
Towards Evolvable Systems Based on the Xilinx
Zynq Platform

Roland Dobai and Lukas Sekanina
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: dobai@fit.vutbr.cz, sekanina@fit.vutbr.cz

Abstract—Field programmable gate arrays (FPGAs) are con-
sidered as a good platform for digital evolvable hardware systems.
Researchers introduced virtual reconfigurable circuits as the
response to the insufficient support of partial reconfiguration
in early FPGAs. Later, the features of FPGAs allowed the
designers to develop evolvable systems fully exploiting native
reconfiguration infrastructures. Xilinx recently introduced a
new platform called Zynq-7000 all programmable (AP) system-
on-chip (SoC) which has the potential to become the next
revolutionary step in evolvable hardware design. The paper
analyzes Zynq-7000 AP SoC from the perspective of an evolvable
hardware designer. Several scenarios are described of how to
implement evolvable systems on a developmental board equipped
with this programmable SoC. These scenarios are evaluated in
terms of area overhead, execution time, reconfiguration time and
throughput. The resulting observations should be useful for those
who are going to develop real-world evolvable systems on the
Zynq-7000 AP SoC platform.

I. INTRODUCTION

By evolvable hardware (EHW) we usually mean either
evolutionary hardware design or adaptive hardware exploiting
some of bio-inspired computing methods [1], [2]. While evolu-
tionary hardware design is the use of bio-inspired algorithms
for creating innovative physical designs, the goal of adaptive
hardware is to endow physical systems with a capability of
adaptation in order to allow them to operate successfully in a
changing environment or under presence of faults.

Field Programmable Gate Arrays (FPGAs) have always
been considered as an “almost perfect” platform for digi-
tal evolvable hardware systems. The first experiments with
evolutionary circuit design carried out by Adrian Thompson
directly on the XC6216 FPGA in 1996 [3] motivated many
researchers to work in the evolvable hardware field. After
some disillusion from taking the XC6200 family back from the
market in late ’90s and insufficient support of the partial re-
configuration in early Virtex chips, researchers have introduced
virtual reconfigurable circuits (VRCs) for evolvable hardware
and proposed new FPGA-based evolvable systems in several
application domains [4]–[6]. Recent Virtex FPGAs (Virtex-4,
-5 and -6) have provided a reasonable support for dynamic
partial reconfiguration which included a suitable granularity
of reconfiguration, a fast internal configuration access port
(ICAP) and either hard or soft on-chip processors that can be
utilized to control the reconfiguration. These features allowed
the designers to develop evolvable systems fully exploiting the
native reconfiguration infrastructure of FPGAs [7]–[9]. It has

to be noticed that Xilinx’s FPGAs have predominantly been
used for evolvable hardware and hence we do not deal with
FPGAs of other vendors in this paper.

In 2011, Xilinx introduced a new reconfigurable system-
on-chip (SoC) called Zynq-7000 all programmable (AP) SoC
which integrates programmable logic, ARM based processing
system and numerous subsystems [10]. It seems to be an ideal
platform for evolvable hardware as it contains reconfigurable
logic which can easily and quickly be reconfigured by the
on-chip ARM processor.

The goal of this paper is to describe and analyze the Zynq-
7000 AP SoC from the perspective of an evolvable hardware
designer. We propose and investigate several scenarios of how
to implement evolvable systems on a developmental board
equipped with the Zynq-7000 AP SoC. These scenarios are
evaluated in terms of area overhead, time of execution, re-
configuration time and throughput. The resulting observations
should be useful for those who are going to develop real-world
evolvable systems on the Zynq-7000 AP SoC platform.

The rest of the paper is organized as follows. Section II
contains the related work and Section III the introduction
of the Zynq-7000 AP SoC platform. This new platform is
evaluated in Section IV from the point of evolvable systems.
Section V summarizes the achieved results and Section VI
concludes the paper.

II. FPGA-BASED EVOLVABLE HARDWARE

In FPGA-based evolvable hardware the evolutionary algo-
rithm (EA) generates candidate chromosomes (configurations)
that are used to configure chosen reconfigurable blocks of
the FPGA. Once a new candidate circuit is established on
the basis of the configuration, it is evaluated by means of a
fitness function. The evaluation is performed for all candidate
circuits in the population either sequentially or in parallel.
New populations are created using bio-inspired operators such
as crossover, mutation and selection. The process is repeated
until a required solution is obtained or a predefined number
of generations is met.

