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Abstract—The central notion of this paper is that of contracts
for concurrency, allowing one to capture the expected atomicity
of sequences of method or service calls in a concurrent program.
The contracts may be either extracted automatically from the
source code, or provided by developers of libraries or software
modules to reflect their expected usage in a concurrent setting. We
start by extending the so-far considered notion of contracts for
concurrency in several ways, improving their expressiveness and
enhancing their applicability in practice. Then, we propose two
complementary analyses—a static and a dynamic one—to verify
programs against the extended contracts. We have implemented
both approaches and present promising experimental results
from their application on various programs, including real-world
ones where our approach unveiled previously unknown errors.

I. Introduction

The divide-and-conquer strategy is frequently applied to
the development of large software products where the whole
application is divided into interacting software modules, col-
laboratively developed by multiple teams. Objects in object-
oriented programming languages are an example of such mod-
ules. Accessing the services provided by a software module
requires one to follow a protocol that includes: (i) the syntax
of the service, i.e., the name of the service and the type of
its input and output parameters (including return values); (ii)
the semantics of the service, i.e., the expected behavior of the
service for a given set of input parameters; and (iii) the service
access restrictions, e.g., the domain of the valid values for each
parameter, dependency relations between services, atomicity
requirements for execution in a concurrent setting, etc.

Violating the protocol of a service may cause all sorts
of misbehaviors—from subtle, perhaps admissible, but wrong
results to fault-stop fails, such as exceptions and segmentation
faults. Compilers take good care of Aspect (i) of the protocol,
i.e., syntax validation. Aspect (ii), service semantics, although
not verified by compilers, is usually at least documented. As-
pect (iii), service access restrictions, is usually not verified by
compilers nor documented, which results in a deep dependency
on programmers’ clairvoyance on the usage of the services—
in particular, when concurrency issues are involved.

Reports [9], [26], [35] emphasize that it often takes more
than a month to fix a concurrency-related error and that nearly
70 % of the fixes are buggy when first released. In this paper,
we aim at reducing this problem by addressing Aspect (iii)
from the list above, i.e., service access restrictions, for the
context of concurrent (multi-threaded) programs. In particular,
we address restrictions of using services provided by software
modules in a concurrent setting with the aim of avoiding
atomicity violations and similar concurrency-related errors.

We build on the concept of contracts for concurrency [16],
[37], a particular case of a software protocol, allowing one to
enumerate sequences of public methods of a module that are
required to be executed atomically. We extend the previously
proposed notion of contracts for concurrency by allowing them
to reflect both the data flow between the methods (in that
a sequence of methods calls only needs to be atomic if they
manipulate the same data) and the contextual information (in
that a sequence of methods calls needs not be atomic wrt all
other sequences of methods but only some of them).

Moreover, we propose novel methods for both static and
dynamic validation of such protocols in client programs. While
the static approach can analyse all possible executions of
a program at once, it may not be feasible for larger programs
and often reports false alarms. The dynamic analysis is more
scalable and suffers much less from false alarms, but it is
restricted to concrete program executions and to the errors
that can be deduced from them. The static analysis is based
on grammars and parsing trees while the dynamic uses the
happens-before relation and vector clocks optimized for con-
tract validation. We implemented both approaches in publicly
available prototype tools and obtained promising experimental
results with both of them, including discovery of previously
unknown errors in large real-world programs.

The rest of the paper is organised as follows. In Section II,
we present the notion of contracts for concurrency and extend
them to consider the data flow and/or the contextual informa-
tion of method calls. In Sections III and IV, we describe our
static and dynamic contract validation methods, respectively,
together with results of experiments with them. Section V
summarises related works, and Section VI concludes the paper.

II. Contracts for Concurrency

A contract for concurrency [16], [37] (or simply contract
herein) is a protocol for accessing public services of a module,
i.e., the methods of its public API, expressing which of the
methods are correlated and should be executed in the same
atomic context (wrt its API usage) if applied on the same
computational object. Therefore, a program that conforms to
a contract is guaranteed to be safe from atomicity violations.

A. Basic Contracts

In [16], [37], a contract is formally defined as follows. Let
ΣM be a set of all public method names (the API) of a software
module (or library). A contract is a set R of clauses where
each clause % ∈ R is a regular expression over ΣM. A contract
violation occurs if any of the sequences represented by the



contract clauses is interleaved with an execution of methods
from ΣM over the same object.
Example. Consider the java.util.ArrayList implementa-
tion of a resizable array of the Java standard library, and, for
simplicity, take the following subset of the available meth-
ods: add(obj), contains(obj), indexOf(obj), get(idx),
set(idx, obj), remove(idx), and size(). The below
clauses belong to the contract for the ArrayList library:

(%1) contains indexOf
(%2) indexOf ( set | remove | get )
(%3) size ( remove | set | get )
(%4) add ( get | indexOf )

Clause %1 states that the execution of contains() followed
by indexOf() should be atomic. Otherwise, the program may
confirm the existence of an object in the array but fail to obtain
its index as a concurrent thread can, e.g., remove the object.
Clause %2 represents a similar scenario where the index of an
object is obtained and then the index is used to modify the
object. Without atomicity, a concurrent change of the array
may shift the position of the object and cause malfunction.
Clause %3 deals with programs that verify whether a given
index is in a valid range (e.g., index < size()) and then
access the array. To ensure size() is still valid when ac-
cessing the array, the calls must execute atomically. Clause %4
represents a scenario where an object is added to the array
and then the program tries to obtain information about it by
querying the array. Without atomicity, the object may no
longer exist or its position in the array may have shifted.

Another relevant clause in the contract of ArrayList is:

(%5) contains indexOf ( set | remove )

However, the contract’s semantic already enforces this clause
since it results from the composition of clauses %1 and %2.

Still, it turns out that the above definition of contracts for
concurrency is sometimes quite restrictive and can classify
valid concurrent programs as unsafe. Hence, in Sections II-B
and II-C, we propose two extensions that improve the ex-
pressiveness of contracts: one extends them with parameters,
making it possible to consider the data flow between method
calls; and the other adds contextual information that restricts
the situations in which atomicity shall be enforced.

B. Extending Contracts with Parameters

Figure 1 illustrates a situation where basic contracts may
be too restrictive. It shows a procedure that replaces item a
in an array by item b. The procedure contains two atomicity
violations: (i) item a does not need to exist anymore when
indexOf is called; and (ii) the index obtained may be outdated
when set is executed. A basic contract of Section II-A could
cover this situation by a clause (%6) contains indexOf set.
However, the given sequence needs to be executed atomically
only if contains and indexOf have the same argument, and
the result of indexOf is used as the first argument of set.

