¬y (and not ¬y′).

We have to do a similar adjustment as above also for the rules modelling the
synchronous mode. For simplicity, we consider here the case of positive edges
only. The case of negative edges is analogical. Within each rule b ∈ B for which
R(b) = ↑v for some v ∈ V , cond(b) = c1c2 . . . cn↑vcn+1 . . . cm for some n, m ∈ N.
Note that F (c1c2 . . . cn) ∩ V↑↓ = ∅. In this case, the way our algorithm for



Verifying Parametrised Hardware Designs Via Counter Automata 63

generating behavioural rules works implies that the set of generated behavioural
rules B must also include behavioural rules bτ ∈ B whose condition is built
solely of the conditions c1, c2, . . . , cn (possibly negated), hence R(bτ ) = τ . Due
to the evaluation order of the conditions, the bτ rules have a priority over b. At
the same time, they model the transparent mode, hence they will work with the
future values of variables. That is why, in order to exclude a possible conflict
of the rules bτ with b, we have to replace every variable reference v to v′ in
c1, c2, . . . , cn in b. Then, if some of the bτ rules is enabled, b is disabled as its
enabling condition contains a negation of some of the enabling conditions of bτ

evaluated on the same values of variables. On the other hand, if this is not the
case, the rest of b will work with the current values of the variables.

4 Generating Counter Automata

4.1 Counters, Control Locations, and Initialisation

Let us fix a hardware design with a set of variables V of types T and with
a set of behavioural rules B generated from the design. We start building the
counter automaton A representing the design by defining its set of counters as
all integer-type state variables from V —formally, wrt. the definition of counter
automata (Def. 2.3), X = {v | v ∈ Vs, T (v) = int}.

Further, we build control locations of A based on all possible evaluations
of all control state variables in V , i.e. 1-bit state variables from the set Vq =
{v ∈ Vs | T (v) = bool}. Formally, we define the set of control locations of A as
Q = {q | q : Vq → {0, 1}}.

The design of a component in VHDL does not include any specification of its
initial state. In most cases, however, the specification of the component includes
a combination of signals which resets the component to some initial state and
assigns some constants to all its internal variables. For the generation of A, to ob-
tain these constants and thus define the initial location and the initial constraint
on counters, the user must explicitly specify the resetting signals by providing
the appropriate evaluation of input variables that encodes them. By evaluating
enabling conditions of all the rules in B under the given resetting valuation of
the input variables, we get a subset of rules that are initially enabled. Each of
such behavioural rules defines an initial value for one variable—by evaluating
the assignment parts of these rules, we can initialise the variables. The obtained
values of control state variables make up the definition of the initial location q0,
the evaluation of integer variables allows us to construct the initial constraint ϕ0
on counters5. If the modelled component has no resetting signals or the desired
initial state is not the reset state, the initialisation must be defined explicitly by
the user.

5 In fact, this applies only to the counters other than the ones representing
parameters—if the possible values of parameters are also to be constrained somehow,
it is up to the user to add the appropriate constraint into ϕ0.
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4.2 Transition Relation

For an expression e ∈ E and two locations q1, q2 ∈ Q of A, we denote by eq1,q2 the
evaluation of e where for each v ∈ Vq, (v, last) is evaluated as q1(v) and (v, next)
is evaluated as q2(v). We allow the evaluation to be partial—if e contains integer
variables, they remain untouched. We construct the transition relation of A by
checking for every pair of control locations q1, q2 ∈ Q, q1 
= q2, whether the
intermediate behavioural model allows us to connect them:6

1. For each b ∈ B with cond(b) = c1c2 . . . cn for some n ∈ N, we (as far as pos-
sible) evaluate the enabling condition of b, i.e. we compute guardq1,q2(b) =∧

1≤i≤n cq1,q2
i . Let Be = {b | b ∈ B, var(b) ∈ Vs, guardq1,q2(b) 
= false} be

the set of all (conditionally) enabled behavioural rules setting the value of
state variables.

