Title:

Compiler Construction (in English)

Code:VYPa
Ac.Year:2019/2020
Sem:Winter
Curriculums:
ProgrammeField/
Specialization
YearDuty
IT-MSC-2MBI-Elective
IT-MSC-2MBS-Elective
IT-MSC-2MGM-Elective
IT-MSC-2MGMe-Compulsory-Elective - group I
IT-MSC-2MIN-Elective
IT-MSC-2MIS-Compulsory-Elective - group F
IT-MSC-2MMI-Elective
IT-MSC-2MMM-Compulsory
IT-MSC-2MPV-Elective
IT-MSC-2MSK-Elective
MITAINADE-Elective
MITAINBIO-Elective
MITAINCPS-Elective
MITAINEMB-Elective
MITAINGRI-Elective
MITAINHPC-Elective
MITAINIDE-Elective
MITAINISD-Elective
MITAINISY-Elective
MITAINMAL-Elective
MITAINMAT-Compulsory
MITAINNET-Elective
MITAINSEC-Elective
MITAINSEN-Elective
MITAINSPE-Elective
MITAINVER-Elective
MITAINVIZ-Elective
Language of Instruction:English
News:
This course is instructed in English, and it is intended for incoming Erasmus+ students, too.

Public info:http://www.fit.vutbr.cz/study/courses/VYPa/public/
Credits:5
Completion:examination (written)
Type of
instruction:
Hour/semLecturesSeminar
Exercises
Laboratory
Exercises
Computer
Exercises
Other
Hours:3900013
 ExamsTestsExercisesLaboratoriesOther
Points:55150030
Guarantor:Meduna Alexander, prof. RNDr., CSc. (DIFS)
Deputy guarantor:Křivka Zbyněk, Ing., Ph.D. (DIFS)
Lecturer:Křivka Zbyněk, Ing., Ph.D. (DIFS)
Meduna Alexander, prof. RNDr., CSc. (DIFS)
Instructor:Kocman Radim, Ing. (DIFS)
Křivka Zbyněk, Ing., Ph.D. (DIFS)
Martiško Jakub, Ing. (DIFS)
Regéciová Dominika, Ing. (DIFS)
Faculty:Faculty of Information Technology BUT
Department:Department of Information Systems FIT BUT
Schedule:
DayLessonWeekRoomStartEndLect.Gr.Groups
MonlecturelecturesA112 11:0013:501EIT 1MIT 2EIT 2MIT INTE MMM xx
 
Learning objectives:
  Thorough grasp of compiler construction, including modern parallel compiler construction. Deep familiarity with the theory behind the translation of programming languages.
Description:
  This course discusses the construction of compilers in detail. This discussion concentrates on the following three topics: (I) Advanced topics of classical compilers: LR-table construction, general precedence analysis, general methods of syntax analysis, advanced methods of optimization. (II) Principles of parallel compilers: parallel compiler structure, fundamental methods of parallel syntax analysis, basic models of parallel translation. (III) Formal translation models and their properties: transducers, translation grammars, properties of syntax directed translation, formal language properties relevant to compilers, modern translation models.
Knowledge and skills required for the course:
  Basic knowledge of discrete mathematics.
Subject specific learning outcomes and competencies:
  Ability of an advanced compiler construction including parallel compiler. Deep familiarity with the theory and practice of programming language translation.
Generic learning outcomes and competencies:
  General knowledge of formal models for translation and their applications.
Why is the course taught:
  Maintaining a balance between a theoretical and practical approach to this important subject, VYPa represents a master-level class about compiler writing. From a theoretical viewpoint, it introduces mathematical models, such as automata and grammars, which underlie compilation and its phases. Based on these models, the class details the concepts, methods, and techniques employed in compiler design in a clear and easy-to-follow way.

From a practical point of view, the class describes how compilation techniques are implemented.  While discussing various compilation techniques, the class demonstrates their implementation in a step-by-step way. In addition, the class presents many detailed examples and computer programs to emphasize the applications of the compiler algorithms.

After taking this class, students should understand the compilation process, be able to write a real compiler, and easily follow advanced books on the subject.
Syllabus of lectures:
 
  1. Introduction: compiler structure.
  2. Deterministic bottom-up syntax analysis: LR table construction.
  3. Deterministic bottom-up syntax analysis: general precedence analysis.
  4. General syntax analysis: important backtrack parsing methods.
  5. Advanced optimization.
  6. Parallel compilers: parallel compiler structure.
  7. Parallel syntax analysis: principles.
  8. Deterministic methods of parallel top-down syntax analysis.
  9. Deterministic methods of parallel bottom-up syntax analysis.
  10. Parallel code generation.
  11. Modern formal tools for language specification: regulated and parallel models.
  12. Formal tools for language translation: transducers and translation grammars.
  13. Expected future trends; summary; conclusion.
Syllabus - others, projects and individual work of students:
 
  1. Making an advanced compiler.
  2. Preparation and presentation of a selected topic about compilers.
Fundamental literature:
 
  • Cooper, K.D.: Engineering a Compiler, San Francisco, Morgan Kaufmann, 2004, 879 p., ISBN 155860698X
  • Wilhelm, R., Seidl, H.: Compiler Design: Virtual Machines, Springer, 2010, 187 p., ISBN 978-3-642-14908-5
Study literature:
 
  • Češka, M., Ježek, K., Melichar, B., Richta, K.: Konstrukce překladačů, Praha, CZ, ČVUT, 1999, 636 p., ISBN 80-01-02028-2 (in Czech)
  • Grune, D.: Modern Compiler Design, 2nd Edition, Springer, 2016, 846 p., ISBN 9781493944729
Controlled instruction:
  In case of illness or another serious obstacle, the student should inform the faculty about that and subsequently provide the evidence of such an obstacle. Then, it can be taken into account within evaluation:
  • The student can ask the responsible teacher to extend the time for the project assignment.
  • If a student cannot attend the mid-term exam, (s)he can ask to derive points from the evaluation of his/her first attempt of the final exam.
  • If a student cannot attend the defense of the project and the other team members agree with that (s)he can earn the same points from the project defence as for present members.
Progress assessment:
  
  • Mid-term written examination - 15 point
  • Evaluated project(s) - 30 points
  • Final written examination - 55 points
 

Your IPv4 address: 54.198.246.164