Název:

Pokročilá matematika

Zkratka:IAM
Ak.rok:2018/2019
Semestr:letní
Studijní plán:
ProgramObor/
specializace
RočníkPovinnost
BIT-2.volitelný
IT-BC-3BIT2.volitelný
Vyučovací jazyk:čeština
Kredity:5 kreditů
Ukončení:klasifikovaný zápočet
Výuka:
hod./sempřednáškasem./cvič.lab. cvič.poč. cvič.jiná
Rozsah:2618080
 zkouškatestycvičenílaboratořeostatní
Body:0505000
Garant:Holík Lukáš, Mgr., Ph.D. (UITS)
Zástupce garanta:Lengál Ondřej, Ing., Ph.D. (UITS)
Přednášející:Češka Milan, RNDr., Ph.D. (UITS)
Hliněná Dana, doc. RNDr., Ph.D. (UMAT)
Holík Lukáš, Mgr., Ph.D. (UITS)
Lengál Ondřej, Ing., Ph.D. (UITS)
Cvičící:Češka Milan, RNDr., Ph.D. (UITS)
Hliněná Dana, doc. RNDr., Ph.D. (UMAT)
Holík Lukáš, Mgr., Ph.D. (UITS)
Lengál Ondřej, Ing., Ph.D. (UITS)
Fakulta:Fakulta informačních technologií VUT v Brně
Pracoviště:Ústav inteligentních systémů FIT VUT v Brně
Prerekvizity: 
Diskrétní matematika (IDA), UMAT
Formální jazyky a překladače (IFJ), UIFS
Numerická matematika a pravděpodobnost (INM), UMAT
 
Cíle předmětu:
  
  • Prohloubit schopnosti aplikace matematického aparátu ve vyjadřování, formulaci a řešení problémů a posílit schopnosti exaktního vyjadřování a myšlení obecně,
  • rozvinout některé partie matematiky s těsnou vazbou na informatiku a ukázat souvislost s informatikou,
  • usnadnit studium matematických předmětů v navazujícím magisterském studiu,
  • přesvědčit se na vlastní oči, jak komplikovaná matematika může vést velmi užitečným algoritmům a nástrojům.
Anotace:
  Předmět navazuje na povinné matematické předměty bakalářského studia. Práce s matematickým aparátem je demonstrována spolu s prohloubením znalostí oblastí matematiky úzce souvisejících s informatikou a s ukázkou jejich aplikací v informatice. Jedná se zejména o teorii čísel a její aplikaci v kryptografii; základy teorie množin a logiky, vybrané logické systémy, techniky a rozhodovací procedury s aplikací např. v databázích či softwarovém inženýrství; teorii svazů, pevných bodů, a jejich aplikace ve verifikaci; pravděpodobnost a statistiku a aplikace v analýze pravděpodobnostních systémů a umělé inteligenci.
Požadované prerekvizitní znalosti a dovednosti:
  Základní pojmy o relacích, množinách, základy výrokové a predikátové logiky, základy algebry, základy konečných automatů.
Získané dovednosti, znalosti a kompetence z předmětu:
  Schopnost matematické formulace, řešení problémů pomocí matematického aparátu, zejména dokazování, prohloubení a procvičení základních matematických pojmů, přehled o některých pro informatiku stěžejních oblastech matematiky a jejich aplikacích v informatice.
Dovednosti, znalosti a kompetence obecné:
  Rozvinutí schopnosti exaktně se vyjadřovat a používat matematický aparát.
Proč je předmět vyučován:
  Hlavním cílem předmětu není pokrýt předem danou oblast matematiky, ale přenést nebo podpořit ve studentech nadšení pro věc. Student dostane šanci detailně si projít cestu od abstraktní matematické teorie k jejímu praktickému využití, přímo vidět, jak chytré myšlenky směřují k implementaci v reálném světe, a že exaktní a formální matematické vyjadřování a myšlení má smysl. Tyto schopnosti si také procvičí řešením příkladů, které se snaží být hlavně zajímavé a občas i náročné. Bonusem je získání nadstandardního přehledu o některých oblastech matematiky, které v poslední době hýbají částí informatického světa.
Osnova přednášek:
 