2. We further one-by-one consider all subsets Bt ⊆ Be such that Bt contains
exactly one rule b such that var(b) = v for each state variable v ∈ Vs. For
each Bt, we perform the following steps:
(a) In each rule b ∈ Bt, we iteratively substitute all references to the future

values of counter variables by the expressions assigned to them within
Bt. This is, we substitute each v′ for v ∈ Vs \ Vq by the expression
value(bv) where bv ∈ Bt and var(bv) = v.7 We repeat this step till all
references to future values of counters disappear.

(b) Based on the set of rules Bt, we create a transition q1
ϕ−→ q2 of A where

ϕ = (
∧

b∈Bt
guardq1,q2(b)) ∧ (

∧
b∈Bt,var(b) 	∈Vq

α(valueq1,q2(b)) and α is a
function that transforms an assignment v := e to a formula v′ = e.

Let us add a few comments to the algorithm. For a given choice of states q1
and q2, the first step may lead to three situations: (i) If guardq1,q2(b) = false,
we know that b does not change the value of var(b). (ii) If guardq1,q2(b) = true,
b is allowed to change the value of var(b). (iii) Finally, if guardq1,q2(b) does
not reduce to neither false nor true (i.e. if guard(b) refers to some values of
counters in a way that must be taken into account), we only know that b may
be able to change var(b), but subject to the values of the counters. If there
is no (at least conditionally) enabled behavioural rule for some state variable,
i.e. if ∃v ∈ Vs, ∀b ∈ B(v).guardq1,q2(b) = false, no transition from q1 to q2
will be possible as we are unable to compute the next value of v in q2—even for
preserving the current value of v there is a behavioural rule which is forbidden by
its guard. Otherwise, we have to explore all combinations of (at least potentially)
enabled rules adjusting the value of the particular variables, which is done in
the second step of the algorithm.

Suppose now that, for instance, Vs = {v1, v2, v3, v4} where only v4 is a 1-bit
variable, and the first step of the algorithm yields a set of rules Be = {g1 → v1 :=
6 Note that we cannot have self-loops in A as the control states are stable, and some

signal must change in order a change of the states happens.
7 At this point, only the variables representing counters are considered as the references

to future values of control state variable are taken care through the partial evaluation
of the expressions.
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f1(v′2), g2,1 → v2 := f2,1(v′3, v1), g2,2 → v2 := f2,2(v3), g3 → v3 := f3(v2), v′4 =
¬v4 → v4 := ¬v4} (the rule for v4 is transformed as we described in Section 3).
We can find two subsets Bt that are to be handled by the second step of the
algorithm—namely, Bt,1 = {g1 → v1 := f1(v′2), g2,1 → v2 := f2,1(v′3, v1), g3 →
v3 := f3(v2), v′4 = ¬v4 → v4 := ¬v4} and Bt,2 = {g1 → v1 := f1(v′2), g2,2 →
v2 := f2,2(v3), g3 → v3 := f3(v2), v′4 = ¬v4 → v4 := ¬v4}. If we apply the
steps described above for Bt,1, we obtain two CA transitions with a formula
g1 ∧ g2,1 ∧ g3 ∧ v′1 = f1(f2,1(f3(v2), v1)) ∧ v′2 = f2,1(f3(v2), v1) ∧ v′3 = f3(v2)
going between control states q1 and q2 such that q1(v4) = ¬q2(v4). Note that
the condition v′4 = ¬v4 does not appear in the formula of the transition as its
evaluation wrt. q1, q2 yields true.

5 Handling the Reachability Properties to Be Verified

In our work, we concentrate on verifying that certain bad configurations are not
reachable. We assume the bad configurations to be given by a boolean VHDL
expression—an error condition. The error condition may refer to 1-bit VHDL
variables appearing in the design of the component being checked (which are
represented as a part of the control location of the generated counter automata)
as well to VHDL bit-vector variables (represented by the values of counters in
the counter automata).

In order to facilitate verification of reachability of the bad configurations, we
extend a generated counter automaton by a special error state whose reachabil-
ity implies that a bad configuration is reachable in the component being checked.
The error state is connected to the control states of the generated counter au-
tomaton that represent a valuation of the VHDL 1-bit variables which is not
contradictory with the error condition. Moreover, the transitions to the error
state are guarded by conditions on counters derived from the error condition by
substituting the 1-bit variables by values that appear in the source control lo-
cation of these transitions (after which, just a constraint on bit-vector variables
remains).

