
Predator: A Practical Tool for
Checking Manipulation of

Dynamic Data Structures
Using Separation Logic

FIT BUT Technical Report Series

Kamil Dudka, Petr Peringer, and Tomáš Vojnar

Technical Report No. FIT-TR-2011-02
Faculty of Information Technology, Brno University of Technology

Last modified: April 18, 2011

Predator: A Practical Tool for Checking Manipulation
of Dynamic Data Structures Using Separation Logic

Kamil Dudka1,2, Petr Peringer1, and Tomáš Vojnar1

1 FIT, Brno University of Technology, Czech Republic
2 Red Hat Czech, Brno, Czech Republic

Abstract. Predator is a new open source tool for verification of sequential C pro-
grams with dynamic linked data structures. The tool is based on separation logic
with inductive predicates although it uses a graph description of heaps. Preda-
tor currently handles various forms of lists, including singly-linked as well as
doubly-linked lists that may be circular, hierarchically nested and that may have
various additional pointer links. Predator is implemented as a gcc plug-in and it
is capable of handling lists in the form they appear in real system code, especially
the Linux kernel, including a limited support of pointer arithmetic. Collaboration
on further development of Predator is welcome.

1 Introduction

In this report, we present a new tool called Predator for fully automatic verification of
sequential C programs with dynamic linked data structures. In particular, Predator can
currently handle various complex kinds of singly-linked as well as doubly-linked lists
that may be circular, shared, hierarchically nested, and that can have various additional
pointers (head/tail pointers, data pointers, etc.). Predator implicitly checks for absence
of generic errors, such as null dereferences, double deletion, memory leakage, etc. It can
also print out a symbolic representation of the shapes of the memory structures arising in
a program. Finally, users can, of course, use Predator to check custom properties about
the data structures being used in their code by writing (directly in C) tester programs
exercising these structures.

Predator is based on separation logic with higher-order inductive predicates. It is
inspired by the works [2,8,9] and the very influential tool called Space Invader3 (or
simply Invader). However, compared to Invader, the heap representation in Predator is
not based on lists of separation logic formulae, but rather a graph representation of these
formulae. The algorithms handling the symbolic heap representation (in particular, the
abstraction and join operators based on detecting occurrences of heap structures that
can be described by inductive predicates) have been newly designed.

Compared to Invader that contains a partial support of doubly-linked lists only,
Predator supports them equally well as singly-linked lists. Predator also contains a spe-
cial support for list segments of length 0 or 1 that are common in practice [8] and that
may cause problems to Invader (as we illustrate further on).

3 http://www.eastlondonmassive.org/East London Massive/Invader Home.html

1

http://www.eastlondonmassive.org/East_London_Massive/Invader_Home.html

The long term goal of Predator is handling real system code, in particular, the Linux
kernel. In such code, for efficiency reasons, special forms of lists are used. In order to
be able to handle them, Predator comes with a limited support of pointer arithmetic,
which, however, covers most practical needs. Therefore, in a heap representation, the
points-to links are associated with an offset w.r.t. the object they point to. Despite such
an extension is not mentioned in [2,9], the Invader tool seems to partially support it, but
it fails in many practical cases that Predator can handle well.

Predator is written in C++. It is built as a gcc plug-in, hence its front end is the
same compiler that is used in practice for compiling the code that Predator is intended to
analyse. Predator is completely open source4 in order to allow for an open collaboration
on its further development, which is very welcome.

There of course exist many other works on verification of programs with dynamic
linked data structures than those using separation logic, including works based on other
logics [6], automata [3], upward-closed sets [1], etc. These approaches offer different
degrees of generality, automation, or scalability. A proper discussion of such works is,
however, beyond the scope of this tool report. Throughout the report, we instead concen-
trate on a comparison with Invader as the closest tool to Predator. A similar tool is also
jStar [5] which, however, concentrates on Java-specific problems. In [4], a bi-abductive
analysis based on separation logic was proposed and implemented in a version of In-
vader, called Abductor5. This analysis, which is more scalable but less precise than
the classical analysis used in Invader and Predator, is not yet implemented in Preda-
tor (whose core can, however, be used to implement it in the future). Unlike Invader,
Predator cannot currently handle entire modules of Linux (such as drivers6) due to a so
far very weak support of non-pointer data, which is one of the planned future works on
Predator (together with a support of tree data structures, bi-abduction, etc.).

Below, we first say a bit more on the Linux lists supported by Predator, then we
briefly mention some implementation details of Predator, and we proceed to interesting
cases studies that illustrate the power of our tool. For some of the case studies, we are
not aware of any other fully automatic, freely available tool, capable of handling them.

2 Lists Used in the Linux Kernel

As there is no standard implementation of linked lists in the C language, the Linux
kernel has to implement lists on its own. The list implementation in Linux is well-
known for its efficiency, portability, readability, and scalability—for instance, it allows
to create list nodes which are owned by many distinct lists at a time. The downside is
that it operates at a low level, hence it is easy to misuse the routines, and cause a disaster
within the kernel. In Appendix C, we mention some common mistakes in manipulating
Linux lists, which Predator is able to detect.

