
MapReduce paradigm and Apache
Hadoop

Marek Rychlý
Faculty of Information Technology Brno University of Technology

Božetěchova 1/2. 612 66 Brno - Královo Pole

rychly@fit.vutbr.cz

2 December 2020



Contents

1 BigData, MapReduce, HDFS
• BigData
• MapReduce paradigm
• GFS/HDFS file system

2 Apache Hadoop
• Apache Hadoop framework and infrastructure
• MapRedude application development on Hadoop
• HDFS and Hadoop JobClient commands

3 Summary and conclusion

GJA 11 2 / 35



OLTP/OLAP and BigData

• IT was used to working with structured data.
(e.g. relational and post-relational database with a clear scheme)

• OLTP systems at lower level, OLAP systems at higher level.
(i.e. ”online transaction/analytical processing”, common routine vs.
complete data analysis)

• Efforts to address the issue of nonstructured data in NoSQL
databases.
(i.e. database without scheme, usually just a storage of ”key:value”)

• Absence of database scheme is not the only issue.
(e.g. data streams processed sequentially and real-time, ie. without the
option of random access, or stopping the stream)

• Working with such data is outside of the scope of
OLTP/OLAP approach⇒ BigData.
(BigData complete OTLP/OLAP, not replace; OLTP/OLAP still commonly
used)

GJA 11 3 / 35



Why BigData?
• Large, nonstructured and quickly growing data collections.

(can’t be processed by the usual means due to their properties)
• They require new approaches for storing, processing and

displaying data.
(capture, pre-processing, storing, searching, sharing/transfer, analysis,
visualization)

• It’s necessary to use parallel and distributed storage and
algorithms/cloud.
(data can’t be stored/processed by a central system due to size, data
source location, performance)

• Parallel and distributed processing means more issues.
(how to ensure appropriate data and computation distribution, how to
deal with unreliability/infrastructure crashes, how and where to deliver the
results, etc.)

• BigData are necessary for data processing and querying
• from social networks and news (Facebook, Twitter, . . . ),
• from extensive measuring (data generated constantly by

thousands of sensors, various services usage statistics, etc.)
• from everchanging nonstructured data sets (phone calls,

internet communication, video or audio data streams, etc.).
GJA 11 4 / 35



Why BigData?

(diagram taken from ”The Four V’s of Big Data, IBM”)

GJA 11 5 / 35

https://www.ibmbigdatahub.com/infographic/four-vs-big-data


MapReduce paradigm

• Google’s Dean&Ghemawat post from 2004 ”MapReduce:
Simplified Data Processing on Large Clusters”.

• Paradigm based on Map and Reduce functions.
(inspired by functions from Lisp and other functional languages)
;; (map unary-op list1 [list2 list3 . . . ])
(map square ’(1 2 3 4)) ;; result = (1 4 9 16)
;; (reduce binary-op list1 [list2 list3 . . . ])
(reduce + ’(1 4 9 16)) ;; result = (+ 16(+ 9(+ 4 1) ) ) = 30

• Multiple Map and Reduce tasks running simultaneously
1 input split in parts, each assigned to one comp. node,

(Lisp: multiple lists from input data)
2 each node runs Map for each element of lists simultaneously,

(Lisp: parallel execution of Map function for each list)
3 results are collected from nodes and grouped according to

key,
(Lisp: lists prepared for Reduce function, one per key value)

4 groups are split between nodes according to key values,
each runs Reduce,
(Lisp: parallel execution of Reduce function for each list)

5 results of all Reduce tasks are collected and stored on output

GJA 11 6 / 35



Map and Reduce functions

MapReduce applications are comprised of Map and Reduce
functions defined on data represented by couples ”key:value”
Map(k1, v1)→ list(k2, v2)
Map is applied to each input data k1 : v1 and creates a list of
outputs k2 : v2 for each input
Reduce(k2, list(v2))→ list(k3, v3)
Outputs of all Map applications are grouped according to a
key and then Reduce is applied to each list for the given key
and creates a list of output values from them

k1 key value of the input data item, e.g. order, specifies split between nodes
v1 data of the input data item, i.e. item to be processed

k2, k3 key value of the output data, e.g. name of the data processing result
v2 intermediate result from data processing, obtained from individual inputs
v3 result of processing by agregation of intermediate results for each key k2

