Reduced Product in Abstract Interpretation

František Nečas

November 14, 2023

Motivation

- A single abstract domain may not be sufficient for analysis.
- Two possible solutions:

Motivation

- A single abstract domain may not be sufficient for analysis.
- Two possible solutions:
- Create a single more complex/universal domain covering more properties of the program.

Motivation

- A single abstract domain may not be sufficient for analysis.
- Two possible solutions:
- Create a single more complex/universal domain covering more properties of the program.
- Use multiple specialized domains in parallel and combine their results.

Motivation

- A single abstract domain may not be sufficient for analysis.
- Two possible solutions:
- Create a single more complex/universal domain covering more properties of the program.
- Use multiple specialized domains in parallel and combine their results.
- Creating a universal domain is a complex task. Combination of multiple simpler domains is more feasible.

Motivation

- A single abstract domain may not be sufficient for analysis.
- Two possible solutions:
- Create a single more complex/universal domain covering more properties of the program.
- Use multiple specialized domains in parallel and combine their results.
- Creating a universal domain is a complex task. Combination of multiple simpler domains is more feasible.
- Results of one domain can refine the results of another domain.

Reduced product

- For simplicity, let's consider only 2 domains.

Reduced product

- For simplicity, let's consider only 2 domains.
- Let $\left\langle A_{1}, \sqsubseteq_{1}\right\rangle$ and $\left\langle A_{2}, \sqsubseteq_{2}\right\rangle$ be abstract domains with their concretization functions γ_{1} and γ_{2}, respectively. Their Cartesian product [1] is $\langle\boldsymbol{A}, \sqsubseteq\rangle$ where:
- $\boldsymbol{A}=A_{1} \times A_{2}$
$-\left\langle p_{1}, p_{2}\right\rangle \sqsubseteq\left\langle q_{1}, q_{2}\right\rangle \Longleftrightarrow p_{1} \sqsubseteq_{1} q_{1} \wedge p_{2} \sqsubseteq_{2} q_{2}$
- $\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\gamma_{1}\left(p_{1}\right) \cap \gamma_{2}\left(p_{2}\right)$

Reduced product

- For simplicity, let's consider only 2 domains.
- Let $\left\langle A_{1}, \sqsubseteq_{1}\right\rangle$ and $\left\langle A_{2}, \sqsubseteq_{2}\right\rangle$ be abstract domains with their concretization functions γ_{1} and γ_{2}, respectively. Their Cartesian product [1] is $\langle\boldsymbol{A}, \sqsubseteq\rangle$ where:
- $\boldsymbol{A}=A_{1} \times A_{2}$
- $\left\langle p_{1}, p_{2}\right\rangle \sqsubseteq\left\langle q_{1}, q_{2}\right\rangle \Longleftrightarrow p_{1} \sqsubseteq_{1} q_{1} \wedge p_{2} \sqsubseteq_{2} q_{2}$
- $\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\gamma_{1}\left(p_{1}\right) \cap \gamma_{2}\left(p_{2}\right)$
- Such combined abstract domain does not provide more precise results than running the analyses with each abstract domain independently [2].

Reduced product

- For simplicity, let's consider only 2 domains.
- Let $\left\langle A_{1}, \sqsubseteq_{1}\right\rangle$ and $\left\langle A_{2}, \sqsubseteq_{2}\right\rangle$ be abstract domains with their concretization functions γ_{1} and γ_{2}, respectively. Their Cartesian product [1] is $\langle\boldsymbol{A}, \sqsubseteq\rangle$ where:
- $\boldsymbol{A}=A_{1} \times A_{2}$
- $\left\langle p_{1}, p_{2}\right\rangle \sqsubseteq\left\langle q_{1}, q_{2}\right\rangle \Longleftrightarrow p_{1} \sqsubseteq_{1} q_{1} \wedge p_{2} \sqsubseteq_{2} q_{2}$
- $\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\gamma_{1}\left(p_{1}\right) \cap \gamma_{2}\left(p_{2}\right)$
- Such combined abstract domain does not provide more precise results than running the analyses with each abstract domain independently [2].
- The reduced product is $\langle\boldsymbol{A} / \equiv, ~ \sqsubseteq\rangle$ where $P \equiv Q \Longleftrightarrow \gamma_{\boldsymbol{A}}(P)=\gamma_{\boldsymbol{A}}(Q)$ and $\gamma_{\boldsymbol{A}}$ and \sqsubseteq are extended to the equivalence classes of \equiv.