4 http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
5 Abductor is publicly available, but we have not managed to make it run. There is also a com-

mercial implementation (www.monoidics.com), which is, however, not freely available.
6 Although Invader has already shown some interesting results on pre-processed source code of

selected Linux drivers, it is not ready for analysing drivers using the native Linux lists.

2

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator/
http://www.monoidics.com

Fig. 1. A list of lists as implemented in the Linux kernel

The whole implementation of Linux lists is available in a single header file and
consists of about 500 lines of code. It defines only one7 type, which does all the job. The
type contains a pair of pointers (next and prev), but no data. Such a structure is called
a head and can be used in two ways—either as a starting point of a list (a standalone
head), cf. the leftmost node in Fig. 1, or as part of list nodes (an embedded head).

Basic list operations (like addition, removal, reconnection of nodes) work only with
heads and do not care about any associated data. In particular, the routines themselves
do not distinguish between embedded and standalone heads.

The embedded head can be placed at an arbitrary offset in the surrounding structure.
Moreover, it is possible to put many embedded heads into one structure such that one
node is part of many lists. The standalone head can be placed on stack, but it can also
be surrounded by another type. This way one can construct hierarchical list structures
as shown in Fig. 1. Note that the beginning of the data nodes (depicted in gray in Fig. 1)
needs not to be directly accessible by any pointer and can hence be mistakenly consid-
ered garbage if pointer arithmetic is not taken into account.

Linux lists are doubly-linked and circular, which significantly simplifies the design
and boosts performance. That is, each routine for reconnection of a node (insertion,
deletion, etc.) fits into a single basic block, which would not have been possible in case
of regular NULL-terminated doubly-linked lists. It also implies that there is no need to
have an explicit starting point (a standalone head) for each list. The Linux list library
provides macros to define a standalone head and initialise it as an empty list. In case of
Linux lists, an empty list means that next and prev fields point to the head itself.

The basic list traversal macro (list for each) provides a pointer to a head in
each iteration and works without any type-awareness of the data nodes being traversed.
The macro list entry then allows to translate a pointer to a head into a pointer to the
corresponding data node. As the offset of each embedded head in the structure is known
at compile-time, the macro can easily use pointer arithmetic to compute the required
address. There is also an extended macro for list traversal (list for each entry)
that efficiently wraps list entry and this way gives us a pointer to the data node in
each iteration, instead of the pointer to the embedded head. Note, however, that it may
happen that some pointer variable points to the unallocated space around a standalone
head and yet may be correctly used (by being subsequently moved forward by pointer

7 Starting with Linux-2.5.64, there is also an optimised variant of lists for constructing hash
tables. We are not yet able to analyse the code that uses these optimised lists.

3

arithmetic). On the other hand, dereferencing such a pointer is an error, which can, e.g.,
lead to stack smashing (and is detectable by Predator).

A nice introduction into how Linux lists work can be found in [7]. We use the code
from there as one of the case studies distributed as test-cases with Predator.

3 A Note on the Implementation of Predator

Predator implements a symbolic analysis based on separation logic with higher-order
inductive predicates, inspired by the works [2,9] implemented in Space Invader. Preda-
tor uses a graph representation of separation logic formulae, a little bit similar to the
graph representation introduced in [2] for description of the predicate discovery algo-
rithm. Our representation is, however, more complex and used all the time.

In our graph-based symbolic representation of heaps, we use two kinds of nodes:
objects (statically and automatically allocated program variables, dynamically allocated
storage, etc.) and values of the objects (e.g., addresses of objects and the special unde-
fined, deleted, and null values in the case of pointers and function pointers). Objects
can be nested in order to represent the composition of C language structures. The ap-
propriate nodes are linked by oriented graph edges hasValue (going from objects to
values) and pointsTo (going from values to target objects). In order to allow for efficient
equality testing, equal objects are simply linked to the same value node. To encode
non-equality relations, value nodes may be linked by undirected neq edges. Further,
when pointer arithmetic produces a value that does not point to a valid target, we use
so-called offset edges between value nodes. Such values can later be used for a valid
memory operation—they can either be translated by another use of pointer arithmetic
to a valid address, or directly used for accessing an existing subobject of a non-existent
surrounding object (which is common, e.g., when working with Linux lists as we show
in Appendix B).

We represent inductive predicates as special abstract objects. Currently, we sup-
port only singly- and doubly-linked list segments that may be shared, nested, and with
various additional (head, tail, data, and the like) pointers. A doubly-linked list segment
(DLS) has two endpoints, both of which may be pointed to. Therefore, since each object
has exactly one address, we in fact represent DLS as pairs of abstract objects. To cope
with pointer arithmetic, we equip abstract objects with offsets specifying the relative
placement of the core linking pointers (next/prev for lists). Moreover, to cope with
Linux lists, we also record the head offset that is a relative placement of the list pointer’s
target. For Linux lists, it corresponds to the offset of the embedded head, whereas for
regular lists, it is simply zero. We do not treat the minimal segment length as an explicit
property of a list segment as in [8]. Instead, our list segments are implicitly possibly
empty (i.e., of length 0+). We use the generic mechanism of neq edges between nodes
before and after a segment to construct non-empty segments (length 1+). For DLS, we
use two neq edges for length 1+ (one edge for each direction) and three neq edges for
length 2+ (the additional neq edge is in between the ends of the DLS). Such an ap-
proach leads to a simpler and more readable implementation. Apart from that, we then
have special abstract objects for list segments of length 0 or 1. Some more details about
the representation of symbolic heaps can be found in Appendix A.