To express in a contract how the flow of data influences the
dependencies between methods, we extend the contract spec-
ification by considering method call parameters and return

void replace(int a, int b) {
if (array.contains(a)) {

int idx=array.indexOf(a);
array.set(idx,b); } }

Fig. 1: Example of atomicity violation with data dependencies.

values, expressed as meta-variables. Then, if a contract should
be enforced only if the same object appears as an argument or
as the return value of multiple calls in the given call sequence,
we may express that by using the same meta-variable at the
position of all the concerned parameters and/or return values.

Clause %6 may then be refined as follows—in particular,
note the repeated use of meta-variables X/Y, requiring the
same objects o1/o2 to appear at the positions of X/Y, resp.:
(%′6) contains(X) Y = indexOf(X) set(Y, _). Here, the
underscore is a free meta-variable that imposes no restrictions.

Example. With the above extension, it is possible to refine the
contract for java.util.ArrayList as follows:

(%′1) contains(X) indexOf(X)
(%′2) X = indexOf(_) ( remove(X) | set(X, _) | get(X) )
(%′3) X = size() ( remove(X) | set(X, _) | get(X) )
(%′4) add(X) ( get(X) | indexOf(X) )

This contract captures in detail the dependencies between
method calls, expressing the relations that are problematic,
excluding those that do not constitute atomicity violations.

C. Extending Contracts with Spoilers

Interleaving a sequence of calls listed in a contract clause
with some methods of the given API may lead to an atomicity
violation, while this is not the case for other methods. This is,
however, not reflected in the basic contracts. For example, the
clause contains indexOf states that this sequence of calls
must always be executed atomically (wrt methods of the given
module), regardless of which methods the other threads are
executing. Interleaving a thread executing this sequence with
another one is thus a contract violation regardless of whether
the other thread executes remove or get, not distinguishing
that the former is harmful while the latter not.

To cope with the above, we propose to augment contracts
with contextual information, allowing one to express in which
context the contract clauses shall be enforced. For that, each
clause of the basic contract (now called a target) will be cou-
pled with a set of spoilers that restrict its application. A spoiler
represents a set of sequences of methods that may violate its
target. Client programs must then ensure that each target is
executed atomically wrt its spoilers, whenever executed on
the same object. For the target clause contains indexOf,
a possible spoiler is remove, and the extended clause would
be: contains indexOf f remove.

Formally, as before, let R be the set of target clauses where
each target % ∈ R is a regular expression over ΣM. Let S be the
set of spoilers where each spoiler σ ∈ S is a regular expression
over ΣM. We also define the alphabets ΣR ⊆ ΣM and ΣS ⊆ ΣM
for the methods used in the targets or spoilers, respectively.



A contract is then a relation C ⊆ R × S which defines for
each target the spoilers that may cause atomicity violations.
Note that one target may be violated by more than one
spoiler and also one spoiler may violate more than one target.
A contract is violated if any sequence represented by a target
% ∈ R executed on the same object o is fully interleaved with
an execution of the sequence representing its spoiler σ ∈ C(%)
on the object o. A target sequence r is fully interleaved by
a spoiler sequence s if the execution of r starts before the
execution of s and the execution of s ends before that of r.1

Example. The basic contract for java.util.ArrayList with
spoilers extending it with contextual information is below:
(%′′1 ) contains indexOf f remove

(%′′2 ) indexOf (remove | set | get) f remove | add | set

(%′′3 ) size (remove | set | get) f remove

(%′′4 ) add indexOf f remove | set

This contract explicitly captures which interferences are harm-
ful and which interleavings shall be forbidden. All other
interleavings, not captured by spoilers, are considered safe.

Finally, the extension of contracts with spoilers can be
combined with the extension with parameters, allowing one
to define fine-grained atomicity requirements for the methods
of a module. This can be illustrated by the below clause:

contains(X) indexOf(X) f remove(_).
This clause requires sequences of contains and indexOf
to be executed atomically but only when executed over the
same object, when dealing with the same item X, and only
wrt concurrent execution of remove. This captures the fact that
any concurrent removal may lead to an atomicity violation, by
either removing object X or by altering its position in the array.
Note that add is not a spoiler since it does not interfere with
the position of X as elements are added to the end of the array.

III. Static Contract Validation

We now propose a static approach for verifying whether
a client program complies with the contract of a given module.
We consider contracts in the form defined in Section II-B but
restricted to star-free regular expressions.

Our approach is based on checking whether threads
launched by the client program always execute atomically any
sequence of calls expressed by contract clauses, and it has
the following phases: (1) Extract the behaviour of each of the
client program’s threads wrt the usage of the module under
analysis. (2) Determine which of the program’s methods are
atomically executed. We say that a method is atomically exe-
cuted if it explicitly applies a concurrency control mechanism
to enforce atomicity, or if the method is always called by other
atomically executed methods. (3) For each thread, verify that
its usage of the module respects the contract.

The next section covers Phase 1 by introducing an algo-
rithm that extracts the program’s behaviour wrt the module’s

1Partial interleavings of targets and spoilers are not considered to cause an
error. If they do, this can be handled by adding a new contract clause (target)
whose spoiler is the appropriate fraction of the original spoiler.

methods. Section III-B covers Phases 2 and 3 by proposing
an algorithm that verifies whether the extracted behaviour
complies to the contract.

A. Extracting the Behaviour of a Program
The behaviour of a program can be seen as the join of the

individual behaviours of all threads the program may launch.
To extract the usage of a module by a thread, we start by
extracting its control flow graph (CFG) [1] from the source
code. From the CFG of a thread t, it is then simple to construct
a context-free grammar Gt such that if there is an execution
path of t that runs a sequence of method calls, then that
sequence is a word of the language represented by Gt.

Context-free grammars were chosen to describe the structure
of CFGs since they can capture the call relations between
methods that cannot be captured by weaker classes of lan-
guages. Moreover, an advantage of using context-free gram-
mars (compared with other static analysis techniques) is that
we can use efficient parsing algorithms within the analysis.

Definition 1. The CFG of the client’s program thread t is en-
coded by the grammar Gt = (N,ΣM, P, I) where N is the set
of nodes of the CFG (non-terminals), ΣM is the set of the
identifiers of the public methods M of the module under
analysis (terminals), I is the initial non-terminal defined as the
entry method, and P is the set of productions defined below.

