
Static Analysis and Verification
SAV 2023/2024

Tomáš Vojnar
vojnar@fit.vutbr.cz

Jiří Šimáček, Filip Konečný

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno

Predicate Abstraction – p.1/44

Abstraction
in Model Checking

Predicate Abstraction – p.2/44

Towards Abstraction

❖ In traditional model checking, the states of the Kripke structure of a system being

verified are given by all (reachable) combinations of assignments of values to system

variables.

❖ For example, consider a system containing 3 variables x1, x2, x3 whose domains are

Dx1
= Dx2

= {0, 1, 2, 3}, and Dx3
= {0, 1}. Assume that all combinations of these values

are reachable.

• The KS of this system contains 32 states, which are generated by the Cartesian

product of the domains of the system variables: S = Dx1
×Dx2

×Dx3
.

❖ In general, the size of the state space of a system containing variables

V = {x1, . . . , xn} with (finite) domains Dx1
, . . . , Dxn

is given by the following formula:

|S| = |
m
⊗

i=1

Dxi
| =

m
∏

i=1

|Dxi
|

Predicate Abstraction – p.3/44

Towards Abstraction – Continued

❖ Obviously, the size of the state space grows exponentially in the number of variables

and in their bit-width.

• E.g., a system containing 3 integer variables (32 bit) can have up to

79 228 162 514 264 337 593 543 950 336 ∼= 7.9 ∗ 1028states!

❖ Thus, it is not feasible to handle that many states explicitly even in the case when most

of the state space is not reachable.

• It is usually completely impossible if infinite (parametric) domains are allowed.

❖ Possible solutions include efficient storage of sets of states (e.g., using hierarchical

storage or BDDs) or state space reductions (based on not exploring certain states since

they and their successors are not relevant for the property to be checked, or their

properties are covered by other explored states).

❖ Another possible solution is to use some kind of abstraction which collapses certain

states of the original system that are similar from some point of view.

Predicate Abstraction – p.4/44

Towards Abstraction – Continued

❖ For a given (possibly infinite) KS M = (S, S0, R, L), we replace working with the set of

concrete states S by working with the set of abstract states Ŝ obtained using some

abstraction function α whose domain includes S:

• Ŝ = {ŝ | ∃s ∈ S. α(s) = ŝ},

– hence, each ŝ corresponds to an equivalence class of the equivalence ∼α

induced on S by α such that ∀s1, s2 ∈ S. s1 ∼α s2 ⇐⇒ α(s1) = α(s2),

• similarly, Ŝ0 = {ŝ | ∃s ∈ S0. α(s) = ŝ}.

Predicate Abstraction – p.5/44

Towards Abstraction – Continued

❖ For a given (possibly infinite) KS M = (S, S0, R, L), we replace working with the set of

concrete states S by working with the set of abstract states Ŝ obtained using some

abstraction function α whose domain includes S:

• Ŝ = {ŝ | ∃s ∈ S. α(s) = ŝ},

– hence, each ŝ corresponds to an equivalence class of the equivalence ∼α

induced on S by α such that ∀s1, s2 ∈ S. s1 ∼α s2 ⇐⇒ α(s1) = α(s2),

• similarly, Ŝ0 = {ŝ | ∃s ∈ S0. α(s) = ŝ}.

❖ An example: Consider a program with one variable x1 over the domain Dx1
= {1, . . . , 12}.

• Consider the abstraction function: α = λx.⌊(x− 1)/3⌋+ 1.

• We obtain 4 abstract states, namely, Ŝ = {1̂, 2̂, 3̂, 4̂}, which correspond to the

equivalence classes induced by α on the original state space:

– 1̂ ∼ {1, 2, 3},

– 2̂ ∼ {4, 5, 6},

– 3̂ ∼ {7, 8, 9},

– 4̂ ∼ {10, 11, 12}.

Predicate Abstraction – p.5/44

What about Transitions?

❖ We already know (at least conceptually) how to build the set of abstract states of

a given program. Next, we have to add transitions to obtain an entire abstract KS.