4

Predator maintains a set of symbolic heaps for each basic block entry. The set is not
yet implemented as an ordered or hashed container, but it utilises a join operator similar
to the join operator introduced in [9], helping to significantly decrease the number of
symbolic heaps to be maintained. Moreover, Predator uses a slightly modified version
of the join algorithm to merge pairs of objects during a list segment abstraction, in
particular to join nested predicates, shared (head, tail or other) pointers, and other data.
The modified join algorithm operates on two parts of a single heap given by the pair of
objects being merged, and constructs a joint description of both parts. The algorithm can
also run in a read-only mode to decide whether the join operation is possible. The read-
only mode can be safely used during predicate discovery. Thanks to this, the algorithms
for abstraction and predicate discovery are implemented as a very thin purpose-specific
layer on top of the generic join algorithm. In Appendix E, we show an example of use
of the modified join algorithm.

For inter-procedural analysis, Predator uses function summaries in a way similar to
[9], including a support of indirect function calls and recursive calls of fixed depth.

Predator is tightly integrated with gcc (version 4.5.0 and newer) as a plug-in.
Therefore, there is no need to manually pre-process the sources, neither to change the
way they are built, whenever dealing with software natively compiled by gcc. Usage of
Predator is as easy as adding a new compiler flag into CFLAGS while building a project.
Code defects encountered during analysis are reported in the gcc format. Hence it is
easy to reuse existing development tools, IDE, etc. In order to give users a clue about
detected errors, Predator provides a backtrace for each error. Predator attempts to re-
port as many errors and warnings as possible per run. For instance, if a memory leak
is detected, a warning is issued, and Predator keeps searching for further errors (due to
a garbage collector that gets the symbolic heap back to its consistent shape). Predator
supports error recovery for most of the program errors which it is able to detect. Such
an approach may trigger an error avalanche in certain cases, but the same may happen
with bare gcc during compilation and developers know how to resolve it.

4 Experiments with Predator

Along with Predator, we distribute a comprehensive set of programs (over a hundred test
cases) that can be handled by our tool, including various textbook implementations of
lists (singly-linked, doubly-linked, circular, hierarchically nested, etc.) as well as exam-
ples using Linux lists8. These case studies are mid-size (up to 300 lines), however, they
contain almost only pointer manipulations unlike larger programs whose big portions
are often not relevant for pointer analyses like ours. Apart from basic list manipulation
(creation of random lists, reversal, destruction, etc.), we provide also examples of var-
ious sorting algorithms: Merge-Sort (test-0124.c), Insert-Sort (test-0134.c),
and Bubble-Sort (test-0136.c). The Merge-Sort case study operates on hierarchi-
cal singly-linked lists. The other two sorts use the native implementation of Linux lists.
Predator is not proving that the resulting list is sorted, but it verifies memory safety of

8 In the following text, we provide in brackets the file names under which the discussed case
studies appear in the distribution of Predator. The case studies are available at
https://github.com/kdudka/predator/tree/61d5df3/sl/data .

5

https://github.com/kdudka/predator/tree/61d5df3/sl/data

the code. Invader, as a freely available tool closest to Predator, is not able to analyse any
of our sorting case studies.

Some of our test cases show common mistakes in using Linux lists such as mixing
pointers to a head with pointers to data (test-0138.c) or treating a standalone head
as if it was an embedded head (test-0137.c). Only programmers know the purpose
of each head, and if they use the head in a wrong way, it is likely to be noticed at run-
time only (and often not immediately). For example, starting from a standalone head,
the list for each entry macro provides a valid pointer to data in each iteration.
However, if one starts to traverse the list from the middle, it ends up by misinterpreting
the standalone head’s neighbourhood as list node’s data. Predator is capable of detect-
ing such mistakes. We, for instance, provide an example where a wrong head is used
for a Linux list traversal (test-0131.c). Despite even the dynamic analysis tool
valgrind, often used by developers, claims there is an invalid write, Invader says the
code is safe. On the contrary, Predator detects the flaw in 0.01s, which is even faster
than valgrind.

Our test suite further contains various programs intended to stress test the discovery
of inductive predicates. These case studies include, e.g., conversion of a singly-linked
list into a doubly-linked and then back to singly-linked list (test-0061.c), or con-
struction of two independent lists starting from the same node (test-0113.c), which
other tools may inaccurately over-approximate as a hierarchically nested list or a binary
tree.