The reconfiguration can directly be performed at the level
of the configuration bit stream for some FPGA families. In
case of the XC6200 FPGAs there are no constraints. In case
of Virtex FPGAs, one has to ensure that the reconfiguration
is safe. These implementations typically utilize the concept
of dynamic partial reconfiguration (DPR) allowing designers



to modify only a part of the FPGA while other parts of
the FPGA can perform computing unaffected. There is the
so-called ICAP in the Virtex FPGAs which enables one to
accomplish the partial reconfiguration from a device (e.g. the
MicroBlaze processor) located inside the FPGA.

A different approach is to reconfigure a VRC which is built
on the top of the FPGA using multiplexers and application-
specific processing elements. Here, the reconfiguration means
just writing a set of registers. Virtual reconfigurable cir-
cuits have been developed in order to avoid slow and not-
well-supported reconfiguration mechanisms existing in former
FPGAs. A compromise between the DPR and VRC is the
approach proposed by Glette et al. which exploits the shift
behavior of look up tables (LUTs) to change its logic [11]. In
this case, the reconfiguration process is carried out by directly
shifting the configuration bits into the LUTs.

The EA is implemented either outside the FPGA (e.g. in a
personal computer) or inside the FPGA. The second option
is currently a preferred solution as the EA is, in fact, a
software which can be executed in on-chip processors such as
MicroBlaze and PowerPC. Another approach is to implement
the EA as a specialized circuit using resources available in the
FPGA.

The development of FPGA-based evolvable hardware sys-
tems was surveyed in [2]. The survey has identified the
following application domains: image filtering, recognition
and classification, infinite/finite impulse response filtering,
oscillators/discriminators, adaptive logic circuits (e.g. hash
functions) and cellular automata. The following list gives main
classes of FPGA-based evolvable hardware systems according
to the implementation strategy employed:

• Externally reconfigurable EHW systems [3], [4], [12].
• Internally reconfigurable EHW systems based on VRC

and hardwired EA [13]–[15].
• Internally reconfigurable EHW systems based on VRC

and EA in an on-chip processor [16]–[18].
• Internally reconfigurable EHW systems based on DPR

and EA in an on-chip processor [7]–[9].
The last class can nowadays be considered as the state-of-the-
art in this domain. It benefits from a relatively fast DPR of
modern Virtex chips and EAs implemented as software which
can easily be tuned for a particular application. In contrast
to the VRC-based approach, the reconfiguration time is still
slower. However, the circuits instantiated by means of DPR do
not exhibit additional delay during normal operation because,
unlike in VRCs, there are no multiplexers implementing the
reconfiguration network [19].

III. ZYNQ-7000 AP SOC PLATFORM

In 2011, Xilinx introduced the new reconfigurable SoC
platform Zynq-7000 AP SoC. The platform consists of the
powerful ARM processor based processing system (PS) and
the 28 nm Xilinx programmable logic (PL). The dual-core
ARM Cortex-A9 processor together with caches, on-chip
memory, external memory interfaces, direct memory access
(DMA) controller and input-output peripherals form the PS.

The PL is equivalent to Artix-7 or Kintex-7 FPGAs consisting
of configurable logic blocks (CLBs), block random-access
memories, digital signal processing blocks, programmable
input-output blocks, serial transceivers and analog-to-digital
converters (ADCs). The PS frequency and the PL size is given
by the selected Zynq-7000 AP SoC device. The maximum
operational frequency of the PS is 667 MHz – 1 GHz; the
PL contains 17 600 – 218 600 LUTs, 35 200 – 437 200 flip-
flops, 240 – 2 180 kB block random-access memories [10].
The PS and the PL are on independent power supplies, with
1.0 V supply for the logic, 1.8 – 3.3 V for the input-
output buffer bank and 1.2 – 1.8 V for the external dynamic
memory interface [20]. The estimated power consumption for
the smaller and larger devices is below 3 W and 15 W,
respectively [10].

Previous FPGA families are in fact PLs with some optional
on-chip processor extension (PL-centric architecture). On the
other hand, Zynq-7000 AP SoC is an FPGA platform built
around the processor (PS-centric architecture). The PS boots
first and the PL part is configured only afterward. The PL
cannot be powered on before the PS [10]. The dual-core PS
can work in several operating configurations:

1) One core is operational and the second one is turned off
using clock gating.