  1. Axiomy teorie množin, axiom výběru. Spočetné a nespočetné množiny, kardinální čísla. (Dana Hliněná)
  2. Aplikace teorie čísel v kryptografii. (Dana Hliněná)
  3. Teorie čísel: prvočísla, dělitělnost, kongruence, Fundamentální věta aritmetiky, Malá Fermatova věta, Eulerova funkce. (Dana Hliněná)
  4. Výroková logika. Syntaxe, sémantika. Důkazové metody pro výrokovou logiku: metoda sémantických tabulek, přirozená dedukce, rezoluce. (Ondřej Lengál)
  5. Predikátová logika. Syntaxe, sémantika prvořádové predikátové logiky. Důkazové metody pro predikátovou logiku: metoda sémantických tabulek, přirozená dedukce. (Ondřej Lengál)
  6. Predikátová logika. Craigova interpolace. Důležité teorie. Nerozhodnutelnost. Predikátová logika vyššího řádu. (Ondřej Lengál)
  7. Hoarova logika. Precondition, postcondition. Invariant. Deduktivní verifikace programů. (Ondřej Lengál)
  8. Logické rozhodovací procedury: Klasické rozhodovací procedury pro aritmetiku nad celými a racionálními čísly. (Lukáš Holík)
  9. Automatové rozhodovací procedury pro aritmetiku a WS1S. (Lukáš Holík)
  10. Rozhodovací procedury pro kombinované teorie. (Lukáš Holík)
  11. Pokročilá kombinatorika: Princip inkluze a exkluze, Dirichletův princip, vybrané kombinatorické teorémy. (Milan Češka)
  12. Podmíněná pravděpodobnost, základy statistické inference, Bayesovské sítě. (Milan Češka)
  13. Náhodné procesy: Markovův a Poissonův process. Aplikace v informatice: kvantitativní analýza, analýza výkonnosti. (Milan Češka)
Osnova numerických cvičení:
 
  1. Důkazy v teorii množin, Cantorova diagonalizace, párování, Hilbertův hotel.
  2. Prvočísla a kryptografie, RSA a DSA šifry.
  3. Důkazové úlohy v teorii čísel, Čínská věta o zbytcích.
  4. Důkazové metody pro výrokovou logiku.
  5. Důkazové metody pro predikátovou logiku.
  6. Rozhodovací procedury.
  7. Počítačové cvičení 1.
  8. Počítačové cvičení 2.
  9. Automatové rozhodovací procedury a kombinované teorie.
  10. Počítačové cvičení 3.
  11. Důkazové metody v kombinatorice.
  12. Podmíněná pravděpodobnost v praxi, použití statistické inference.
  13. Počítačové cvičení 4.
Osnova počítačových cvičení:
 
  1. Důkazy korektnosti programů v systému VCC.
  2. Solvery - SAT, SMT.
  3. Solvery - Mona, Vampire.
  4. Analýza pravděpodobnostních systémů, nástroj PRISM.
Literatura referenční:
 
  • A.R. Bradley, Z. Manna. The Calculus of Computation. Springer, 2007.
  • D. P. Bertsekas, J. N. Tsitsiklis. Introduction to Probability, Athena, 2008. Scientific
  • M. Huth, M. Ryan. Logic in Computer Science. Modelling and Reasoning about Systems. Cambridge University Press, 2004.
Literatura studijní:
 
  • R. Smullyan. First-Order Logic. Dover, 1995.
  • B. Balcar, P. Štěpánek. Teorie množin. Academia, 2005.
  • C. M. Grinstead, J. L. Snell. Introduction to probability. American Mathematical Soc., 2012.
  • G. Chartrand, A. D. Polimeni, P. Zhang. Mathematical Proofs: A Transition to Advanced Mathematics, 2013
  • J. Hromkovič. Algorithmic adventures: from knowledge to magic. Dordrecht: Springer, 2009.
  • Steven Roman. Lattices and Ordered Sets, Springer-Verlag New York, 2008.
  • A. Doxiadis, C. Papadimitriou. Logicomix: An Epic Search for Truth. Bloomsbury, 2009.
Odkazy:
 Předmět je určen pro studenty 2. a 3. ročníku.
Průběžná kontrola studia:
  Dva testy - v polovině a v závěru semestru (25 bodů za test), aktivita na cvičeních (5 bodů za každé cvičení).
Podmínky zápočtu:
  Získání 50 ze 100 možných bodů, udělovaných za aktivity v průběhu cvičení a docházku (50 bodů), průběžné testy (50 bodů).
 

Vaše IPv4 adresa: 34.207.82.217