Another case study considers a call of free() on an embedded head that appears
in real code if the head is placed at zero offset within the data node (test-0087.c).
Tools that ignore address aliasing of fields placed at the same offset, like Invader, mis-
takenly report such an operation as an error in the analysed program. Since Predator
uses the offset-based description of list segments, it can easily cope with address alias-
ing.

We also provide a few case studies of lists where each node optionally owns some
nested objects (test-0128.c). Those may be incorrectly abstracted as nested lists if
only usual list segments are considered, and in case the program does not really treat
such objects as lists, it leads to spurious memory leaks or even non-termination of the
analysis. Predator covers these cases by special abstract objects of length 0 or 1, which
allows a more precise analysis and solves the problems with spurious errors and non-
termination.

Descriptions of selected case studies can be found in Appendix D. Across all our
case studies, Predator acts fully automatically. There is no need to tell Predator what
kind of data structures to look for. Given a C program, it simply returns the corre-
sponding list of errors and warnings. In all but one of the mentioned tests, the time
consumption was under 1.0s on Intel Core i5 3.33GHz. Moreover, for a vast majority
of the tests, it was under 0.1s. The only exception was the Merge-Sort example, which
took 7.8s to analyse. We are, however, not aware of any comparable tool that is able to
analyse the same example faster.

5 Conclusion

We have presented Predator, a new separation logic based tool for analysing programs
with dynamic linked data structures. Despite the tool is only at the beginning of its

6

development, we have argued that it already offers many interesting features. In the
future, the tool should be, e.g., enriched with some (preferably light-weight) support of
non-pointer data (integers, arrays), extended to handle further classes of dynamic data
structures, extended to handle C++ code (which the gcc-based front-end can easily
handle), and so on. Since Predator is open source, GPL-licensed, and written such that
its code is readable, collaboration on its further development is very well possible.

Acknowledgement This work was supported by the Czech Science Foundation (project
P103/10/0306), the Czech Ministry of Education (projects COST OC10009 and MSM
0021630528), and the BUT FIT project FIT-S-11-1.

References

1. P.A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, A. Rezine. Monotonic Abstraction for
Programs with Dynamic Memory Heaps. In Proc. of CAV’08, LNCS 5123. Springer, 2008.

2. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape
Analysis for Composite Data Structures. In Proc. CAV’07, LNCS 4590, 2007.

3. A. Bouajjani, P. Habermehl, A. Rogalewicz, T. Vojnar. Abstract Regular Tree Model Check-
ing of Complex Dynamic Data Structures. In Proc. of SAS’06, LNCS 4134. Springer, 2006.

4. C. Calcagno, D. Distefano, P.W. O’Hearn, and H. Yang. Compositional Shape Analysis by
Means of Bi-abduction. In Proc. of POPL’09. ACM Press, 2009.

5. D. Distefano and M. Parkinson. jStar: Towards Practical Verification for Java. In Proc. of
OOPSLA’08. ACM Press, 2008.

6. S. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-valued Logic. TOPLAS,
24(3), 2002.

7. K. Shanmugasundaram. Linux Kernel Linked List Explained, 2005.
http://isis.poly.edu/kulesh/stuff/src/klist

8. H. Yang, O. Lee, C. Calcagno, D. Distefano, and P.W. O’Hearn. On Scalable Shape Analysis.
Technical report RR-07-10, Queen Mary, University of London, 2007.

9. H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, LNCS 5123. Springer, 2008.

7

A Heap Representation Used in Predator

In this appendix, we explain the basic principles of how Predator represents reachable
heap configurations on concrete examples. We start with the code example in Fig. 2 that
creates a sample shape consisting of two structured objects—the first is allocated on the
stack, and the second is allocated dynamically. Both of them are connected with each
other in a rather complex way (including, e.g., a pointer to a pointer link: the pprev
field).

Assume that we print out the heap configuration reachable at line 35. For this,
the built-in function sl plot() of Predator can be used. The function generates
a symbolic heap graph (in the DOT format) that describes heap configurations reach-
able at the line where the function is called. The NULL value used as a parameter of
sl plot() can be replaced by a string containing a custom name of the graph. It

is also possible to generate only a restricted part (reachable from some given cell or
visible within a function) of the heap graph in case the whole graph is too complex.

8

1 #include <stdlib.h>

2
3 struct list_head {

4 struct list_head *next , *prev;

5 };

6
7 struct hlist_node {

8 struct hlist_node *next , ** pprev;

9 };

10
11 // a custom type used for list nodes at the top level

12 struct my_hlist {

13 struct hlist_node node;

14
15 // a standalone head of a nested Linux list; no need

16 // to specify the type of its nodes at this point

17 struct list_head nested;

18 };

19
20 int main() {

21 // allocate a heap object

22 struct my_hlist *item = malloc(s izeof *item);

23 item ->nested.next = &item ->nested;

24 item ->nested.prev = &item ->nested;

25
26 // initialize an object on stack and connect both

27 // of them with each other

28 struct { struct hlist_node *first; } my_hlist_head = {

29 &item ->node

30 };

31 item ->node.pprev = &my_hlist_head.first;

32 item ->node.next = NULL;
33
34 // tell Predator to generate a heap graph

35 ___sl_plot(NULL);
36
37 // avoid a memory leak by end of main()

38 free (item);
39 return 0;

40 }

Fig. 2. An example of a program that generates a symbolic heap graph to explain the graph rep-
resentation of symbolic heaps used by Predator

The resulting heap graph of the code example above is shown in Fig. 3. The elliptic
nodes represent values, while the rectangular nodes represent objects (cf. Section 3).
The composition of C structures is expressed by the clusters of objects and the field
edges which connect the objects within the clusters. The hasValue edges are blue and
the pointsTo edges are green. Their labels are omitted in all the following heap graphs
in order to improve their readability.