2) Both cores are operating. This multiprocessing coopera-
tion can be
• symmetric, when both cores are running the same

operating system (OS) and participate in the same
operations (e.g. multithread and multiprocess execution
on a higher-level OS like Linux), or

• asymmetric, when the cores are independent with dif-
ferent OSs (e.g. full featured OS and non-OS stan-
dalone bare-metal application).

Previous FPGA architectures allowed the on-chip processor
to reconfigure the programmable part. This was facilitated by
ICAP which needed the instantiation of hardware intellectual
property core in the programmable part (the programmable
part needed to be configured before the processor could
perform further reconfiguration). Zynq-7000 AP SoC has a
new feature called processor configuration access port (PCAP)
which is part of the PS, and in contrary to ICAP, does not
need any instantiation in the PL part. The PS and PL occupy
different power planes, therefore, the PS can run with the PL
powered off. The PS can boot up without the configuration of
the PL, and can configure the PL through PCAP later only
when, and only if it is required. The PCAP supports 400
megabytes per second download throughput for non-secure PL
configuration [20].

The configuration bit stream which contains among others
the configuration instructions and frame configuration data
is downloaded from a memory location into the PL. The
download is performed by DMA transfer, therefore the PS
is free during the download. Partial reconfiguration is possible
after a full configuration. This means that configuration data
is downloaded only for some of the frames and the remaining



part of the FPGA not belonging to configured frames remains
unchanged (and operational without any interruption) [21],
[22].

IV. EVOLVABLE SYSTEMS ON THE ZYNQ PLATFORM

The PS-centric architecture and the features of Zynq-7000
AP SoC are conceptually very beneficial from the perspective
of evolvable hardware design. Firstly, the evolvable system can
use the ADC in order to get feedback from the environment,
and consequently to adapt itself to it. Secondly, it can execute
the user application natively without PL support, but still can
use the PL in case it is necessary to accelerate the evolution
of a new program/application. The user application can run
on a full featured higher-level OS with support to all of the
peripherals and can initiate the evolution of new functionalities
(e.g. required by the user or as an adaptation request to the
changed environmental conditions). The hardware-accelerated
evolution can be controlled by an EA running either

1) on the other core as a bare-metal application (in order to
eliminate the overhead caused by an OS), or

2) in symmetric operational mode on the same OS (in order
to gain access to the higher-level OS functionalities,
e.g. dual-core multiprocessing/multithreading or filesys-
tem access).

A. Partial Reconfiguration

Virtex, Artix-7 and Kintex-7 FPGAs have the configuration
memory arranged in configuration frames. These frames are
the smallest addressable parts of the device configuration
memory space. All configuration operations must work with
whole frames, therefore the partial reconfiguration can influ-
ence one or more (but always whole) frames. The frames of
Zynq-7000 AP SoC are 50 CLB high and 1 CLB wide [22].
Similar frames exist for other PL resources (e.g. block mem-
ory, digital processing blocks). For comparison, the height
of frames in Virtex-6 was 40 CLBs and in Virtex-5 only
20 CLBs [22]. This increased frame size can be actually
disadvantageous for evolvable hardware design if during the
evolution only small changes are applied, but the EA is forced
to reconfigure a full frame (i.e. 50 CLBs are reconfigured in-
stead of a single CLB). Furthermore, a mutation will probably
take more than twice as long as in the case of a Virtex-5 since
the frames are more than twice larger (under the assumption
that the reconfiguration speed is the same).

Figure 1 shows some example reconfigurable blocks (RBs)
in a Zynq-7000 AP SoC device (XC7Z020) where the RBs are
black rectangles numbered from 1 to 6, and the clock regions
are white rectangles with designations from X0Y0 to X1Y2.
The widths of RBs in Figure 1 are 1 CLB while the heights
are various. RB1 occupies the height of the whole clock region
X1Y0 which corresponds to exactly one configuration frame
(i.e. 50 CLBs). RB2 is smaller than RB1 but still during the
reconfiguration 50 CLBs will be reconfigured (similarly as
if it would occupy the whole height of the clock region).
However, RB2 can share the column with the static part of
the implementation, while RB1 cannot (the static part is the

PS

RB1

RB2

RB3

RB4

RB5

RB6
X1Y2

X1Y1

X1Y0X0Y0

X0Y1

X0Y2

Figure 1. Example RBs in a Zynq-7000 AP SoC device

PE 00 PE 01 PE 02

PE 10 PE 11 PE 12 out

PE 20 PE 21 PE 22

in 0

in 1

in 2

in 3

in 4

in 5

in 6

in 7

in 8

Figure 2. Array of PEs for image filtering

part which is never reconfigured and its configuration remains
the same). An RB cannot share the column with another RB
in the same clock region (e.g. RB3 and RB4 in Figure 1) but
can share in different clock regions (e.g. RB5 and RB6).

