Technická zpráva

NOVOTNÝ Ondřej, MATĚJKA Pavel, PLCHOT Oldřich a GLEMBEK Ondřej. On the use of DNN Autoencoder for Robust Speaker Recognition. Brno: Fakulta informačních technologií VUT v Brně, 2018.
Jazyk publikace:angličtina
Název publikace:On the use of DNN Autoencoder for Robust Speaker Recognition
Název (cs):Použití DNN autoenkodérů pro robustní rozpoznávání mluvčího
Strany:1-5
Místo vydání:Brno, CZ
Rok:2018
Vydavatel:Fakulta informačních technologií VUT v Brně
URL:http://www.fit.vutbr.cz/research/groups/speech/publi/2018/novotny_2018_tech-rep-dnn-autoencoder.pdf [PDF]
Klíčová slova
speaker recognition, signal enhancement, autoencoder
Anotace
In this paper, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. The target application is a robust speaker recognition system. We started with augmenting the Fisher database with artificially noised and reverberated data and we trained the autoencoder to map noisy and reverberated speech to its clean version. We use the autoencoder as a preprocessing step for a stateof- the-art text-independent speaker recognition system. We compare results achieved with pure autoencoder enhancement, multi-condition PLDA training and their simultaneous use. We present a detailed analysis with various conditions of NIST SRE 2010, PRISM and artificially corrupted NIST SRE 2010 telephone condition. We conclude that the proposed preprocessing significantly outperforms the baseline and that this technique can be used to build a robust speaker recognition system for reverberated and noisy data.
BibTeX:
@TECHREPORT{
   author = {Ond{\v{r}}ej Novotn{\'{y}} and Pavel Mat{\v{e}}jka
	and Old{\v{r}}ich Plchot and Ond{\v{r}}ej Glembek},
   title = {On the use of DNN Autoencoder for Robust Speaker
	Recognition},
   pages = {1--5},
   year = {2018},
   location = {Brno, CZ},
   publisher = {Faculty of Information Technology BUT},
   language = {english},
   url = {http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11855}
}

Vaše IPv4 adresa: 54.226.4.91