A CFG node is denoted by α : ~v� where α is the
non-terminal that represents the node and v its type. We
distinguish the following types of nodes: entry—the entry
node of a method, mod.h()—a call to method h() of the
module mod under analysis, g()—a call to method g() of the
client program, and return—the return point of a method. The
function succ : N → P(N) is used to obtain the successors of
a given node N in the CFG. The entry method for a thread is
determined by looking for extensions of the Thread class or
implementations of the Runnable interface. The set P of
productions is then defined by Rules 1–5 as follows (no other
productions belong to P):

for α : ~entry�, {F → α} ∪ {α→ β | β ∈ succ(α)} ⊂ P (1)
for α : ~mod.h()�, {α→ h β | β ∈ succ(α)} ⊂ P (2)

for α : ~g()�, {α→ G β | β ∈ succ(α)} ⊂ P (3)
for α : ~return�, {α→ ε} ⊂ P (4)

for α : ~otherwise�, {α→ β | β ∈ succ(α)} ⊂ P (5)

Intuitively, the grammar Gt represents the control flow of
the thread t, ignoring everything not related with the module’s
usage. Rule 1 adds a production that relates the non-terminal
F , representing a method f(), to the entry node of the CFG
of f(). Calls to the module under analysis are recorded in Gt

by Rule 2. Rule 3 handles calls to other methods of the client
program. The return point of a method adds an ε production
to the grammar (Rule 4). All other types of CFG nodes are
handled by Rule 5 while preserving the CFG structure.

Notice that only the client program code is analyzed, given
the module contract clauses and its public methods.

The generated grammar Gt may be ambiguous, i.e., offer
several different derivations of the same word. Each ambiguity



in the parsing of a sequence of calls represents different
contexts where these calls may be executed by the thread t. The
ambiguity is thus expected and needed so that the verification
of the contract can cover all possible occurrences of sequences
of calls in the client program. Since we do not consider the
values of data reachable at particular locations, the language
may contain sequences of calls that the program can never
execute, which may lead to false positives. However, the
approach is conservative and never produces false negatives.

B. Contract Verification

The verification must ensure that all sequences of calls spec-
ified by a contract are executed atomically by the threads the
client program may launch. Algorithm 1 presents the pseudo-
code of our static approach for verifying this requirement.

The algorithm iterates over program threads (line 2). For
each thread t, it first generates, as described above, a grammar
Gt that captures the CFG of t (line 3). From Gt, a grammar
G′t describing all sub-words of the words generated by Gt

is obtained (line 4). The sub-words correspond to parts of
executions of the original program. The sub-words must be
considered since a contract clause typically corresponds to
a part of a run only. For example, if a thread executes a se-
quence m.a(); m.b(); m.c(); a contract can correspond to
b c only, which G′t allows us to recognize.

The algorithm subsequently iterates over contract clauses
% ∈ R (line 5) and handles them one-by-one. To see whether
a thread may generate a contract clause %, representing a call
sequence, it is enough to parse % in G′t (line 6). This will
create a parsing tree for each location from which the thread
can execute the given sequence of calls. Function parse()
returns the set T of these parsing trees.

Each of the parsing trees in T is then inspected to determine
the atomicity of the given call sequence (line 7). In particular,
the parsing trees contain information about the location of
each of the calls of contract % in the program. Then, by
moving upwards in the parsing tree, we can find the node that
represents the method under which the call sequence defined
by the contract is performed. This node is the lowest common
ancestor of the call sequence of % in the parsing tree (line 8).

The algorithm then checks whether the lowest common
ancestor is always executed atomically (line 9) to make sure
that the whole sequence of calls is executed under the same
atomic context. Since it is the lowest common ancestor, we are
sure to require the minimal synchronization from the program.
A parsing tree contains information about the location in the
program where a contract violation may occur, and so we can
offer detailed instructions to the programmer on where this
violation occurs and how to fix it.

Since the grammar Gt may be ambiguous, it is necessary
to use a GLR (generalized LR) parsing algorithm to explore
all different derivation trees of a word [25]. In particular,
in our prototype implementation discussed later on, we use
a GLR parser proposed by Tomita in [38], which defines a non-
deterministic version of the LR(0) parsing algorithm.

1 Require: P: client’s program, R: module contract;
2 for t ∈ threads(P) do
3 Gt ← build_grammar(t);
4 G′t ← subword_grammar(Gt);
5 for % ∈ R do
6 T ← parse(G′t , %);
7 for τ ∈ T do
8 N ← lowest_common_ancestor(τ, %);
9 if ¬run_atomically(N) then return ERROR;

10 return OK;
Algorithm 1: Static contract verification algorithm.

An important point is that the number of parsing trees may
be infinite since loops in the CFG will yield corresponding
loops in the grammar. The parsing algorithm must therefore
detect and prune parsing branches that will lead to redundant
loops, ensuring a finite number of parsing trees is returned. To
achieve this, the parsing algorithm aborts whenever it detects
a loop that did not contribute to parsing a new terminal.

Example. The left part of Figure 2 shows a program that uses
a module m. The run() method is the entry point of a thread t.
In the middle of the figure, we show the CFGs generated by
the program code. On the top right, we show a simplified
version of the Gt grammar. Methods run(), f(), and g() are
represented by non-terminals R, F , and G, respectively. The
obtained grammar is ambiguous. Consider a contract clause
% = a b. The right part of the figure shows two distinct ways
to parse %. Both of the trees will be obtained by our algorithm
(line 6). The first tree (middle right) has F as the lowest
common ancestor of a b. As F corresponds to the method f(),
which is executed atomically (note the atomic keyword), we
conclude that this tree respects the contract. The second tree
(bottom right) has R as the lowest common ancestor of a b,
corresponding to the execution of the else branch of run().
This non-terminal (R) does not correspond to an atomically
executed method, the contract is thus not met, and a contract
violation is detected. (Another example can be found in [11].)

C. Analysis with Points-to

In object-oriented programming languages, a module is
defined as a class, so we should differentiate between different
instances of that class as they represent different objects. This
section explains how our analysis can be extended to handle
multiple instances of a module by using points-to information.

To include points-to information, we generate a different
grammar for each allocation site of a module. Each allocation
site represents an instance of the module, and the algorithm
verifies the contract clauses for each allocation site and each
thread. The revised algorithm (cf. [11]) is very similar to
Algorithm 1. It iterates over threads and module instances
generating a grammar Gta for a thread t and a module instance
a. This grammar can be seen as the behavior of the thread t
wrt the module instance a, ignoring every other instance of
that module. To generate the Gta grammar, Definition 1 can
be easily adapted to take into account the instance a only [11].



void run ( ) {
i f ( cond )

f ( ) ;
e l s e {

m. a ( ) ;
g ( ) ;

}
}

void a t om ic f ( ) {
m. a ( ) ;
g ( ) ;

}

void a t om ic g ( ) {
m. b ( ) ;

}

entry

cond

f() m.a()

g()

return

R

entry

m.a()m.a()

g()

return

entry

m.b()

return

F G

R → a G
R → F

F → a G
G → b

a b

G

R

F

a b

G

R

Fig. 2: A program (left), its CFGs (middle), its ambiguous
simplified grammar (top right), and parsing trees of a b (right).