B. Case Study: Symbolic Regression

The feasibility of Zynq-7000 AP SoC for evolvable hard-
ware design will be demonstrated by a typical case study sce-
nario: symbolic regression by Cartesian genetic programming
(CGP) for image filtering [14]. In this scenario, an image
filter is designed which is a digital circuit able to suppress
some errors in images. The structure of the circuit is not
known in advance. Instead, a fixed-size two-dimensional array
of processing elements (PEs) is used, and the “program”
(solution) is constructed by interconnecting these PEs and
implementing simple operations inside of these PEs. The
operations for PEs are usually specified in advance and are
a limited, small set of operations.

An example array of PEs is shown in Figure 2 where the
PEs are indexed from 00 to 22; “in 0”, . . . , “in 8” are input
image pixels; and “out” is the output (filtered) image pixel.
There are nine inputs considered in Figure 2; one represents
the pixel which should be filtered and the other eight are the
immediate eight neighbor pixels (since image filters usually
restore the pixel by considering also the neighbor pixels). The
inputs, the output and the operands of PEs are 8-bit natural



numbers, and hence the resulting filter will be able to filter
8-bit grayscale images. The image is repaired by processing
the pixels sequentially (together with the neighbor pixels). The
fitness function measures the difference between the filtered
image and original (uncorrupted) image, and will guide the EA
toward better solutions. The fitness is computed as follows:

fitness =

c−1∑
i=0

r−1∑
j=0

∣∣p(i, j)− porig(i, j)
∣∣

where c is the number of columns, r the number of rows,
p(i, j) the filtered image pixel and porig(i, j) the original
image pixel. A PE input can be connected to a filter input or
to a PE output in the direction to the filter inputs. The levels-
back parameter of CGP sets the distance in columns these
PEs allowed to be interconnected. For example, if the levels-
back parameter is one then the PE inputs can be connected to
PE outputs in the neighbor column only (and of course, to the
filter inputs). The interconnection and the numerical identifiers
of PE operations are encoded into the chromosome which
unequivocally describes the image filter. A PE is encoded
by three numbers (one for each input-connection and one
for operation selection). The output is encoded by a number
specifying the output connection. This gives a chromosome
length 3 × 3 × 3 + 1 = 28 for the array of 3 × 3 PEs in
Figure 2.

Now several scenarios will be described in order to demon-
strate various CGP-based implementations of image filter
design in Zynq-7000 AP SoC. It is assumed in all of the
scenarios that the candidate filters are evaluated sequentially.

1) Software-Based Symbolic Regression: The evolution
consists of the spawn and the evaluation of the individual
(image filter). The individual is spawned by copying and
mutating the chromosome of the parent. This can be performed
in a negligible short time since the chromosome is short
and the mutation is just a matter of generating a small
number of pseudo-random numbers. The prevalent part of the
execution time is taken by the evaluation, i.e. the determination
of the fitness, because the response of the circuits is mea-
sured/evaluated sequentially for all of the pixels. This means
(128 − 2)2 = 15 876 evaluations for an image of resolution
128×128 and would mean more than 2 million evaluations for
an image with full high-definition resolution (note that there
are not 1282 evaluations because the pixels at the border of the
image do not have neighbors in all directions, and therefore
they are not evaluated).

From the point of execution time the mutations have negli-
gible influence, and the level-back parameter no influence at
all on the performance of the software-based implementation
of symbolic regression (because the PEs are in random-access
memory where the access is in constant time to all of the PEs).

Zynq-7000 AP SoC is a PS-centric FPGA with the on-
chip processor always running, therefore there is no reason
to consider to move out the implementation of EA from the
PS. However, it is reasonable to consider PL-based hardware
acceleration for evaluation since that is the most time consum-

1

2

3

45PSDDR

PL
image

EA

config

FU PEs

Figure 3. Acceleration of image filtering by VRC

ing part of the software-based approach.
2) Acceleration by VRC: The principle of the PL-based

hardware acceleration by means of VRC is depicted in Fig-
ure 3 where DDR is external dynamic random access memory,
FU is the fitness unit responsible for the computation of
the fitness, and “config” is the configuration register of the
VRC. As a matter of fact, the configuration register stores the
chromosome representing the given image filter. The content
of this register is decoded and used to configure the PEs: the
interconnections are implemented by multiplexers and the PE
operations are also selected by multiplexers. The evolution is
performed as follows.