GJA 11 7 / 35



MapReduce process

(diagram taken from ”MapReduce: Simplified Data Processing on Large Clusters”)

GJA 11 8 / 35

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html


Parallel MapReduce process

(diagram taken from ”MapReduce: Simplified Data Processing on Large Clusters”)

GJA 11 9 / 35

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html


Example Map and Reduce functions (from
Google2004 article)

map(String input_key, String input_value):
// input_(key, value): (document_name, document_contents)
for each word w in input_value:
EmitIntermediate(w, "1");

reduce(String output_key, Iterator intermediate_values):
// output_(key, values): (a word, a list of counts)
int result = 0;
for each val in intermediate_values:
result += ParseInt(val);

Emit(AsString(result));

• specified application counts occurences of words in input data
• Map is launched for each document (row) in the input and

creates output for each word in the document (in row)
(input key is document name (row number), value is the document
contents(row); output key is a word, value represents occurences ”1”)

• Reduce takes an input word and a list of it’s occurences, and
returns total occurence count as output
(input key is a word, value is a list containing element ”1”for each
occurence of the word; e.g. for three occurences, there is a list [1, 1, 1];
output value is a sum of all elements of the input list)

GJA 11 10 / 35



Outputs of phases of MapReduce process

(diagram taken from ”Data Mining 2.0: Mine your data like Facebook, Twitter and Yahoo”)

GJA 11 11 / 35

http://www.rabidgremlin.com/data20/


Data processing and MapReduce programming

1 input&splitting
(load data from source and split between Map nodes)

2 Map function
(Map function execution for individual input parts)

3 shuffling (partitioning&comparing)
(sort Map outputs, split between Reduce nodes and data transfer)

4 Reduce function
(Reduce fuction execution for individual intermediate values)

5 output
(collect Reduce results and write to output)

• Programmer usually only deals with input&output and
Map&Reduce.

• Splitting&partitioning executed automatically by
framework implementation
(usually split between nodes according to key hash, preferably uniform)

• Comparing. i.e. sorting intermediate values, is executed
automatically according to the keys.

GJA 11 12 / 35



A closer look at MapReduce process

(diagram taken from ”Apache Hadoop, Modeule 4: MapReduce”)

GJA 11 13 / 35

https://developer.yahoo.com/hadoop/tutorial/module4.html?guccounter=1


MapReduce process example

(taken from ”MapReduce Animation, SYSTEMS

Deployment, 20120”)

• Map assigns a category to each
input record.
(in the example, Map assigns input
objects a category according to their
color)

• Shuffle groups records
according to their assigned
category.
(in the example, group objects
according to their colors)

• Reduce counts/stores records of
individuals categories. (in the
example, objects belonging to a
category according to their color)

GJA 11 14 / 35

http://www.systems-deployment.com/animation.html
http://www.systems-deployment.com/animation.html


”Combiner”extension for MapReduce

(diagram taken from ”Apache Hadoop, Modeule 4: MapReduce”)

GJA 11 15 / 35

https://developer.yahoo.com/hadoop/tutorial/module4.html?guccounter=1


Distributed file system

• Alongside computational model, we also need distributed
data storing.
(MapReduce is a computational model, GFS/HDFS distributed file system)

• Google designed MapReduce on Google File System (GFS)
• GFS was an inspiration for HDFS during implementation of

MapReduce.
(HDFS = Hadoop Distribute File System; hereinafter HDFS)

• Distributed file system distributes data (and metadata).
(distribution through IT infrastructure, dislocated nodes of a global storage)

• Solves optimal data storing, performance and failure
resistance. (various placement strategies, e.g. close to data origin or
consumption ; necessary redundance, not all nodes must be available or
have the latest data)

GJA 11 16 / 35



HDFS file system

• Virtual distributed file system.
(built on common file systems of individual nodes, solves the problem of
locating a storage and access to darta, data not stored physically on
node)

• Designed for sequention file access, not random.
(MapReduce is a batch processing, reads and writes input/output data
sequentially)

• Designed for large files (BigData).
(most of the resources dedicated to locating storage, read/write are fast)

• File data stored in HDFS in blocks with fixed size. (typically 64 or
128 MB, fast; implemented as a group of blocks of local file systems from
various nodes, i.e. you can store more data than the capacity of a single
node allows; partially full HDFS blocks only take up necessary number of
blocks of local file systems, space is not wasted)

• Individual HDFS blocks are distributed and serve as
replication units. (i.e. HDFS blocks level of redundance, single block
stored on multiple nodes)

GJA 11 17 / 35



HDFS architecture

• There are two types of nodes in HDFS
NameNode manages file system and file metadata,

(directory, filepaths, their atributes and locations)
DataNode hosts data, individual HDFS blocks of files.