D. Class Scope Mode

Our static analysis checks the entire program, taking into
account any sequence of calls spreaded across the whole
program (as long as they are consecutive calls to a module).
However, this may become infeasible for very large programs.
So, for these large programs, we propose a class scope mode
of our analysis, an operation mode that checks each class
individually, ignoring calls to other classes. This mode will
detect contract violations where the control flow does not
escape the class, which is reasonable since code locality
indicates stronger correlations between calls.

In the class scope mode, the grammar describing the be-
haviours is built for each class instead of each thread. Methods
of the class yield non-terminals F1, · · ·,Fn just as before. The
only change when creating this grammar is that we create the
productions I → F1 | · · · | Fn as the starting production of
the grammar. This means that we consider the execution of all
methods of the class under analysis.

E. Validation and Evaluation

To validate the above approach, we have implemented it in
a tool called Gluon (https://github.com/trxsys/gluon). We used
Gluon to analyze both some small benchmarking programs
with atomicity violations, which can be seen as contract
violations, as well as several real-world programs, including
Tomcat, Lucene, Derby, OpenJMS, and Cassandra.

The small programs were adapted from the literature [2],
[3], [4], [12], [23], [28], [40] where they are typically used to
evaluate atomicity violation detection methods. We redesigned
each of them as a main program using one or more modules,
and we wrote the necessary contracts for each module.

For the larger, real-word programs analyzed, we aimed at
discovering new, unknown, atomicity violations. For that, the
contracts should ideally be written by the module developers
alongside the code. However, this was not the case for the

TABLE I: Validation results for static analysis.
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Allocate Vector [23] 1 1 0 0 1 183 0.120
Coord03 [2] 4 1 0 0 1 151 0.093
Coord04 [3] 2 1 0 0 1 35 0.039
Jigsaw [40] 1 1 0 0 1 100 0.044
Local [2] 2 1 0 0 1 24 0.033
Knight [28] 1 1 0 0 1 135 0.219
NASA [2] 1 1 0 0 1 89 0.035
Store [32] 1 1 0 0 1 621 0.090
StringBuffer [3] 1 1 0 0 1 27 0.032
UnderReporting [40] 1 1 0 0 1 20 0.029
VectorFail [32] 2 1 0 0 1 70 0.048
Account [40] 4 2 0 0 2 42 0.041
Arithmetic DB [28] 2 2 0 0 2 243 0.272
Connection [4] 2 2 0 0 2 74 0.058
Elevator [40] 2 2 0 0 2 268 0.333

OpenJMS 0.7 6 54 10 28 4 163K 148
Tomcat 6.0 9 157 16 47 3 239K 3070
Cassandra 2.0 1 60 24 15 2 192K 246
Derby 10.10 1 19 5 7 1 793K 522
Lucene 4.6 3 136 21 76 0 478K 151

considered programs. Given that these programs had a rather
large code base, we devised a way to create contracts in an
automated manner by using a very simplistic approach that
tries to infer the contract’s clauses from the synchronized
blocks present in the existing code base. The intuition behind
this approach is that most sequences of calls that should be
atomic are correctly used somewhere in the code. Having this
in mind, we look for sequences of calls done to a module
that are used atomically at least twice in the program as this
situation may indicate that these calls are correlated and should
be atomic everywhere. We used these sequences as clauses for
our contracts after manually filtering a few irrelevant ones.

Since the considered real-world programs use dynamic class
loading, it is impossible to obtain complete points-to informa-
tion, and so we took a pessimistic approach and assumed every
module instance could be referenced by any variable that is
type-compatible. We also used the class scope mode described
in Section III-D as it would be impractical to analyze such
large programs with the scope of the whole program. These
restrictions do not apply to the small programs analyzed.

Table I summarizes the results of our experiments. The table
contains both the micro and macro benchmarks (top/bottom
lines, resp.). The columns represent the number of clauses
of the contract (Clauses); the number of violations of those
clauses (Contract Violations); the number of false positives,
i.e., sequences of calls that, in fact, the program will never
execute (False Positives); the number of potential atomicity
violations, i.e., atomicity violations that could happen if the
object was concurrently accessed by multiple threads (Poten-
tial AV); the number of atomicity violations that can really
occur and compromise the correct execution of the program
(Real AV); the number lines of code of the benchmark (SLOC);
and the time it took for the analysis to complete (time).



For the microbenchmarks, Gluon was able to detect all
violations of the contracts by the client programs. The absence
of false negatives supports the soundness of the analysis. Since
some of our tests included additional contract clauses not
present in the original test programs, the results also indicate
that the approach is not too inclined towards generating false
positives. We created a corrected version of each microbench-
mark which was also verified, and the prototype confirmed the
compliance of the program with the module contract. Correct-
ing the programs was easy since Gluon pinpoints the methods
that must be made atomic and ensures the synchronization
required has the finest possible scope (due to the use of the
lowest common ancestor of the terminals in the parse tree).

Our tests with the macrobenchmarks have shown that
Gluon can be applied to larger-scale programs with good
results. Even with a simple automated contract generation,
we were able to detect 10 atomicity violations in real-world
programs. Six of these bugs were reported (Tomcat2, Derby3,
Cassandra4). Two of them were immediately confirmed2 as
bugs by the Tomcat software development team and fixed in
Tomcat 8.0.11, one was considered highly unlikely, and three
have a pending confirmation. The false positives incorrectly
reported by Gluon were all due to conservative points-to
information in case of dynamic class loading.

The performance results show that Gluon is directly usable
for small and medium-sized programs. For large programs,
the class scope mode has to be used, sacrificing precision
for performance, but still allowing one to capture interesting
atomicity violations as shown by our results with Tomcat.
The performance of Gluon strongly depends on the number
of branches the parser explores. Larger programs tend to
have more complex control flows and generate larger number
of parsing branches. The parsing phase of Gluon dominates
the execution time, which is proportional to the number of
explored parsing branches. Memory usage is not a problem
since the asymptotic space complexity is determined by the
size of the parsing table and the largest parsing tree. It is not
correlated with the number of parsing trees as our GLR parser
explores the parsing branches in-depth instead of in-breadth.
In-depth exploration is possible since we never have infinite
height parsing trees due to our detection of unproductive loops.

IV. Dynamic Contract Validation
We now propose a dynamic contract validation method for

contracts with contextual information (i.e., using both targets
and spoilers) as defined in Section II-C. Though not discussed
here, the method can be easily extended to support parameters
by considering separate instances of target/spoiler pairs for
different values of parameters (as done in our implementation).