1) The EA is executed by the PS which controls the evolu-
tion. New individual (chromosome representing an image
filter) is created by copying the parent chromosome and
performing some mutations. The execution time of this
step is negligible similarly to the pure software-based
approach.

2) The chromosome is downloaded into the configuration
register of the VRC. This sets the PE array.

3) The corrupted and the original image is transferred by
the FU to the filter for evaluation.

4) The responses of the image filter are measured and
evaluated by the FU. The fitness is computed.

5) The fitness is transferred back to the PS and the evaluation
of another candidate image filter can continue from step
2.

The program of the EA and the images are stored in dynamic
memory, but could be also in static memory, or even in internal
on-chip memory. Moreover, the images could be stored also
in block memories inside the PL.

The VRC-based approach has very significant area over-
head. The configuration register, the multiplexers for the PE
input-connections and operation selection are considerable.
Moreover, the PEs implement all of the operations (but only
one operation is selected at the same time for a given PE). The
level-back parameter further influences the area overhead. The
higher this parameter the higher is the area required to imple-
ment the input-connections for the PEs. This is the reason
why in hardware implementations the level-back parameter is
usually set to one.

This PL-based filter evaluation significantly accelerates the
evolution but also limits it in some matter. The PE multiplexers



1

2

3

45PSDDR

PLimage

EA

frames

FU PEs

Figure 4. Acceleration of image filtering by DPR

prolong the propagation paths in the FPGA and cause longer
evaluations than it would be possible without multiplexers.

3) Acceleration by DPR: The principle of the PL-based
hardware acceleration by means of DPR is depicted in Figure 4
which is very similar to the VRC-based approach. The differ-
ence is in step 2, because the array of PEs is configured by
the configuration frames instead of the configuration register.
This configuration replaces the PE with another one which
implements another operation. Therefore, there is no area
overhead inside the PEs and the PE outputs are not multiplexed
either. The input-interconnections can be similarly changed by
reconfiguration.

As the final result, the DPR-based approach has no area
overhead like the VRC-based approach. However, mutation
by means of DPR takes much longer than the update of
the configuration register of VRC. The higher the number of
mutations is the longer will take the reconfiguration (because
more frames are needed to be downloaded). However, the
evaluation can be performed faster since this approach does not
require multiplexers and therefore, the propagation paths are
not prolonged (which leads to higher operational frequency).

V. EXPERIMENTAL RESULTS

The considered scenarios of evolvable hardware design
were evaluated by experiments performed on a developmental
board equipped with an XC7Z020-1CLG484CES device. The
evolution of an image filter was considered in the experi-
ments. The (1+4) evolutionary strategy was used with a PE
array consisting of 8 columns and 4 rows and implementing
16 operations shown in Table I. Kernel size 3 × 3 was
considered (9 filter inputs) with Lena benchmark image of
size 256 × 256 and 5% “salt and pepper” noise. The level-
back parameter was selected to be 1 in order to not put the
hardware implementations into disadvantage. All experiments
were focused on the time needed to evaluate a given number
of generations and the efficiency of a particular search method
was not considered at all. Similarly, the area overhead is not
taken into account because it is safe to assume that even the
most area consuming VRC-based approach can be synthesized
into a Zynq-7000 AP SoC device. The device used in the
experiments has 106 400 flip-flops and 53 200 LUTs (6 650
slices) [10] while an implementation of a VRC of the same
size requires approximately 1 290 slices and 1 084 flip-flops

Table I
8-BIT OPERATIONS OVER OPERANDS x, y IMPLEMENTED BY PES

Code Operation Description

0 255 constant
1 x identity
2 255− x inversion
3 x ∨ y bitwise OR
4 x ∨ y bitwise x OR y

5 x ∧ y bitwise AND
6 x ∧ y bitwise NAND
7 x⊕ y bitwise XOR
8 x� 1 right shift by 1
9 x� 2 right shift by 2

10 swap(x, y) swap nibbles
11 x+ y addition
12 x+s y addition with saturation
13 (x+ y)� 1 average
14 max(x, y) maximum
15 min(x, y) minimum

