Název:

Matematické struktury v informatice

Zkratka:MAT
Ak.rok:2017/2018
Semestr:zimní
Studijní plán:
ProgramObor/
specializace
RočníkPovinnost
IT-MGR-2MBI1.povinný
IT-MGR-2MBS1.povinný
IT-MGR-2MGM1.povinný
IT-MGR-2MIN1.povinný
IT-MGR-2MIS1.povinný
IT-MGR-2MMI1.povinný
IT-MGR-2MMM1.povinný
IT-MGR-2MPV1.povinný
IT-MGR-2MSK1.povinný
Vyučovací jazyk:čeština
Kredity:5 kreditů
Ukončení:zkouška (písemná)
Výuka:
hod./sempřednáškasem./cvič.lab. cvič.poč. cvič.jiná
Rozsah:3913000
 zkouškatestycvičenílaboratořeostatní
Body:8020000
Garant:Šlapal Josef, prof. RNDr., CSc. (UM OADM)
Přednášející:Šlapal Josef, prof. RNDr., CSc. (UM OADM)
Cvičící:Duránik Lukáš (Děkanát)
Hrdina Jaroslav, doc. Mgr., Ph.D. (UM OADM)
Šlapal Josef, prof. RNDr., CSc. (UM OADM)
Fakulta:Fakulta strojního inženýrství VUT
Pracoviště:Ústav matematiky - odbor algebry a diskrétní matematiky FSI VUT
 
Cíle předmětu:
  Cílem předmětu je prohloubit u studentů znalosti základních matematických struktur, které jsou často využívány v různých oblastech informatiky. Vedle základů univerzální algebry a klasických algebraických struktur budou podrobněji vyloženy základy matematické logiky, teorie Banachových a Hilbertových prostorů a teorie neorientovaných i orientovaných grafů.
Anotace:
  Formální teorie, výroková logika, predikátová logika, univerzální algebra, algebraické struktury s jednou a dvěma binárními operacemi, topologické a metrické prostory, Banachovy a Hilbertovy prostory, neorientované grafy, orientované grafy a sítě.
Získané dovednosti, znalosti a kompetence:
  Studenti prohloubí své znalosti z oblasti matematických struktur, které jsou nejčastěji využívány v informatice. Jedná se o matematickou logiku, algebru, funkcionální analýzu a teorii grafů. To jim pak umožní nejen lépe porozumět teoretickým základům informatiky, ale také se aktivně zapojit do výzkumu v tomto oboru.
Osnova přednášek:
 
  • Výroková logika, výrokové formule a jejich pravdivost, formální systém výrokové logiky, dokazatelnost ve výrokové logice, věta o úplnosti.
  • Jazyk predikátové logiky (predikáty, kvantifikátory, termy, formule) a jeho realizace, pravdivost a splňování formulí.
  • Formální systém predikátové logiky 1. řádu, věty o korektnosti, úplnosti a kompaktnosti, prenexní tvar formulí. 
  • Univerzální algebry a jejich základní typy: grupoidy, pologrupy, monoidy, grupy, okruhy, obory integrity, tělesa, svazy a Booleovy svazy.  
  • Základní algebraické metody: podalgebry, homomorfismy a izomorfismy, kongruence a přímé součiny algeber.
  • Relace kongruence na grupách a okruzích, normální podgrupy a ideály.
  • Okruhy polynomů, dělitelnost v oborech integrity, Gaussovy a Eukleidovy okruhy.
  • Teorie polí: minimální pole, rozšíření polí, konečná pole.
  • Metrické prostory, úplnost, normované a Banachovy prostory.
  • Unitární a Hilbertovy prostory, ortogonalita, uzavřené ortonormální systémy a Fourierovy řady.
  • Stromy a kostry, minimální kostra (Kruskalův a Primův algoritmus), vybarvování uzlů a hran grafu.
  • Orientované grafy, orientované eulerovské grafy, problém kritické cesty (Dijkstrův a Floyd-Warshallův algoritmus).
  • Sítě, toky a řezy v sítích, problémy maximálního toku a minimálního řezu, cirkulace v sítích.
Literatura referenční:
 
  • Mendelson, E.: Introduction to Mathematical Logic, Chapman Hall, 1997, ISBN 0412808307
  • Cameron, P.J.: Sets, Logic and Categories, Springer-Verlag, 2000, ISBN 1852330562
  • Biggs, N.L.: Discrete Mathematics, Oxford Science Publications, 1999, ISBN 0198534272
Literatura studijní:
 
  • Birkhoff, G., MacLane, S.: Aplikovaná algebra, Alfa, Bratislava, 1981
  • Procházka, L.: Algebra, Academia, Praha, 1990
  • Lang, S.: Undergraduate Algebra, Springer-Verlag, New York - Berlin - Heidelberg, 1990, ISBN 038797279
  • Polimeni, A.D., Straight, H.J.: Foundations of Discrete Mathematics, Brooks/Cole Publ. Comp., Pacific Grove, 1990, ISBN 053412402X
  • Shoham, Y.: Reasoning about Change, MIT Press, Cambridge, 1988, ISBN 0262192691
  • Van der Waerden, B.L.: Algebra I, II, Springer-Verlag, Berlin - Heidelberg - New York, 1971, Algebra I. ISBN 0387406247, Algebra II. ISBN 0387406255
  • Nerode, A., Shore, R.A.: Logic for Applications, Springer-Verlag, 1993, ISBN 0387941290
Průběžná kontrola studia:
  Půlsemestrální písemný test.
 

Vaše IPv4 adresa: 54.227.157.163