Title:

Computational Photography

Code:VYF
Ac.Year:2019/2020
Sem:Summer
Curriculums:
ProgrammeField/
Specialization
YearDuty
IT-MSC-2MBI-Elective
IT-MSC-2MBS-Elective
IT-MSC-2MGM-Elective
IT-MSC-2MIN-Elective
IT-MSC-2MIS-Elective
IT-MSC-2MMI-Elective
IT-MSC-2MMM-Elective
IT-MSC-2MPV-Elective
IT-MSC-2MSK-Elective
MITAINADE-Elective
MITAINBIO-Elective
MITAINCPS-Elective
MITAINEMB-Elective
MITAINGRI-Elective
MITAINHPC-Elective
MITAINIDE-Elective
MITAINISD-Elective
MITAINISY-Elective
MITAINMAL-Elective
MITAINMAT-Elective
MITAINNET-Elective
MITAINSEC-Elective
MITAINSEN-Elective
MITAINSPE-Elective
MITAINVER-Elective
MITAINVIZ-Elective
Language of Instruction:Czech
Credits:5
Completion:classified credit
Type of
instruction:
Hour/semLecturesSeminar
Exercises
Laboratory
Exercises
Computer
Exercises
Other
Hours:2600026
 ExamsTestsExercisesLaboratoriesOther
Points:0400060
Guarantor:Čadík Martin, doc. Ing., Ph.D. (DCGM)
Deputy guarantor:Brejcha Jan, Ing. (DCGM)
Lecturer:Čadík Martin, doc. Ing., Ph.D. (DCGM)
Faculty:Faculty of Information Technology BUT
Department:Department of Computer Graphics and Multimedia FIT BUT
Schedule:
DayLessonWeekRoomStartEndLect.Gr.Groups
TuelecturelecturesE105 15:0016:501MIT 2MIT xx
 
Learning objectives:
  The aim is to introduce computational photography methods (http://cphoto.fit.vutbr.cz/) and to get acquainted with the principles of mathematics and computer science in the field.
Description:
  Current digital cameras almost completely surpass traditional photography. They do not only capture light, they in fact compute pictures. That said, there is practically no image that would not be computationally processed to some extent today. Visual computing is ubiquitous. Unfortunately, images taken by amateur photographers often lack the qualities of professional photos and some image editing is necessary. Computational photography (CP) develops methods to enhance or extend the capabilities of the current digital imaging chain.
Why is the course taught:
  Computational photography techniques are placed at boundaries of image processing, computer vision, physics, visual perception and other fields. The course is offering a holistic view of this intersection, while many principles are demonstrated practically during lectures (photography, HDR acquisition, tone mapping, image registration, spherical panoramic imaging, etc.). Students may take part in photographic challenges and get a valuable feedback from their colleagues and tutors. Prior knowledge of computer vision, graphics or image processing is beneficial, but not required.
Syllabus of lectures:
 
  1. introduction to CP, light and color
  2. photography, optics, physics, sensors, noise
  3. visual perception, natural image statistics
  4. image blending
  5. Color, color spaces, color transfer, color-to-grayscale image conversions
  6. High dynamic range (HDR) imaging - acquisition, storage and display
  7. High dynamic range (HDR) imaging - tone mapping, inverse tone mapping
  8. Image registration for computational photography
  9. Computational illumination, dual photography, illumination changes
  10. Image and video quality metrics
  11. Omnidirectional camera, lightfields, synthetic aperture
  12. Non-photorealistic camera, computational aesthetics
  13. Computational video, GraphCuts, editing software, guests
Fundamental literature:
 
  • Radke, R.: Computer Vision for Visual Effects. Cambridge university press.  2013.
  • Szeliski, R.: Computer Vision: Algorithms and Applications, Springer. 2010.
  • Shirley, P., Marschner, S.: Fundamentals of Computer Graphics. CRC Press. 2009.
Links:
 http://cadik.posvete.cz/
http://cphoto.fit.vutbr.cz/
Progress assessment:
  
  1. Project proposals
  2. Project assignments
  3. Consultations after the lecture - literature
  4. Consultations after the lecture - implementation
  5. Consultations after the lecture - testing
  6. WRITTEN EXAM
  7. Finished implementations
  8. Presentations of assignments, final reports
Exam prerequisites:
  It is obligatory to be present at the written exam, submit the project including textual report and oral presentation. At least 50 points must be obtained, while the minimal score from the test is 16 points, the minimal score from the project is 24 points. During the term, one can get bonus points in practical photography challenges.
 

Your IPv4 address: 54.198.246.164