9

[struct] #13 (#2157 - my_hlist_head)

[*] #17 .first

[struct] #27 .node

[*] #31 .next [*] #34 .pprev

[struct] #20

[struct] #24 .nested

[*] #38 .next[*] #41 .prev

[*] #18[*] #53 (#2158 - item)

NULL

[struct] #27 .node

field

field field

field fieldfield field

[struct] #28

pointsTo

[struct] #25
pointsTo

hasValue hasValue

hasValue

pointsTo

pointsTo

[struct] #21

hasValue

hasValue

Fig. 3. An example of a symbolic heap graph to explain the graph representation of symbolic
heaps used by Predator

10

A.1 Representation of Doubly-Linked Lists of Unbounded Length

The heap graph shown in Fig. 3 represents a single concrete heap configuration. Next,
we proceed to a symbolic representation of heaps containing lists of an unbounded
length. We concentrate on working with doubly-linked lists, which are more common
in practice, and, moreover, dealing with singly-linked lists may easily be viewed as
a restriction of dealing with doubly-linked lists.

As described in Section 3, Predator represents doubly-linked list segments (DLS)
as pairs of abstract objects. Fig. 4 depicts an exemplary pair of objects that may be
abstracted as DLS of length 2+ (Fig. 5). On separation of a node from such a DLS, it
turns out into DLS of length 1+ (Fig. 6) and subsequently 0+ (Fig. 7). On the other
hand, if a node is appended to the DLS, the minimal length grows back.

We note that singly-linked list segments are represented in a similar way, but just
one abstract object is used (i.e., one half of the presented doubly-linked list segments–
cf. Fig 14 and 15 where SLS stands for a singly-linked list segment).

NULL NULL NULL NULL

[struct] #24[struct] #67

[struct] #52[struct] #48

[struct] #73 .link

[*] #80 .prev [*] #77 .next

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

[*] #37 .prev [*] #34 .next

field field

[struct] #23

field field

Fig. 4. A pair of objects that may be abstracted as a doubly-linked list segment

11

NULL NULL NULL NULL

[struct] #73 .link

[*] #80 .prev [*] #77 .next

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

[*] #37 .prev [*] #34 .next

field field

[struct] #23

field field

DLS

DLS/2DLS/2

[struct] #48

[struct] #67

[struct] #52

[struct] #24

neq neq

neq

Fig. 5. A doubly-linked list segment of length 2+ as represented by Predator

NULL NULL NULL NULL

[struct] #73 .link

[*] #80 .prev [*] #77 .next

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

[*] #37 .prev [*] #34 .next

field field

[struct] #23

field field

DLS

DLS/2DLS/2

[struct] #48

[struct] #67

[struct] #52

[struct] #24

neq neq

Fig. 6. A doubly-linked list segment of length 1+ as represented by Predator

12

NULL NULL NULL NULL

[struct] #73 .link

[*] #80 .prev [*] #77 .next

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

[*] #37 .prev [*] #34 .next

field field

[struct] #23

field field

DLS

DLS/2DLS/2

[struct] #48

[struct] #67

[struct] #52

[struct] #24

Fig. 7. A doubly-linked list segment of length 0+ as represented by Predator

A.2 Representation of Linux Lists

In contrast to the plain DLS abstraction, the Linux DLS allows a non-zero head offset,
which means the nodes are linked through the middle of the objects as shown in Fig. 8.
Fig. 9 depicts the result of the Linux DLS abstraction. The subobject that is placed at
the head offset within the list node is highlighted in green and labeled as head. The view
in Fig. 10, which includes only heads, is close to the view of the Linux list routines that
do not care about any associated data.