Table II
EXPERIMENTAL RESULTS

Mutations Individ. Generation Generations Accel.
(1) (µs) (µs) (s−1) (1)

PS 225 285.3 901 141.1 1.1 1
i5 42 372.9 169 491.5 5.9 5
VRC 469.3 1877.2 532.7 484
DPR 1 206.2 824.8 1212.4 1102
DPR 2 247.2 988.8 1011.3 919
DPR 3 288.2 1152.8 867.5 789
DPR 4 329.2 1316.8 759.4 690
DPR 5 370.2 1480.8 675.3 614
DPR 6 411.2 1644.8 608 553
DPR 7 452.2 1808.8 552.9 503
DPR 8 493.2 1972.8 506.9 461

in a Virtex-5 FPGA [17] which has similarly 6-input LUTs.
The achieved results are summarized in Table II where the

columns from left to right contain the type of the approach,
the number of mutations used to create new individuals, the
required time to assemble and evaluate an individual (image
filter), the required time to assemble and evaluate one gener-
ation, the number of assembled and evaluated generations per
second, and the achieved relative acceleration in comparison
with the pure PS-based approach. In the first three approaches
7 mutations are considered. This information is not present in
Table II because for those approaches the mutations do not
influence the execution time.

A. Software-Based Symbolic Regression

The first approach considered was the pure-software sym-
bolic regression executed on the on-chip processor (PS-based
approach). The evaluation was limited to 100 generations and
10 runs were considered. The average number of cycles was
30 038 035 659 which is equivalent to approximately 90



seconds (the cycles are counted by the global counter which is
incremented in each two cycles, and the processor frequency
is 667 MHz).

The implemented software-based approach was pre-ported
to desktop computers by changing only the standard output
interface and the time measurement (the parameters of EA
and the input image remained the same). The implementation
was tested on a powerful Intel Core i5 661 3.33 GHz processor
(the approach is designated as i5 in Table II). The achieved
average number of generations per second was 5.9 (based
on 10 measurements and 50 000 generations). According to
these measurements this processor was five times faster than
the PS of Zynq-7000 AP SoC for solving the given symbolic
regression problem. It should be noted that the highest power
consumption of such a processor is approximately 80 W (not
counting the other parts of the computer) while the estimated
consumption of the used Zynq-7000 AP SoC device is below
3 W [10].

B. Acceleration by VRC

A set of PE operations (8-bit logic and arithmetic functions)
was synthesized in order to measure the increased propagation
delay caused by the additional multiplexers. The maximum
propagation took 2.560 ns without the multiplexers which
mean that the evaluation without them could be performed
with 391 MHz operational frequency. After inserting the
multiplexers into the PE array (under the assumption that
the level-back parameter is 1) the maximum propagation path
became 7.274 ns which corresponds to 138 MHz operational
frequency and means 65% decrease.

A PE can be configured by 12 bits (4 bits for encoding
the connection to one of the 9 inputs or 4 PE outputs from
the neighboring column, 4 bits for the second PE input,
and another 4 bits for selecting one of the 16 functions).
For the array of 8 (columns) × 4 (rows) PEs this means
384 configuration bits. However, these bits can be written
in parallel into the configuration register, i.e. the overhead
in mutation time caused by VRC is only 7.274 ns (1 clock
period).

During the evaluation 2542 = 64 516 inputs are applied
to the image filter with 138 MHz operational frequency. This
means 64 516 × 7.274 ns, i.e. 469.3 µs evaluation time for an
image filter (under the assumption that the array is pipelined
and the initial fill-up of 8 columns is negligible in comparison
with the overall evaluation time).

The required time to assemble and evaluate an image filter is
7.274 ns + 469.3 µs .

= 469.3 µs which yields 532.7 generations
per second. Therefore, the relative acceleration achieved by
the VRC-based approach is 484. This is very impressive in
comparison with the 5-times acceleration achieved by the Intel
Core i5 processor.

C. Acceleration by DPR

The reconfiguration time of single frames was measured and
13 677 cycles were observed (average of 10 measurements)
which is equivalent to 41 µs. The bit stream length was

3 891 × 32-bit words (15 564 B) with 3 737 words of
actual frame data (the rest of the words were synchronization
and configuration operations). This gives 380 MB per second
configuration speed (400 MB is the official download speed
in the non-secure PCAP-mode [20]). The reconfiguration with
a 100 MHz ICAP would take 3 891/100 .