Below, we first formalize a notion of multi-threaded pro-
gram traces used as the input of our analysis. Then we define
the happens-before relation that captures the ordering of events
in program traces. Next, we describe our method for detecting

2https://issues.apache.org/bugzilla/show_bug.cgi?id=56784
3https://issues.apache.org/jira/browse/DERBY-6679
4https://issues.apache.org/jira/browse/CASSANDRA-7757

contract violations. Finally, we provide results of experiments
with a prototype implementation of the approach.

A. Preliminaries

For the below, we fix a set of threads T, a set of targets R,
a set of spoilers S, a set of contracts C ⊆ R × S, and a set of
locks L. We consider program traces in the form of sequences
of events of the following types: a thread entering/exiting
a method, a thread acquiring/releasing a lock, and a thread
forking/joining another thread. Since each of the events can
appear multiple times in a trace, we assume the events to
be indexed by their position in the trace. However, we do
not take the indices into account when looking for matches
of the regular expressions of targets/spoilers in a trace. We
denote the set of all events that can be generated by a thread
t ∈ T as Et, and let E = ∪t∈TEt. Then, a trace is a sequence
τ = e1 . . . en ∈ E+. We let ei ∈ τ denote that the event ei

is present in the trace τ. By start(t)/end(t), we denote the
first/last event generated by a thread t.

Given a trace τ = e1 . . . en ∈ E
+, we call its sub-sequence

r = ei1 ei2 . . . eik , 1 < k ≤ n, an instance of a target % ∈ R iff
(1) r consists of well-paired method enter/exit events executed
by a thread t ∈ T, (2) when restricted to the enter events only,
r matches the regular expression of % (if % contains stars, the
longest possible matches are considered only), and (3) apart
from the events ei1 , ..., eik there is no event from the alphabet of
% executed by t between the indices i1 and ik in τ. Intuitively,
an instance of a target can interleave with events that are not its
part, but only if they are outside of its alphabet. For instance,
for a target % = abc and a trace τ = aabdc, there is an instance
of % between indices 2 and 5 but not between 1 and 5. We
denote by ei ∈ r that the event ei is present in the target
instance r. We let start(r) = ei1 and end(r) = eik denote the
first/last event of r, respectively. We let [%]τ be the set of all
instances of a target % ∈ R in a trace τ and [R]τ = ∪%∈R[%]τ

be the set of all instances of all targets from R in τ.
Likewise, we define the notion of an instance s of a spoiler

σ ∈ S in a trace τ, its beginning/end events start(s)/end(s),
respectively, the set [σ]τ of all instances of σ in τ, and the set
[S]τ = ∪σ∈S[σ]τ of all instances of all spoilers from S in τ.

A happens-before relation ≺hb over a trace τ = e1 . . . en ∈ E
+

is the smallest transitively-closed relation on the set {e1, ..., en}

of events in τ such that e j ≺hb ek holds whenever j < k and one
of the following holds: (i) Both events e j and ek are performed
by the same thread (program order). (ii) Both events e j and
ek acquire or release the same lock. (iii) One of the events e j

and ek is a fork/join of a thread u in a thread t and the other
is executed by u (fork-join synchronization). If two indices in
a trace are not related by a happens-before relation, then the
corresponding events are considered to be concurrent.

A contract (%, σ) ∈ C is violated in a trace τ iff there is
a target instance r ∈ [%]τ and a spoiler instance s ∈ [σ]τ s.t.
start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s). Intuitively, the con-
tract (%, σ) is violated in τ if there are instances r/s of %/σ,
resp., where r may start before s and end after s, i.e., the target
instance can be fully interleaved with the spoiler instance.



B. On-the-Fly Dynamic Contract Validation
If the entire trace is available, dynamic contract validation is

easy. For all possibly conflicting instances of targets and spoil-
ers, one simply checks whether a target is fully interleaved
with a spoiler or not, i.e., ∀(%, σ) ∈ C,∀r ∈ [%]τ,∀s ∈ [σ]τ

checks if start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s) is satisfied.
If it is, an error is reported.

However, this approach is not very practical. It scales poorly
with the size of the trace, which can be huge. In some cases,
e.g., for reactive programs, the trace can even be infinite.
To address this problem, we propose an on-the-fly dynamic
contract validation algorithm which does not require the whole
trace to be available and yet guarantees that if a contract is
violated in the trace, this will be detected.

1) Trace Windows: A crucial concept for our on-the-fly
dynamic contract validation is the concept of a trace window,
providing a gradually moving, partial view of the trace.
Formally, a trace window υ is a subsequence of the trace τ.
While, in the extreme case, the trace window may actually
contain the entire trace, the goal is to keep it as small as
possible. Later, we show that there is a maximum number of
events that we need to keep in the window in order not to miss
any error and that this number grows only with the number of
targets and spoilers, not with the size of the trace.

We denote by [%]υ the set of all instances of a target % ∈ R
in a window υ and by [R]υ = ∪%∈R[%]υ the set of all instances
of all targets from R in υ. In the same manner, we define the
set [σ]υ of all instances of spoiler σ ∈ S in υ and the set
[S]υ = ∪σ∈S[σ]υ of all instances of all spoilers from S in υ.

We move events into the trace window υ as soon as
they occur. However, in order for the window not to grow
indefinitely, we also have to remove some events from it. We
define the υ → e operation which removes e from υ. We
also generalize this operation for instances of targets/spoilers.
The υ → r operation removes all events from r ∈ [R]υ from
υ provided they do not belong to another currently tracked
instance of a target or spoiler, i.e., ∀ei ∈ r : υ → ei ⇐⇒

(∀x ∈ [R]υ ∪ [S]υ, x , r : ei < x) ∧ (∀x ∈ [R]τ ∪ [S]τ, start(x) ∈
υ ∧ end(x) < υ : ei < x). Likewise, we define the υ → s
operation that removes all events from s ∈ [S]τ from υ. As we
show below, one can discard events corresponding to some of
the older spoiler and target instances when newer ones appear
in the window. The conditions allowing us to discard such
instances are safe in that at least one instance of a violation
of each target by each spoiler is always reported. However,
if there are multiple occurrences of the conflict, just one is
guaranteed to be preserved.

2) Discarding Spoilers: First, we aim at reducing the
number of spoiler instances in a trace window. We say that
discarding a spoiler instance s (i.e., removing this particular
instance from the current trace window and not considering
it in further contract violation detection) is safe iff whenever
a contract violation can be detected using s, it can be detected
without s too. The below lemma shows that, under some
natural assumptions, reflected in our analysis, an instance s1 of
a spoiler σ can be safely discarded from the window provided

the window contains a newer instance of the spoiler σ, i.e.,
an instance s2 that started later than s1.