(NameNode knows, where blocks of files are located)

• Usually only one NameNode, great performance and
reliability.
(so called ”single point of failure”, backup on ”secondary NameNode”,
etc.)

• Multiple instances of DataNode, don’t need great
performance and reliability due to redundancy.
(same HDFS block is stored multiple times on various DataNodes)

• Storage nodes are physically arranged in ”racks”. (rack is in
one location, it’s nodes are better connected)

• NameNode places instances of a block to various racks
(redundance).
(number of instances depends on replication factor, usually 3 instances on
total 2 racks)

GJA 11 18 / 35



HDFS architecture and operations on files

(diagram taken from ”HDFS Architecture Guide, Apache.”)

GJA 11 19 / 35

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#NameNode+and+DataNodes


Apache Hadoop framework

• Framework for distributed, scalable and batch
MapReduce computation.
Hadoop MapReduce MapReduce paradigm
implementation
Hadoop YARN distributed task scheduling and source
management
Hadoop DFS distributed file system
Hadoop Common common libraries

GJA 11 20 / 35



Apache Hadoop framework

• Additional tools alongside those mentioned earlier.
Apache Pig(Latin) high-level MapReduce programming
(Yahoo)
Apache Hive datamining platform on Hadoop (Facebook)
Apache HBase distributed database on Hadoop (Google)
Apache/IBM Jaql querying language for JSON data
Apache Flume Hadoop data flow control service
and other. . .
(Mahout, Cassandra, HCatalog, Zookeeper, Oozie, Sqoop,. . . )

• Apache Hadoop and most tools are written in Java.
(runs on JVM, multiple instances within a single node)

GJA 11 21 / 35



Hadoop Distributions

• Apache Hadoop
• IBM InfoSphere BigInsights
• MapR M3/M5/M7
• Hortonworks Data Platform
• Intel HPC Distribution for Apache Hadoop
• Cloudera CDH
• EMC Pivotal HD
• DataStax Enterprise
• Microsoft Windows Azure HDInsight

GJA 11 22 / 35



Hadoop architecture

• Hadoop has two additional types of nodes for MapReduce
JobTracker receives and controls MapReduce applications,
(only one per cluster, controls TaskTracker)
TaskTracker runs individual MapReduce operations.
(at least one per node, runs tasks in individual JVM)

• JobTracker runs client specified MapReduce applications.
(splits Map and Reduce between TaskTrackers, tracks their completion)

• TaskTrackers receive tasks working with local data.
(preferably with data located in DataNode on the same node or rack,
much like TT)

• TaskTracker does not have to be reliable, JobTracker has to
be.
(if TaskTracker stops sending ”heartbeat”, JobTracker repeats it’s tasks)

• TaskTracker runs each task in an individual JVM.
(allows absolute control over each task and independence)

GJA 11 23 / 35



Hadoop architecture and job submitting

(diagram taken from ”How does hadoop MapReduce works, Big Data Foundation.”)

GJA 11 24 / 35



Running MapReduce applications on Hadoop

(diagram taken from ”How MapReduce Works with Hadoop”)

GJA 11 25 / 35



Hadoop API

Abstract from MapReduce paradigm:
• Map(k1, v1)→ list(k2, v2)

• Reduce(k2, list(v2))→ list(k3, v3)

Specific from Java pkg ”org.apache.hadoop.mapreduce”:
• Interface Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT>

protected void map(KEYIN key, VALUEIN val,

org.apache.hadoop.mapreduce.Mapper.Context context) throws

IOException, InterruptedException

• Interface Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
protected void reduce(KEYIN key, Iterable<VALUEIN> values,

org.apache.hadoop.mapreduce.Reducer.Context context)

throws IOException, InterruptedException

• Output pair (key, value) is a context method call
Context.write(KEYOUT key, VALUEOUT value)

GJA 11 26 / 35

https://hadoop.apache.org/docs/current2/api/org/apache/hadoop/mapreduce/Mapper.html
https://hadoop.apache.org/docs/current2/api/org/apache/hadoop/mapreduce/Reducer.html