Reduced product

- Finding the equivalence class of an abstract context can be seen as using a reduction function $\sigma: \boldsymbol{A} \rightarrow \boldsymbol{A}$ such that $\sigma\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\left\langle\alpha_{1}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right), \alpha_{2}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right)\right\rangle$

Reduced product

- Finding the equivalence class of an abstract context can be seen as using a reduction function $\sigma: \boldsymbol{A} \rightarrow \boldsymbol{A}$ such that $\sigma\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\left\langle\alpha_{1}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right), \alpha_{2}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right)\right\rangle$
- For example, in a reduced product of interval and parity domain, $\langle[1,9]$, even $\rangle \equiv\langle[2,8]$, even \rangle :

$$
\begin{aligned}
\gamma_{\boldsymbol{A}}(\langle[1,9], \text { even }\rangle) & =\gamma_{1}([1,9]) \cap \gamma_{2}(\text { even }) \\
& =\{1,2, \ldots, 9\} \cap\{0,2,4, \ldots\} \\
& =\{2,4,6,8\} \\
& =\gamma_{\boldsymbol{A}}(\langle[2,8], \text { even }\rangle)
\end{aligned}
$$

Reduced product

- Finding the equivalence class of an abstract context can be seen as using a reduction function $\sigma: \boldsymbol{A} \rightarrow \boldsymbol{A}$ such that $\sigma\left(\left\langle p_{1}, p_{2}\right\rangle\right)=\left\langle\alpha_{1}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right), \alpha_{2}\left(\gamma_{\boldsymbol{A}}\left(\left\langle p_{1}, p_{2}\right\rangle\right)\right)\right\rangle$
- For example, in a reduced product of interval and parity domain, $\langle[1,9]$, even $\rangle \equiv\langle[2,8]$, even \rangle :

$$
\begin{aligned}
\gamma_{\boldsymbol{A}}(\langle[1,9], \text { even }\rangle) & =\gamma_{1}([1,9]) \cap \gamma_{2}(\text { even }) \\
& =\{1,2, \ldots, 9\} \cap\{0,2,4, \ldots\} \\
& =\{2,4,6,8\} \\
& =\gamma_{\boldsymbol{A}}(\langle[2,8], \text { even }\rangle)
\end{aligned}
$$

- In practice, analyzers compute an over-approximation of the reduction using some rules (concretization is not feasible).
- Typically, messages are exchanged between domains, each domain implements refinement based on a received message. The message format varies (e.g. various logics).

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle T, T\rangle$	$\langle T, T\rangle$
C_{1}		
C_{2}		
C_{3}		

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle T, T\rangle$	$\langle T, T\rangle$
C_{1}	\langle even, 0\rangle	
C_{2}		
C_{3}		

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle T, T\rangle$	$\langle T, T\rangle$
C_{1}	\langle even, 0\rangle	
C_{2}	$\langle T, 0\rangle$	
C_{3}	$\langle T, \geq 0\rangle$	

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle T, T\rangle$	$\langle T, T\rangle$
C_{1}	\langle even, 0\rangle	\langle even, 0\rangle
C_{2}	$\langle T, 0\rangle$	
C_{3}	$\langle T, \geq 0\rangle$	

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle T, T\rangle$	$\langle T, T\rangle$
C_{1}	\langle even, 0\rangle	\langle even, 0\rangle
C_{2}	$\langle T, 0\rangle$	$\langle T, 0\rangle$
C_{3}	$\langle T, \geq 0\rangle$	

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

Full example [3]

- Consider the parity and sign domains.