NULL NULL NULL NULL

[struct] #31[struct] #74

[struct] #52[struct] #48

[struct] #73 .link

[*] #80 .prev [*] #77 .next

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

[*] #37 .prev [*] #34 .next

field field

[struct] #23

field field

Fig. 8. A pair of objects that may be abstracted as a doubly-linked list segment with a head offset

13

DLS

DLS/2DLS/2

neq neq

neq

NULL NULL NULL NULL

[struct] #31[struct] #74

[struct] #52[struct] #48

[struct] #73 .link

field field

[struct] #70 .data

[*] #87 .prev [*] #84 .next

field field

[struct] #66

field field

[struct] #27 .data

[*] #44 .prev [*] #41 .next

field field

[struct] #30 .link

field field

[struct] #23

field field

[*] #37 .prev [*] #34 .next [*] #80 .prev [*] #77 .next

headhead

Fig. 9. A doubly-linked list segment of a Linux list of length 2+

DLS

neq neq

neq

[struct] #31[struct] #74

[struct] #52[struct] #48

[struct] #73 .link

field field

[struct] #30 .link

field field

[*] #37 .prev [*] #34 .next [*] #80 .prev [*] #77 .next

headhead

Fig. 10. Embedded heads in a doubly-linked list segment of a Linux list of length 2+

14

B Traversal of a Linux List

The heap graphs in this section explain how the macro list for each entry, com-
monly used in the Linux code, implements the traversal of a Linux list (and hence,
what the analysis must be ready to handle). In the following case study, a Linux list of
length 2 with a standalone head is used. The macro gets only one pointer which is, in
that particular case, the address of the standalone head. Using the next pointer inside
the head, it jumps to the next head. The cursor, which is available inside the loop body,
is then set to the address of the corresponding data node by subtracting the head offset.
Fig. 11 and Fig. 12 show the heap graphs corresponding to the loop body as the cursor
is moved from the first list node to the second one. However, once the traversal has fin-
ished, which means the starting head is seen the second time, the cursor does not point
to any known object. Yet, the cursor is still—surprisingly—used in the loop condition.
In order to avoid a spurious error when evaluating the loop condition, Predator needs to
represent such values, which is done as shown in Fig. 13.

[struct] #66 .embedded_head

[*] #73 .prev [*] #70 .next

[int] #63 .value

[struct] #59

fieldfield

fieldfield

[int] 0

[struct] #31 .embedded_head

[*] #38 .prev [*] #35 .next

[int] #28 .value

fieldfield

fieldfield

[int] 0

[struct] #67

[struct] #32

[*] #90 (#2192 - pos)

[struct] #24

[struct] #60

[struct] #15

[struct] #14 (#2191 - list)

[*] #18 .next [*] #21 .prev

fieldfield

Fig. 11. A traversal of a Linux list with two nodes: 1st iteration

15

[struct] #66 .embedded_head

[*] #73 .prev [*] #70 .next

[int] #63 .value

[struct] #59

fieldfield

fieldfield

[int] 0

[struct] #31 .embedded_head

[*] #38 .prev [*] #35 .next

[int] #28 .value

fieldfield

fieldfield

[int] 0

[struct] #67

[struct] #32

[*] #90 (#2192 - pos)

[struct] #24

[struct] #25

[struct] #15

[struct] #14 (#2191 - list)

[*] #18 .next [*] #21 .prev

fieldfield

Fig. 12. A traversal of a Linux list with two nodes: 2nd iteration

[struct] #66 .embedded_head

[*] #73 .prev [*] #70 .next

[int] #63 .value

[struct] #59

fieldfield

fieldfield

[int] 0

[struct] #31 .embedded_head

[*] #38 .prev [*] #35 .next

[int] #28 .value

fieldfield

fieldfield

[int] 0

[struct] #67

[struct] #32

[*] #90 (#2192 - pos)

[struct] #24[struct] #144

[struct] #15

[struct] #14 (#2191 - list)

[*] #18 .next [*] #21 .prev

fieldfield

[+4B]

Fig. 13. A traversal of a Linux list with two nodes: after the traversal

16

C Common Mistakes in Using Linux Lists

In this section, we show code examples of the common mistakes in using Linux lists
mentioned in Section 4 and the corresponding response of Predator to them. Note the
here presented examples are simplified such that each of them fits into a single page.
The full versions of all the examples are included as regression tests in the distribution
of Predator (see the file names in error messages).

C.1 A Wrong Head Used for the Traversal of a Linux List

1 #include <linux/list.h>

2 #include <stdlib.h>

3
4 struct my_item {

5 void *data;

6 struct list_head link;

7 struct list_head aux_link;

8 };

9
10 void traverse(struct list_head *head)

11 {

12 struct my_item *now;

13 #i f TRIGGER_INVALID_WRITE

14 list_for_each_entry(now , head , aux_link)

15 #else
16 list_for_each_entry(now , head , link)

17 #endif
18 {

19 now ->data = NULL;
20 }

21 }

22
23 int main()

24 {

25 LIST_HEAD(my_list);

26
27 int i;

28 for (i = 0; i < 1024; ++i) {

29 struct my_item *ptr = malloc(s izeof *ptr);

30 i f (!ptr)

31 abort ();

32
33 list_add_tail (&ptr ->link , &my_list);

34 }

35
36 traverse (& my_list);

37 return 0;

38 }

test-0131.c:14:5: error: dereference of unknown value
test-0131.c:36:13: note: from call of traverse()
test-0131.c:23:5: note: from call of main()

17

C.2 Mixing Pointers to Head with Pointers to Data

1 #include <linux/list.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4
5 struct node {

6 int value;

7 struct list_head linkage;

8 };

9
10 LIST_HEAD(gl_list);

11
12 stat ic void gl_destroy ()