Example Hadoop API use - WordCount I

package org.myorg;
import java.io.IOException;
import java.util.*;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;

public class WordCount {

GJA 11 27 / 35



Example Hadoop API use - WordCount II

public static class Map extends Mapper<LongWritable, Text,
Text, IntWritable>{

private final static IntWritable one = new IntWritable(1);
private Text word = new Text();

public void map(LongWritable key, Text value, Context
context) throws IOException, InterruptedException {

String line = value.toString();

StringTokenizer tokenizer = new StringTokenizer(line);

while(tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
context.write(word, one);

}

}

}

GJA 11 28 / 35



Example Hadoop API use - WordCount III

public static class Reduce extends Reducer<Text, IntWritable,
Text, IntWritable>{

public void reduce (Text key, Iterable<IntWritable>values,
Context context) throws IOException, InterruptedException {

int sum = 0;

for (IntWritable val : values) {
sum += val.get();

}

context.write(key, new IntWritable(sum));

}

}

GJA 11 29 / 35



Example Hadoop API use - WordCount IV

public static void main (String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "wordcount");

job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);

job.setInputFileFormatClass(TextInputFormat.class);
job.setOutputFileFormatClass(TextOutputFormat.class);

FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));

job.waitForCompeltion(true);

}

}

GJA 11 30 / 35



Running Hadoop from command line

• script hadoop with the following syntax
hadoop [-config dir] [COMMAND] [GENERIC OPTIONS]

[COMMAND OPTIONS]

• Most commonly used commands:
• ”fs”or ”dfs”- working with files on HDFS

(hadoop fs [GENERIC OPTIONS] [COMMAND OPTIONS])
• ”jar”- running MapReduce applications distributed in .jar

archives
(hadoop jar <jar>[mainClass] args...)

• ”job”- working with running applications on JobTracker
(hadoop job [GENERIC OPTIONS] [-status <job-id>] | ...)

• ”dfsadmin”- HDFS file system administration
(hadoop dfsadmin [GENERIC OPTIONS] [-report] | ...)

See the manual for other commands.

GJA 11 31 / 35



Manipulating files on HDFS

The most commonly used arguments for hadoop fs <args...>

• ”-ls”to print the contents of HDFS directories
(hadoop fs -ls hdfs://myhost/mypath)

• ”-cat”to print the contents of HDFS files
(hadoop fs -cat hdfs://myhost/mypath/myfile)

• ”-mdkir”to create HDFS directories
(hadoop fs -mkdir hdfs://myhost/mypath/mydir)

• ”-rm”or ”-rmr”to delete HDFS files/directories
(hadoop fs -rmr hdfs://myhost/mypath/mydir)

• ”-put”to copy local system files to HDFS
(hadoop fs -put mylocalpath/myfile hdfs://myhost/myfile)

• ”-get”to copy HDFS files to local system
(hadoop fs -get hdfs://myhost/myfile mylocalpath/myfile)

• ”-getmerge”to merge HDFS files into a single local file
(hadoop fs -getmerge hdfs://myhost/myf1 hdfs://myhost/myf2

myfile)

See the manual for other commands.

GJA 11 32 / 35



Running MapReduce applications on Hadoop

• The simplest way is to create a single JAR archive and run it.

1 javac -cp <hadoop-*-core.jar>-d

<class-files-dir><java-files>

2 jar -cvf <myapp.jar> - C <class-files-dir>.

3 hadoop jar <myapp.jar [mainClass] args...

• It is necessary to copy files to HDFS before running the app.

Example:
hadoop fs -put file01 hdfs:/localhost/usr/joe/input/
hadoop fs -put file02 hdfs:/localhost/usr/joe/input/
hadoop jar wordcount.jar org.myorg.WordCount /usr/joe/input
/usr/joe/output

hadoop fs -cat /usr/joe/output/part-00000

GJA 11 33 / 35



Summary and conclusion

• MapReduce paradigm for parallel, distributed and batch
computation.
(functions Map and Reduce; OLTP/OLAP add-on, not a replacement)

• Hadoop is a framework for running MapReduce
applications.
(NameNode and DataNode for HDFS, JobTracker and TaskTracker for
MapReduce)

• Programmer only needs to implement the Map and
Reduce functions.
(potentially org.apache.hadoop.mapred.Partitioner)

GJA 11 34 / 35



Thank you for your attention!