= 39 µs which
roughly equals to the download speed achieved in our experi-
ments. However, there is published evidence that ICAP can be
successfully overclocked [9] and achieve significantly higher
download speed. Furthermore, the frame relocation necessary
to reduce the number of stored bit streams requires the compu-
tation of cyclic redundancy check sums. This computation can
be executed concurrently with the download and does not need
to be pre-computed like before the DMA transfer of PCAP.
If these considerations are taken into account then the use
of PCAP looks not so advantageous for evolvable hardware
design (but ICAP is available also in Zynq-7000 AP SoC [20]).

The achieved reconfiguration time implies that a single
mutation performed by DPR will take at least 41 µs which
is very significant in comparison with the 7.274 ns of the
VRC-based approach (almost 6 000 times longer for a single
mutation). Furthermore, if several mutations are performed
then several frames are needed to be reconfigured. It would be
possible to include more than one PEs into the configuration
frame in order to decrease the overall configuration time
of the PE array. This could be achieved at the expense of
the numbers of pre-generated bit streams (the number of bit
streams increases exponentially with the number of included
PEs).

On the other hand, the evaluation can be performed at 391
MHz instead of 138 MHz (because there are no additional mul-
tiplexers in the case of DPR-based approach). The increased
operational frequency by factor of 3 may seem negligible in
comparison with 6 000 times longer mutations, but can be
still very advantageous during evaluations. The evaluation of
the pipelined image filter will take only 64 516 × 2.56 ns .

=
165.2 µs if the operational frequency is 391 MHz which is very
impressive in comparison with the 469.3 µs evaluation time of
the VRC-based approach. The total amount of time necessary
to assemble and evaluate an image filter is (41 µs × m) +
165.2 µs, where m is the number of mutations. The results
for various numbers of mutations are shown in Table II. It
can be observed that the DPR-based approach achieves better
acceleration than VRC (if the number of mutations is at most
7 which is reasonable since usually small number of mutations
is applied).

It should be noted that the results for the DPR-based
approach are only estimates computed based on the reconfigu-
ration time of one frame. There are some other computational
overheads which were not considered yet (e.g. frame reloca-
tion, image filter copy). However, the possible accelerations
are very promising which gives a good ground for the DPR-
based evolutionary hardware design in the Zynq-7000 AP SoC
platform.



VI. CONCLUSIONS

The paper introduced Zynq-7000 AP SoC from the perspec-
tive of an evolvable hardware designer. The platform provides
new features such as PCAP or asymmetric multiprocessing
which can be exploited to the benefit of evolvable hardware
design. Other characteristics like on-chip ADC are also attrac-
tive for adaptive hardware.

Evolvable hardware design by VRC and DPR was con-
sidered in the paper. The advantages and disadvantages were
compared in context of area overhead, execution time, recon-
figuration time and throughput. Experiments with the symbolic
regression problem were performed in order to demonstrate the
possibilities of the platform. The performance of the on-chip
processor and a relatively powerful desktop computer were
compared with the performance achieved in the assistance of
programmable logic. The experiments confirmed the superior-
ity of the platform for evolvable hardware design which was
at least 500 times faster using reconfigurable logic and DPR,
and clearly outperformed even a powerful desktop computer.

The preliminary analysis and the experiments confirmed
that Zynq-7000 AP SoC has the potential to become the next
revolutionary step in evolvable hardware design. Further work
will be conducted to exploit the possibilities of this platform.

ACKNOWLEDGMENTS

This work was supported by The European Social Fund
(ESF) under the project Excellent Young Researchers at BUT
(CZ.1.07/2.3.00/30.0039), the IT4Innovations Centre of Excel-
lence (CZ.1.05/1.1.00/02.0070) and the Czech science founda-
tion under the project Natural Computing on Unconventional
Platforms (GAP103/10/1517).

REFERENCES

[1] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware:
past, present and the path to a promising future,” Genetic Programming
and Evolvable Machines, vol. 12, no. 3, pp. 183–215, 2011.

[2] L. Sekanina, “Evolvable hardware,” in Handbook of Natural Computing.
Springer Verlag, 2012, pp. 1657–1705.

[3] A. Thompson, “Silicon evolution,” in Genetic Programming 1996: Proc.
1st Annual Conf. (GP96), J. R. Koza, D. E. Goldberg, D. B. Fogel, and
R. L. Riolo, Eds. Cambridge, MA: MIT Press, 1996, pp. 444–452.