13 {

14 struct list_head *next;

15 while (& gl_list != (next = gl_list.next)) {

16 gl_list.next = next ->next;

17 #i f TRIGGER_INVALID_FREE

18 free (next);
19 #else
20 free (list_entry(next , struct node , linkage));

21 #endif
22 }

23 }

24
25 int main()

26 {

27 int value;

28 while (EOF != (value = getchar ())) {

29 struct node *node = malloc(s izeof *node);

30 i f (!node)

31 abort ();

32
33 node ->value = value;

34 list_add (&node ->linkage , &gl_list);

35 }

36
37 gl_destroy ();

38 return 0;

39 }

test-0138.c:18:13: error: attempt to free a non-root object
test-0138.c:37:15: note: from call of gl_destroy()
test-0138.c:25:5: note: from call of main()

18

C.3 Mixing Embedded Heads with Standalone Heads

1 #include <linux/list.h>

2 #include <stdlib.h>

3 #include <stdio.h>

4
5 struct node {

6 int value;

7 struct list_head linkage;

8 };

9
10 LIST_HEAD(gl_list);

11
12 stat ic int val_from_node(struct list_head *head) {

13 struct node *entry = list_entry(head , struct node , linkage);

14 return entry ->value;

15 }

16
17 stat ic struct list_head* gl_seek_max ()

18 {

19 struct list_head *pos , *max_pos = NULL;
20 int max;

21
22 i f (list_empty (& gl_list))

23 return NULL;
24 else {

25 max_pos = gl_list.next;

26 max = val_from_node(max_pos);

27 }

28
29 // misuse of list_for_each () at this point

30 list_for_each(pos , max_pos) {

31 const int value = val_from_node(pos);

32 i f (value < max)

33 continue;
34
35 max_pos = pos;

36 max = value;

37 }

38
39 return max_pos;

40 }

41
42 int main()

43 {

44 int value;

45 while (EOF != (value = getchar ())) {

46 struct node *node = malloc(s izeof *node);

47 i f (!node)

48 abort ();

49
50 node ->value = value;

51 list_add (&node ->linkage , &gl_list);

52 }

53
54 return !! gl_seek_max ();

55 }

test-0137.c:14:5: error: dereference of unknown value
test-0137.c:31:19: note: from call of val_from_node()
test-0137.c:54:25: note: from call of gl_seek_max()
test-0137.c:42:5: note: from call of main()

19

D Selected Case Studies

In this section, we briefly introduce selected case studies which illustrate the power of
Predator. All of them (and many more) are included in the distribution of Predator as
regression tests (their numbers in the distribution are mentioned below for reference).
In the description, we abbreviate singly-linked lists as SLLs and doubly-linked lists as
DLLs.

Conversion of an SLL to a DLL and vice versa (test-0061.c).
An SLL is created using the next field as the forward link. The list is then traversed
and missing values of the prev field in each node are completed in order to get
a DLL. Finally, while going back again, the next field in each node is nullified,
which results into a reversed SLL.

An SLL of DLLs destructed in two steps (test-0067.c).
An SLL of DLLs is created. The structure is then destroyed in two steps. First, all
nested DLLs are destroyed. This way we get a flat SLL, which is destroyed in the
second step.

A DLL of DLLs constructed using a bounded call recursion (test-0072.c).
A DLL of DLLs is created using a call recursion of depth 2. The list constructor
is written generically for both levels of the list. The constructor is then called with
a function pointer to specify which node constructor to use, depending on which
level the list constructor is being called at.

An SLL of SLLs where the nested lists are of length 0 or 1 (test-0128.c).
Such a shape is hard to analyse if only usual list segments are considered because
a list consisting of a single node is nearly impossible to be discovered as a list.
Shapes like this are, however, commonly used in practice.

An SLL of SLLs where the nested lists are of length 1 or 2 (test-0111.c).
This case study is a modification of test-0128.c. Odd nodes at the top level
contain a nested list of length 1, while even nodes contain a nested list of length 2.
The test shows the power of the modified join algorithm used during the predicate
discovery.

A Linux DLL with two nested Linux DLLs (test-0102.c).
In the case study there is created a Linux DLL at the top-level where from each
node of the list start two independent nested Linux DLLs. This case is not easy to
analyse since each nested list is linked through a node of the top-level list, which
happens whenever Linux lists are used for building hierarchical list structures.
A call to the destructor of one of the nested lists is intentionally omitted in order
to trigger a memory leak. Predator shows where exactly the missing call of the
destructor belongs.

20

E An Example on Use of the Modified Join Algorithm

As mentioned in Section 3, Predator uses a modified join algorithm to merge pairs of
objects during a list segment abstraction. Fig.14 shows an example of a symbolic heap
where the modified join algorithm can be utilized. The two objects on the left side are
connected in a way that they can, in principle, be merged together into one singly-linked
list segment (SLS). The first of them is a regular object, while the second one already
is an SLS of length 0+. As in [2], call these potential candidates root objects. In [2],
a search for two disjoint isomorphic subgraphs starting from the root objects is used
to see whether the objects can be merged into a list segment. In our case, in order to
see whether we can merge the root objects, we use the join algorithm to try to join the
nested predicates first. In our example, we try to join a nested Linux DLS of length 2+
with a nested single node. The join is possible, and the result is a nested Linux DLS of
length 1+. Once we have a joint description of the nested predicates, we can merge the
pair of root objects together. In our example, we get an SLS of length 1+ with a nested
Linux DLS of length 1+ as the overall result (depicted in Fig. 15).