6 Experiments

For our experiments, we implemented a Python-based prototype [16] of the pro-
posed translation (up to some of the issues of the VHDL pre-processing men-
tioned in Section 2). In particular, we implemented a translation to counter
automata in the input language of the ARMC tool [15] and also to integer pro-
grams in the C programming language in order to be able to use the Blast model
checker [8] as well. Both of the tools provide us with the possibility of verifying
reachability properties of counter automata (or, alternatively, integer programs)
using techniques based on predicate abstraction and the counterexample-guided
abstraction refinement (CEGAR) loop.

To test the proposed counter-automata-based model extraction method, we
have first applied it to two small non-parametric components (having integer
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Table 1. Experiments with counter automata extraction from VHDL and with their
subsequent reachability analysis using ARMC and Blast

Component Locations Transitions Counters Extraction time ARMC Blast
Counter 5 13 2 < 1s < 1s 1.5s
Register 9 43 2 1s < 1s < 1s
Synchronous LIFO 65 985 3 24s 40s 5m31
Asyn. FIFO (FE) 65 5060 12 1m12s 6m56s N/A
Asyn. FIFO (Status) 129 6628 12 4m 4m16 N/A

variables, but of a fixed width). Then we applied the method to two more com-
plex parametric components, including a real-life, highly specialised, parametric
component developed within the Liberouter project [13].

The first two components (a counter and a register) represent basic elements
from which hardware is built on the RTL level. For the counter, we verified that
there is no overflow possible. For the register, we verified that the data transfer
from its input to the output and the reset of the register work correctly. A more
complex case study that we considered is a synchronous LIFO component which
implements a stack with two operations—push and pop. The generic nature of
this component is given by a parametrisation of the number of items the LIFO
can save. This component implements—among other—signals that say whether
it is empty or full. We verified whether these signals are always correctly set for
any possible size of the LIFO.

The last verified component is an asynchronous queue (FIFO). This spe-
cialised parametric component was built to be used in network monitoring adap-
tors developed within the Liberouter project (with a stress on being as efficient
as possible). Apart from signals about whether the component is empty or full,
it also implements additional signals saying whether it is almost full or almost
empty (less than some amount of items are free/occupied). For the component,
we successfully verified two properties: (i) that the queue does not inform that
it is empty and full at the same time, and (ii) that the status information about
the queue being almost full is set correctly. For a more detailed description of
the verified properties see [16].

The results of our experiments are summarised in Table 1. The first column
gives the verified component—for the last component, there are two lines corre-
sponding to the two different properties that we checked for it. The next column
provides the number of control locations in the generated counter automata—
note that the number corresponds to 2n + 1, which is the number of control
locations over n 1-bit state variables, plus one location representing the bad
state. The next two columns provide the number of transitions between control
locations of the generated counter automata and the number of used counters
(integer variables). The next columns gives the times used by our prototype
tool to generate the counter automata. Finally, the last two columns provide
the time used by ARMC and Blast, respectively, to verify the generated counter
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automata. The experiments were performed on an Intel Xeon X5355 processor
with 16GB of memory. (“N/A” means that the verification did not finish.)

7 Conclusion and Future Work

We have presented a new, quite general and automated, approach to formal
verification of parametrised VHDL components. The approach is based on an
automated translation of the components to counter automata and on exploiting
the constantly improving technology for verifying counter automata (or integer
programs). We have built a prototype tool implementing our translation schema
and successfully used it together with the ARMC tool [15] for verification of
several interesting properties of parametrised VHDL components, including a
real-life component developed within the Liberouter project [13].

In the future, we want to experiment with lifting some of the restrictions of our
initial approach (e.g., allowing a bit-wise approach to parametrised components).
Another interesting research direction is to investigate possibilities of reducing
the size of the automata that we generate. Further, we would like to do more
experiments with real-life components and also with using more different tools
for handling counter automata (or integer programs).

Acknowledgement. We would like to thank Andrey Rybalchenko for his help
with the use of the ARMC tool.
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