In particular, we assume that events appear in the window υ
as soon as they appear in the trace τ. Moreover, we assume that
as soon as an instance r of a target % appears in the window υ,
i.e., r ∈ [%]υ becomes true, r is checked for contract violation
against all instances s of all spoilers σ ∈ C(%) conflicting with
the given target % that appear in the window υ, i.e., s ∈ [σ]υ.
Then the following holds (for proofs, see [11]).

Lemma 1. Let s1, s2 ∈ [σ]υ be instances of a spoiler σ ∈ S
present in a window υ of a trace τ. If s1 started before s2,
i.e., start(s1) ≺hb start(s2), it is safe to discard s1 from υ.

Using Lemma 1 and the fact that spoiler instances in a single
thread are ordered wrt ≺hb, we can prove the below lemma that
limits the number of spoiler instances to be preserved.

Lemma 2. Let T = { t ∈ T | start(t) = el ⇒ l ≤ j } be the set
of threads that started before the end of a window υ = ei . . . e j.
For each thread t ∈ T and for each spoiler σ ∈ S, we need to
preserve just the last instance of σ in υ running within t.

3) Discarding Targets: We now aim at reducing the number
of target instances, which turns out to be more challenging
than for spoilers. We say that discarding a target instance r is
safe wrt a spoiler instance s iff whenever a contract violation
between r and s can be detected, then a conflict between s and
some other target instance r′ can be detected too. Note that,
unlike in the case of spoilers, discarding a target instance is
defined as safe wrt a given spoiler instance and not in general.

First, Lemma 3 shows that, given instances r1 and r2 of
a target % where r1 ends before r2 starts, r1 can be safely
discarded wrt any spoiler instance that (i) has not even started
before the end of the window or that (ii) started even before r1.

Lemma 3. Let υ = ei . . . e j be a window of a trace τ with two
instances r1, r2 ∈ [%]υ of a target % ∈ R such that end(r1) ≺hb

start(r2). It is safe to discard r1 wrt any instance s ∈ [σ]τ of
a spoiler σ ∈ S forming a contract with %, i.e., (%, σ) ∈ C,
whenever either (i) s starts behind the window υ, meaning
that if start(s) = el, then j < l, or (ii) s starts before r1 starts,
i.e., start(s) ≺hb start(r1).

Next, we consider the case when an instance s of a spoiler σ
is running at the end of the window υ, there are two instances
r1 and r2 of the same target % conflicting with σ, r1 ends before
r2 starts, but s does not start before r1 and r2. Lemma 4 shows
that, in this case, discarding r1 is safe wrt s.

Lemma 4. Assume a window υ of a trace τ with two target in-
stances r1, r2 ∈ [%]υ of a target % ∈ R s.t. end(r1) ≺hb start(r2).
Let s ∈ [σ]τ be an instance of a spoiler σ ∈ S that forms
a contract with %, i.e., (%, σ) ∈ C, it is running at the end
of υ, i.e., start(s) ∈ υ but end(s) < υ, and it has not started
before the given target instances, i.e., start(s) ⊀hb start(r2).
Then discarding r1 is safe wrt s.

Since we check each spoiler instance against all target
instances that are currently in the trace window as soon as the
spoiler instance gets into the window, we can prove the below



upper bound on the number of target instances to be preserved.
Intuitively, by Lemma 3, one instance is kept wrt all not yet
started and—on the other hand—old but still running spoiler
instances. Further, by Lemma 4, one instance per thread in
which a newer spoiler instance is running is to be preserved.

Lemma 5. Let T1 = { t ∈ T | start(t) = el ⇒ l ≤ j } be the
threads that started before the end of a window υ = ei . . . e j,
and let T2 = { t ∈ T1 | end(t) = el ⇒ l > j } be the threads
running at the end of υ. For each thread in T1 and each target
% ∈ R, we need to preserve at most |T2| + 1 instances of %.

4) Vector Clocks and Further Optimizations: Next, as a fur-
ther optimization, we will first introduce an application of
vector clocks for efficiently tracking information about the
happens-before relation between the spoiler/target instances
that are (or were) in the current trace window. Essentially,
instead of remembering the entire sequence of events forming
a target/spoiler instance, we will remember the vector clocks of
their start and end only. Keeping just these two vector clocks
is sufficient as we need to know the happens-before relation
only between the starts and ends of conflicting target/spoiler
instances. Next, from Lemma 5, we know that we need to
track—in the worst-case—for each thread and for each target,
one instance of the target for each thread in which some poten-
tially conflicting spoiler instance is running (a consequence of
Lemma 4) plus one further instance for all other running or not
yet started spoiler instances (a consequence of Lemma 3). We
will propose an optimisation which will allow us to preserve,
for each thread t and each target %, the vector clocks of both
the beginning and end just for the last instance of % in t only.
For the other instances required to be tracked by Lemma 4,
we will remember the vector clock of their end only.

In general, a vector clock VC : T → N contains a clock
value for each thread t ∈ T recorded at a certain point. In
particular, we maintain, for each t ∈ T, a vector clock Ct

whose entries Ct(u) record, for each u ∈ T, the clock value of
the last operation of u that happens before the current operation
of t. The t-component of this vector clock then represents the
clock of the thread t. It is incremented at each lock release or
fork operation. Next, we maintain a vector clock Ll for each
lock l ∈ L. These vector clocks are updated on synchronisation
operations that impose a happens-before order of operations
from different threads in a way described in [19].

Further, we assign to each event e ∈ τ executed by a thread
t ∈ T a vector clock VCe. This vector clock is set to the value
of Ct when e is encountered in the execution of the program.
It can then be determined whether an event et executed in the
thread t happens before an event eu executed in a thread u,
i.e., et ≺hb eu, by checking whether VCet (t) ≤ VCeu (t).

To allow for checking the conditions determining if a con-
tract was violated or not, it now suffices to record the vector
clocks of the start and end of the spoiler and target instances
that are to be kept in the window wrt Lemmas 1, 3, and 4.