21

D
LS

D
LS

/2
D

LS
/2

ne
q

[s
tr

uc
t]

#1
19

 .l
in

k

fie
ld

fie
ld

[s
tr

uc
t]

#1
16

 .d
at

a

[s
tr

uc
t]

#1
12

fie
ld

fie
ld N
U

LL

[s
tr

uc
t]

#2
7

.d
at

a
[s

tr
uc

t]
#3

0
.li

nk

fie
ld

fie
ld

[s
tr

uc
t]

#2
3

fie
ld

fie
ld

[*
] #

37
 .p

re
v

[*
] #

34
 .n

ex
t

[*
] #

12
6

.p
re

v
[*

] #
12

3
.n

ex
t

he
ad

he
ad

N
U

LL

ne
q

ne
q

[s
tr

uc
t]

#1
20

[s
tr

uc
t]

#3
1

[s
tr

uc
t]

#5
0

.d
ll

fie
ld

fie
ld

[s
tr

uc
t]

#4
3

fie
ld

fie
ld

[*
] #

57
 .p

re
v

[*
] #

54
 .n

ex
t

[p
ro

to
ty

pe
]

[s
tr

uc
t]

#7
7

[s
tr

uc
t]

#9
0

.d
at

a
[s

tr
uc

t]
#9

3
.li

nk

fie
ld

fie
ld

[s
tr

uc
t]

#8
6

fie
ld

fie
ld

[*
] #

10
0

.p
re

v
[*

] #
97

 .n
ex

t
N

U
LL

[s
tr

uc
t]

#2
35

[*
] #

73
 .n

ex
t

[s
tr

uc
t]

#7
6

.d
ll

fie
ld

fie
ld

[s
tr

uc
t]

#6
9

fie
ld

fie
ld

[*
] #

83
 .p

re
v

[*
] #

80
 .n

ex
t

N
U

LL

S
LS

[s
tr

uc
t]

#4
4

[*
] #

18
0

(#
21

94
 -

 s
ha

pe
)

[*
] #

47
 .n

ex
t

[s
tr

uc
t]

#7
0

[s
tr

uc
t]

#5
1

Fi
g.

14
.A

us
e

ca
se

of
th

e
m

od
ifi

ed
jo

in
al

go
ri

th
m

—
a

ne
st

ed
L

in
ux

D
L

S
of

le
ng

th
2+

th
at

m
ay

be
jo

in
tw

ith
a

ne
st

ed
si

ng
le

lis
tn

od
e

22

!=
 N

U
LL

[p
ro

to
ty

pe
] D

LS

[p
ro

to
ty

pe
] D

LS
/2

[s
tr

uc
t]

#7
7

[s
tr

uc
t]

#2
17

 .l
in

k

fie
ld

fie
ld

[s
tr

uc
t]

#2
14

 .d
at

a

[s
tr

uc
t]

#2
10

fie
ld

fie
ld N
U

LL

[s
tr

uc
t]

#2
31

 .d
at

a
[s

tr
uc

t]
#2

34
 .l

in
k

fie
ld

fie
ld

[s
tr

uc
t]

#2
27

fie
ld

fie
ld

[*
] #

24
1

.p
re

v
[*

] #
23

8
.n

ex
t

[*
] #

22
4

.p
re

v
[*

] #
22

1
.n

ex
t

he
ad

he
ad

N
U

LL

ne
q

ne
q

[s
tr

uc
t]

#2
18

[s
tr

uc
t]

#2
35

[*
] #

73
 .n

ex
t

[s
tr

uc
t]

#7
6

.d
ll

fie
ld

fie
ld

[s
tr

uc
t]

#6
9

fie
ld

fie
ld

[*
] #

83
 .p

re
v

[*
] #

80
 .n

ex
t

N
U

LL

S
LS

[*
] #

18
0

(#
21

94
 -

 s
ha

pe
)

[p
ro

to
ty

pe
] D

LS
/2

[s
tr

uc
t]

#7
0

Fi
g.

15
.A

re
su

lt
of

a
lis

ts
eg

m
en

ta
bs

tr
ac

tio
n

th
at

ut
ili

ze
s

th
e

m
od

ifi
ed

jo
in

al
go

ri
th

m
—

a
si

ng
ly

-l
in

ke
d

lis
ts

eg
m

en
to

fl
en

gt
h

1+
w

ith
a

ne
st

ed
L

in
ux

D
L

S
of

le
ng

th
1+

.

23

	Predator: A Practical Tool for Checking Manipulation of Dynamic Data Structures Using Separation Logic

