
Predator: A Practical Tool for Checking
Manipulation of Dynamic Data Structures

Kamil Dudka1,2 Petr Peringer1 Tomáš Vojnar1

1FIT, Brno University of Technology, Czech Republic

2Red Hat Czech, Brno, Czech Republic

December 4, 2011

Predator: An Overview

In principle based on separation logic with higher-order list
predicates, but using a graph encoding of sets of heaps.

Verification of low-level system code (in particular, Linux
code) that manipulates dynamic data structures.

Looking for memory safety errors (illegal dereferences,
double free, buffer overrun, memory leaks, ...).

Implemented as an open source gcc plugin:
http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

1 / 12

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

Doubly Linked Lists: Textbook Style

next

prev

first next

prev

custom_node custom_node

2 / 12

Doubly Linked Lists in Linux

next

prev

list_head

next

prev

list_head

next

prev

list_head

custom_node custom_node

3 / 12

Linux Lists: Optimised for Hash Tables

next

pprev

hlist_node

first

hlist_head

next

custom_node custom_node

hlist_node

pprev

4 / 12

Traversal of a Linux List

... as seen by the programmer:
list_for_each_entry(pos, &gl_list, head)
{

printf(" %d", pos->value);
}

... as seen by the compiler and/or analyser:
for(pos = ((typeof(*pos) *)((char *)((&gl_list)->next)
-(unsigned long)(&((typeof(*pos) *)0)->head)));
&pos->head != (&gl_list);
pos = ((typeof(*pos) *)((char *)(pos->head.next)
-(unsigned long)(&((typeof(*pos) *)0)->head))))

{
printf(" %d", pos->value);

}

5 / 12

Symbolic Heaps

DLS 2+

+8B: prev

+0B: next
16B

+16B: prev

+8B: next

24B +0B: data

+16B: prev

+8B: next

24B +0B: data

+8

+0

+8

Symbolic heaps encoded as graphs consisting of objects
(allocated space) and values (integers, addresses).
Objects have some size and may be structured to sub-objects
that appear at certain offsets.

Objects have values, addresses point to objects (with an offset).
Special objects are used to represent SLL/DLL segments.

6 / 12

Symbolic Heaps

DLS 2+

+8B: prev

+0B: next
16B

+16B: prev

+8B: next

24B +0B: data

+16B: prev

+8B: next

24B +0B: data

+8

+0

+8

SLL segments are represented by a single abstract node
(pointed from before of the segment and pointing behind it).
DLL segments are represented by two abstract nodes (one
pointed from before of the segment and pointing before it
and the other pointed from behind of the segment and
pointing behind it).

7 / 12

Symbolic Heaps

DLS 2+

+8B: prev

+0B: next
16B

+16B: prev

+8B: next

24B +0B: data

+16B: prev

+8B: next

24B +0B: data

+8

+0

+8

We support list segments of length N+ for any N ≥ 0.
We also support special segments of length 0 – 1.

List segment nodes can point to private or shared sub-heaps.

8 / 12

Join Operator

Traverses two symbolic heaps and tries to
merge simultaneously found nodes.

It can merge objects of a compatible type
(i.e., with the same size and structure).

A list segment can be merged with an
object of a compatible type or another list
segment of a compatible type.

The minimum length has to be adjusted
correspondingly.

When the above does not work, one has
to try to insert a list segment of length 0+
or 0 – 1 into one of the heaps.

2+ 1+ 1+

1+

1+

0+

1+

9 / 12

Abstraction

Based on collapsing uninterrupted sequences of objects
into singly- or doubly-linked list segments.

Starts by identifying sequences of objects of a compatible
type singly- or doubly-linked through fields at some offset.

Uses join on the sub-heaps of such nodes to see whether
the sub-heaps are compatible.

0+

0+

0+2+

Distinguishes cases of shared and private sub-heaps.

10 / 12

Predator: Case Studies

More than 200 case studies in total:
Programs dealing with various kinds of lists (Linux lists,
hierarchically nested lists, ...).

Typical list manipulation artifacts as used in system code.

Sorting algorithms (Insert-Sort, Bubble-Sort, Merge-Sort).

Typical error patterns specific for code using Linux lists.

Other similar tools (such as Invader) fail to analyse many
of our case studies.

We can also successfully handle the driver code snippets
available with Slayer.

11 / 12

Predator: Future Work

Improve the internal offset-based representation of heaps
to support:

re-interpretation of nested objects with byte-granularity,
support for execution of memset(), memmove(),

Support for additional shape predicates:
trees,
array segments,
...

Support for non-pointer data (mainly integers).

12 / 12