Moreover, for the target instances r to be remembered
according to Lemma 4, i.e., those for which there is some
running spoiler instance s that can collide with r, we can

reduce the amount of stored information even further as
follows. Instead of storing the vector clocks of the beginning
and end of each target instance r of the above kind that appears
in some thread t, we proceed as follows: (1) We remember
in which threads u there are running spoiler instances s
satisfying the first condition of contract violation wrt r, i.e.,
start(s) ⊀hb start(r). (2) We remember the time when r ends
its execution, i.e., VCend(r)(t), which is needed to check the
second condition of contract violation, i.e., end(r) ⊀hb end(s),
once s ends. Both of these pieces of information can be
remembered by maintaning a mapping PV%,σ

t : T → N for
the thread t ∈ T, the target % ∈ R whose instance r is, and the
spoiler σ ∈ S whose instance s is. Namely, for each thread u
containing a spoiler instance s satisfying the first condition of
contract violation, we may set PV%,σ

t (u) to VCend(r)(t), while
setting the other entries of PV%,σ

t to 0.5

Using the above, when a spoiler instance s finishes its exe-
cution in a thread t, it suffices to check PV%,σ

u (t) for each thread
u other than t (as we do not consider conflicts within a single
thread).6 If the value is not 0, we know that the first condition
of contract violation between s and the target instance r that
ran in the thread u that we remebered through PV%,σ

u only was
satisfied. Then, by checking PV%,σ

u (t) ≤ VCend(s)(u), we can
determine if a violation occurred or not.

5) Method Description: We now summarise our optimized
on-the-fly contract violation detection. Most of it is done
by Algorithm 2 at method exit events. Algorithm 2 handles
both conflicts between the latest, so far fully remembered
spoiler and target instances (lines 3, 11) as well as between
newly finished spoiler instances and older target instances
partially remembered via PV%,σ

t (lines 12–13). Algorithm 2
also discards older target/spoiler instances r′/s′ (lines 7, 9)
and maintains the PV%,σ

t mapping (line 6). The latter is done
by recording the above described data about an older target
instance r′ that can still collide with some running spoiler
instance s according to Lemma 4, which is tested on lines
4–6, before r′ is removed from the window.

Apart from the above, at an entry to a method, we perform
recognition of target/spoiler instances. That is done using
finite automata for recognising sequences of events match-
ing the regular expressions representing the corresponding
targets/spoilers, respectively. New runs through the automata
may be initiated at each event, and, at the same time, an
attempt to extend all so-far unfinished runs is done (if such
a run cannot be extended via the current event and the event
belongs to the alphabet of the concerned automaton, the run
is discarded). When an exit from a method is encountered,

5By setting PV%,σ
v (u) to VCend(r)(t), we remember both that the first

condition of contract violation has been satisfied between r and s and the time
when r ended. The time is remembered multiple times for possibly different
threads u, but we tolerate this for the sake of obtaining uniform data structures.
Since the space needed to store PV%,σ

t corresponds to that of a vector clock,
and we have a single PV%,σ

t instead of two vector clocks for each target
instance that needs to be remembered according to Lemma 4, we save up to
2 · |T2 | − 1 vector clocks where T2 is the set of currently running threads.

6The meaning of the threads is swapped here wrt the previous paragraph
in order to have the explanation in line with the code in Fig. 2.



Data: window υ, event e ∈ E generated by thread t ∈ T
1 if ∃% ∈ R, r ∈ [%]υt : e = end(r) then // Target ended
2 for σ ∈ C(%), u ∈ T : u , t do
3 if ∃s ∈ [σ]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

then r is violated by s ;
4 if ∃s ∈ [σ]τu : start(s) ∈ υ ∧ end(s) < υ then
5 if start(s) ≺hb start(r) then
6 if ∃r′ ∈ [%]υt : r′ , r ∧ start(s) ⊀hb start(r′) then

PV%,σ
t (u) = VCend(r′)(t) ;

7 if ∃r′ ∈ [%]υt : r′ , r then υ→ r′ ;
8 if σ ∈ S, s ∈ [σ]υt : end(s) = e then // Spoiler ended
9 if ∃s′ ∈ [σ]υt : s′ , s then υ→ s′ ;

10 for % ∈ C(σ), u ∈ T : u , t do
11 if ∃r ∈ [%]υu : start(s) ⊀hb start(r) ∧ end(r) ⊀hb end(s)

then r is violated by s ;
12 if PV%,σ

u (t) , 0 ∧ PV%,σ
u (t) ≤ VCend(s)(u) then

13 an instance of % is violated by s;
Algorithm 2: Contract violation detection at method exit.

a check is performed to see whether some of the runs has
reached an accepting state (this will then be recognised via
the end(r)/end(s) predicates on lines 1/8 of Algorithm 2).

C. Implementation and Experiments
We implemented the above approach extended to distinguish

values of one parameter by tracking different target/spoiler
instances for its different values. We used the ANaConDA
framework [17] to monitor method calls and synchronization
events in running C/C++ programs. ANaConDA also pro-
vides us with heuristic noise injection [15] that can disturb
the common thread scheduling by inserting various delays
into the threads. This can increase the number of witnessed
interleavings and hence chances to see an interleaving from
which our analysis can deduce that a contract violation is
possible. We thus use two orthogonal methods to find rare
concurrency-related bugs: noise injection and extrapolation
based on the happens-before relation. In particular, we inject
noise before the last method of each target instance which
prolongs its execution and increases chances to encounter
a spoiler instance capable of interleaving the target instance
and causing a contract violation.

We tested our implementation on a set of small benchmarks
with known atomicity violations as well as two real-world
programs, Link Manager and Chromium-1. The small pro-
grams were taken from [2], [3], [40] and were also used in
Section III-E to evaluate the static validation method (we used
a C++ version as close as possible to the Java version).

Link Manager is a component of a cloud-connected thermo-
stat used for managing parallel task processing (we were not
allowed to identify the company developing it). A manager
thread is issuing tasks to executor threads, which send results
of the assigned tasks back to the manager through a shared
queue. Our tool was used in the early stages of development
of this program, and it uncovered an order violation error that
happened when an executor sent the result of its task before
the manager initialised the queue used to transfer the data.
This caused the manager to wait forever for the task to be

TABLE II: Validation results for dynamic analysis.
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Coord03 [2] 8 380 0 0 380 116 1.01
Coord04 [3] 4 24 0 0 24 53 0.52
Local [2] 4 2 0 0 2 27 0.52
NASA [2] 1 100 0 0 100 96 0.60
Account [40] 1 176 0 0 176 54 0.53

Link Manager 2 1 0 0 1 1.5K 1.14
Chromium-1 2 2 0 0 2 7.5M 49.12

finished. One of the contracts we checked required that the
queue cannot be used before it is initialised, i.e., no send or
receive can occur between the start of the manager and the
initialisation of the queue. The error occurred very rarely, so
normal tests were unable to detect it. Our tool, however, was
able to detect the error, and it was then promptly fixed.

Chromium-1 is a program from the RADBench bench-
mark [24], an older version of the Chrome browser (version
6.0.472.35) containing a known atomicity violation leading
to an assertion failure. As this error can be described using
a contract, we tried our tool to find the error. The experiment
was successful, showing that our tool can handle even large
programs. Interestingly, to find the error without the on-the-fly
approach, one would need to store a trace with more than 17
million method calls (about 1.6 GB of data) while the on-the-
fly method needed about 10 MB of data only.