[4] G. Hollingworth, S. L. Smith, and A. M. Tyrrell, “Safe intrinsic evolution
of virtex devices,” in The Second NASA/DoD Workshop on Evolvable
Hardware. IEEE Computer Society, 2000, pp. 195–202.

[5] L. Sekanina, “Virtual reconfigurable circuits for real-world applications
of evolvable hardware,” in Evolvable Systems: From Biology to Hard-
ware, ser. LNCS, no. 2606. Springer Verlag, 2003, pp. 186–197.

[6] D. Gwaltney and K. Dutton, “A VHDL Core for Intrinsic Evolution
of Discrete Time Filters with Signal Feedback,” in Proc. of the 2005
NASA/DoD Conference on Evolvable Hardware. Washington D.C.,
USA: IEEE Computer Society, 2005, pp. 43–50.

[7] A. Upegui and E. Sanchez, “Evolving hardware with self-reconfigurable
connectivity in Xilinx FPGAs,” in The 1st NASA/ESA Conference on
Adaptive Hardware and Systems (AHS-2006). Los Alamitos, CA, USA:
IEEE Computer Society, 2006, pp. 153–160.

[8] F. Cancare, M. D. Santambrogio, and D. Sciuto, “A direct bitstream
manipulation approach for virtex4-based evolvable systems,” in Proceed-
ings of 2010 IEEE International Symposium on Circuits and Systems
(ISCAS). IEEE, 2010, pp. 853–856.

[9] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L. Sekan-
ina, “Evolvable 2D computing matrix model for intrinsic evolution in
commercial FPGAs with native reconfiguration support,” in Proceedings
of the 2011 NASA/ESA Conference on Adaptive Hardware and Systems.
IEEE Computer Society, 2011, pp. 184–191.

[10] “Zynq-7000 All Programmable SoC Overview DS190 (v1.2),” Xilinx,
2012.

[11] K. Glette, J. Torresen, and M. Hovin, “Intermediate level FPGA recon-
figuration for an online EHW pattern recognition system,” in NASA/ESA
Conference on Adaptive Hardware and Systems, AHS 2009. IEEE,
2009, pp. 19–26.

[12] L. Huelsbergen, E. Rietman, and R. Slous, “Evolving oscillators in
silico,” IEEE Transactions on Evolutionary Computation, vol. 3, no. 3,
pp. 197–204, 1999.

[13] G. Tufte and P. C. Haddow, “Evolving an adaptive digital filter,” in
2nd NASA/DoD Workshop on Evolvable Hardware (EH 2000). IEEE
Computer Society, 2000, pp. 143–150.

[14] T. Martinek and L. Sekanina, “An evolvable image filter: Experimen-
tal evaluation of a complete hardware implementation in FPGA,” in
Evolvable Systems: From Biology to Hardware, ser. LNCS, vol. 3637.
Springer Verlag, 2005, pp. 76–85.

[15] J. Wang, Q. S. Chen, and C. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of intrinsic
evolvable hardware,” IET Computers and Digital Techniques, vol. 2,
no. 5, pp. 386–400, 2008.

[16] Z. Vasicek and L. Sekanina, “An evolvable hardware system in Xilinx
Virtex II Pro FPGA,” International Journal of Innovative Computing
and Applications, vol. 1, no. 1, pp. 63–73, 2007.

[17] ——, “Hardware accelerator of cartesian genetic programming with
multiple fitness units,” Computing and Informatics, vol. 29, no. 6, pp.
1359–1371, 2010.

[18] K. Glette, J. Torresen, M. Yasunaga, and Y. Yamaguchi, “On-Chip
Evolution Using a Soft Processor Core Applied to Image Recognition,”
in The 1st NASA/ESA Conference on Adaptive Hardware and Systems.
Los Alamitos, CA, USA: IEEE Computer Society, 2006, pp. 373–380.

[19] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, and L. Sekan-
ina, “Implementation techniques for evolvable HW systems: Virtual vs.
dynamic reconfiguration,” in Proc. of the 22nd International Conference
on Field Programmable Logic and Applications (FPL). IEEE Computer
Society, 2012, pp. 547–550.

[20] “Zynq-7000 All Programmable SoC technical reference manual UG585
(v1.3),” Xilinx, 2012.

[21] “7 Series FPGAs Configuration User Guide UG470 (v1.5),” Xilinx,
2012.

[22] “Partial Reconfiguration User Guide UG702 (v14.3),” Xilinx, 2012.