- $A_{1}=\{\perp$, odd, even, $\top\}$
- $A_{2}=\{\perp, \geq 0,0, \leq 0, \top\}$
- Let's consider $\boldsymbol{A}=A_{1} \times A_{2}$

	Product	Reduced Product
C_{0}	$\langle\top, T\rangle$	$\langle T, \top\rangle$
C_{1}	\langle even, 0\rangle	\langle even, 0\rangle
C_{2}	$\langle\top, 0\rangle$	$\langle\top, 0\rangle \equiv\langle$ even, 0\rangle
C_{3}	$\langle T, \geq 0\rangle$	\langle odd,$\geq 0\rangle$

- Notice that we obtain more information in C_{3} :
- $\gamma_{\mathbf{A}}(\langle T, \geq 0\rangle)=\{0,1,2, \ldots\}$
- $\gamma_{\boldsymbol{A}}(\langle$ odd,$\geq 0\rangle)=\{1,3,5, \ldots\}$
- This was a simple sequential example but such reductions can have a positive effect on widening and narrowing as well.

Combining more domains

- The product can naturally be extended to 3 or more domains.

Combining more domains

- The product can naturally be extended to 3 or more domains.
- However, adding a new domain requires redesigning the reduction [1].

Combining more domains

- The product can naturally be extended to 3 or more domains.
- However, adding a new domain requires redesigning the reduction [1].
- Oftentimes, only pairwise reductions are applied. This is easier to implement at the cost of potentially less precise results.

Combining more domains

- The product can naturally be extended to 3 or more domains.
- However, adding a new domain requires redesigning the reduction [1].
- Oftentimes, only pairwise reductions are applied. This is easier to implement at the cost of potentially less precise results.
- Refinement in one domain can facilitate further refinements. Therefore, the pairwise reductions are applied until a fixpoint is reached [4].

Combining more domains

- The product can naturally be extended to 3 or more domains.
- However, adding a new domain requires redesigning the reduction [1].
- Oftentimes, only pairwise reductions are applied. This is easier to implement at the cost of potentially less precise results.
- Refinement in one domain can facilitate further refinements. Therefore, the pairwise reductions are applied until a fixpoint is reached [4].
- Alternatively, reductions can be applied in a fixed order, e.g. Astrée [5].

Astrée example hierarchy [5]

trace partitioning

symbolic domain \times

- Symbolic domain propagates assigned expressions in a symbolic way [6].
- Boolean partitioning relates the values of (integer) variables to the values of boolean variables.
- Trace partitioning tracks history of control flow branches and values along the execution trace.
octagons boolean partitioning

intervals symbolic domain

References I

[1] P. Cousot, R. Cousot, and L. Mauborgne, "The reduced product of abstract domains and the combination of decision procedures,", Mar. 2011, pp. 456-472, ISBN: 978-3-642-19804-5. DOI: 10.1007/978-3-642-19805-2_31.
[2] P. Cousot and R. Cousot, "Systematic design of program analysis frameworks," in Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ser. POPL '79, San Antonio, Texas: Association for Computing Machinery, 1979, pp. 269-282, ISBN: 9781450373579. DOI: $10.1145 / 567752.567778$. [Online]. Available: https://doi.org/10.1145/567752.567778.

References II

[3] M. Codish, A. Mulkers, M. Bruynooghe, M. G. de la Banda, and M. Hermenegildo, "Improving abstract interpretations by combining domains," in Proceedings of the 1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, ser. PEPM '93, Copenhagen, Denmark: Association for Computing Machinery, 1993, pp. 194-205, ISBN: 0897915941. DOI: 10.1145/154630.154650. [Online]. Available: https://doi.org/10.1145/154630.154650.
[4] J. Bertrane, P. Cousot, R. Cousot, et al., "Static analysis and verification of aerospace software by abstract interpretation," American Institue of Aeronautics and Astronautics (AIAA) Infotech@Aerospace 2010, vol. 2, Apr. 2010. Doi: 10.2514/6.2010-3385.

References III

[5] P. Cousot, R. Cousot, J. Feret, et al., "Combination of abstractions in the astrée static analyzer," in Advances in Computer Science - ASIAN 2006. Secure Software and Related Issues, M. Okada and I. Satoh, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 272-300, ISBN: 978-3-540-77505-8.
[6] A. Miné, "Symbolic methods to enhance the precision of numerical abstract domains," in Verification, Model Checking, and Abstract Interpretation, E. A. Emerson and K. S. Namjoshi, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 348-363, ISBN: 978-3-540-31622-0.