Table II provides results of experiments with our dynamic
approach. The T/S Pairs column gives the number of tar-
get/spoiler pairs considered. The column Contract Violations
gives the number of instances of such pairs found violated.7

The column False Positives, included for compatibility with
Table I, contains zeros only as, unlike the static approach,
the dynamic one considers solely executable sequences of
method calls (indeed, they were seen to execute). The column
Potential AV contains numbers of detected contract violations
that need not stay real if the values of more than one parameter
per contract are taken into account (which is not yet supported
in our tool). The column contains zeros only showing that we
sufficed with tracking a sole parameter in all our experiments.8

The column Real AV gives numbers of contract violations
guaranteed to be real as they used at most one parameter,
and our tool was thus able to distinguish the needed instances.
Finally, the columns SLOC and Time give the numbers of lines
of the considered programs and the analysis time.

The results show that our approach can be used to find real
errors in real-world programs. Moreover, it can be used to
detect not only atomicity violations, but also order violations
which are hard to be found using exiting techniques.

7Compared with the static approach, we look for contract violations in the
execution of a program, not its source code. As the code containing a contract
violation may be executed repeatedly, we can detect (and report) the same
contract violation many times. The static approach reports it only once.

8We tried an experiment in which we tracked no parameter values at all.
Then, for Chromium-1, our tool reported 14 potential violations instead of the
2 real ones, showing that distinguishing target/spoiler instances is important.



V. RelatedWork

Design by contract was introduced by Meyer [31] as a way
to write robust code, using contracts between programs and
objects, checked at runtime. In this context, a contract consists
of a pre- and post-condition of a method such that when the
call of a method satisfies its pre-condition, the post-condition
is guaranteed to be satisfied upon return from the method.

Cheon et al. [8] proposed a way of using contracts to specify
protocols for accessing objects in a sequential setting. The con-
tracts use regular expressions describing sequences of calls that
can be executed for a given object. Hurlin [22] extended [8]
with operators allowing one to specify which methods may
be executed concurrently. The work, however, does not show
how to validate such contracts, it only proposes a technique
for automatically generating programs from contracts that are
to be proven correct (e.g., by theorem proving) to show that
the contracts adhere to the protocols they specify.

In [5], [34], typestates are used to specify protocols for
accessing objects. A typestate can describe both the legal
sequences of method calls and the data these methods may
work with. In [5], the protocol must be defined by the user
and then validated using three static analyses. If these analyses
cannot establish correctness of the program, dynamic analysis
is used to find protocol violations. In [34], a dynamic analysis
is used to automatically infer protocols from program runs
and then static analysis is used to check the protocols. All
the protocols, however, do not consider concurrency-related
issues. Beckman et al. [4] showed how to use typestates in
concurrent scenarios. Their approach, however, requires the
user not only to define the protocols to be checked, but also
to annotate the code with additional information needed by the
static checker to check if the protocols are respected. Typestate
specifications are also much more complex compared with the
specifications based on contracts we propose in this paper.

The work [30] deals with JavaMOP specifications of desired
program properties that are validated dynamically at runtime.
Using the approach, one can specify that some sequence of
methods must be atomic, but the specific way of ensuring the
atomicity (e.g., the fact that some lock must be held) has to be
encoded by the user in the specification. On the other hand,
when our contracts are used for checking atomicity, the user
just specifies the sequence of method calls and does not have
to care about the way the atomicity should be ensured.

Most works targeting errors in concurrent programs have
concentrated on detecting data races and deadlocks. These
errors are, however, of a different nature than those captured by
contracts, and hence methods and tools developed for detect-
ing them—including well-known ones, such as, Eraser [36],
RaceTrack [42], GoldiLocks [13], FastTrack [19], or Good-
Lock [21]—cannot be used for contract violation detection.

Significantly less works targeted detection of various kinds
of atomicity violation [18], [29], [40], including different
forms of high-level data races [2], [12], [14] or stale value
errors [3], [6], [12]. Detectors based on access patterns to
shared variables [28], [39], type systems [7], semantic invari-

ants [10], and dynamic analysis [18], [20], [41] have been
proposed for detecting this kind of errors. Despite atomicity
violation is closer to contract violation, contract violation is
still more general. This is, atomicity violations can be detected
as contract violations (possibly with a need to view accesses
to variables as method calls) but not vice versa. An example
of an error that can be captured via contract validation but not
atomicity validation is that of order violation. Such an error
happens in the Link Manager where a shared queue is used
before it is initialised. As the queue (variable) is accessed only
once in each of the threads and both accesses are guarded by
the same lock, it is neither an atomicity violation nor a data
race, and yet we were able to detect it.

ICFinder [27] is the closest tool to Gluon. It uses a static
analysis to automatically infer which pairs of calls to a module
are incorrect. This is achieved by identifying and applying
two common incorrect composition patterns: one capturing
stale value errors and the other one trying to infer correlations
between method calls by analyzing the CFG of the client’s
program. These patterns are extremely broad and yield many
false positives. The authors address this issue by filtering
the results from the static analysis with a dynamic analysis
that only considers violations defined in [39]. This analysis
assumes that the notion of atomic set was correctly inferred by
ICFinder. None of the atomicity violations detected by Gluon
in our larger benchmarks was captured by ICFinder since their
patterns failed to match the source of those violations.

In [16], a dynamic contract validation based on lock-sets
was proposed. However, it supports basic contracts only, it
can miss many violations, and it reports false positives. Our
approach is based on the happens-before relation [19], [33],
[41], encoded by vector clocks in a way specifically optimised
for efficient tracking of target and spoiler instances. It supports
contracts with spoilers, and it is able to detect more violations
without producing false positives.

VI. Conclusion and FutureWork

We have extended the previously established notion of
contracts for concurrency with arguments and spoilers, each
of the extensions allowing one to describe contracts more pre-
cisely. Then, we have proposed two methods to validate such
contracts—namely, a static and a dynamic one, each of them
offering complementary advantages. We have evaluated both
methods on a set of simple as well as real-world programs,
showing that both of them can be practically useful.

There are many possibilities for future work. For instance,
while it is conceptually easy to support contracts with both
arguments and spoilers in the dynamic approach, this can
be rather costly in practice due to many target and spoiler
instances to be tracked. Suitable optimisations are thus likely
needed. Next, static validation of contracts with contextual
information remains open. Further, it seems promising to
combine the static and dynamic approach—e.g., by letting the
static approach to drive the dynamic one to likely problematic
code. More involved ways of automatically deriving contract
candidates are also an interesting issue for further work.
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