❖ There are two major ways of defining abstract transitions over the set of abstract states

Ŝ obtained using some abstraction function α over a concrete KS M = (S, S0, R, L):

1. Via the so-called existential abstraction (may abstraction):

• R̂may = {(ŝ1, ŝ2) | ∃s1, s2 ∈ S. α(s1) = ŝ1 ∧ α(s2) = ŝ2 ∧ (s1, s2) ∈ R},

• i.e., whenever a state s1 can go to a state s2 in the original KS, then also α(s1)

can go to α(s2) in the abstract KS,

• the abstract KS allows more behaviour than the original one:

it over-approximates the concrete KS: can prove ACTL∗ properties.

Predicate Abstraction – p.6/44

What about Transitions?

❖ We already know (at least conceptually) how to build the set of abstract states of

a given program. Next, we have to add transitions to obtain an entire abstract KS.

❖ There are two major ways of defining abstract transitions over the set of abstract states

Ŝ obtained using some abstraction function α over a concrete KS M = (S, S0, R, L):

1. Via the so-called existential abstraction (may abstraction):

• R̂may = {(ŝ1, ŝ2) | ∃s1, s2 ∈ S. α(s1) = ŝ1 ∧ α(s2) = ŝ2 ∧ (s1, s2) ∈ R},

• i.e., whenever a state s1 can go to a state s2 in the original KS, then also α(s1)

can go to α(s2) in the abstract KS,

• the abstract KS allows more behaviour than the original one:

it over-approximates the concrete KS: can prove ACTL∗ properties.

2. Via the so-called universal abstraction (must abstraction):

• R̂must = {(ŝ1, ŝ2) | ∀s1 ∈ S. α(s1) = ŝ1 ⇒ ∃s2 ∈ S. α(s2) = ŝ2 ∧ (s1, s2) ∈ R},

• i.e., ŝ1 can go to ŝ2 in the abstract KS when each s1 such that α(s1) = ŝ1 can

go to some s2 in the original KS such that α(s2) = ŝ2,

• the abstract KS allows less behaviour than the original one:

it under-approximates the concrete KS: can prove ECTL∗ properties.

Predicate Abstraction – p.6/44

An Example

❖ Consider the following concrete KS where states equal wrt some abstraction function

are encircled in green:

❖ The (over-approximating) may abstraction:

❖ The (under-approximating) must abstraction:

Predicate Abstraction – p.7/44

Towards Abstraction – Continued

❖ However, a problem is how to obtain a suitable abstraction:

• One possibility is to define it manually (requires insight, time consuming, error-prone).

• A better way is when it is derived automatically or at least its parameters are
derived automatically.

– The principle of the abstraction may be fixed but in a parametric way.
◦ E.g., consider equal all states satisfying the same predicates where the

set of predicates is the parameter – predicate abstraction.

– If possible, the abstraction should be relevance-driven, i.e., it should preserve

only those features of the system that are important for the verification
question at hand.

– Possible, e.g., within the above mentioned predicate abstraction.

Predicate Abstraction – p.8/44

Predicate Abstraction

Predicate Abstraction – p.9/44

Predicate Abstraction

❖ In 1997, S. Graf and H. Saïdi proposed in their paper “Construction of Abstract State

Graphs with PVS” a new type of abstraction called predicate abstraction.

❖ This abstraction collapses all states of the original state space in which the valuation of

a certain (finite) set of predicates is the same.

❖ More precisely, let P = {p1, . . . , pn} be a set of predicates over program (system)

variables (e.g., x < y). Then, the set of abstract states is the set

• {l1 ∧ . . . ∧ ln | ∀1 ≤ i ≤ n. li ∈ {pi,¬pi}}

and the abstraction function α is defined as

• α = λs.f(p1, s) ∧ . . . ∧ f(pn, s)

where

• f(p, s) = p if p holds in s (i.e., s |= p) and

• f(p, s) = ¬p otherwise.

Predicate Abstraction – p.10/44

Predicate Abstraction

❖ In 1997, S. Graf and H. Saïdi proposed in their paper “Construction of Abstract State

Graphs with PVS” a new type of abstraction called predicate abstraction.

❖ This abstraction collapses all states of the original state space in which the valuation of

a certain (finite) set of predicates is the same.

❖ More precisely, let P = {p1, . . . , pn} be a set of predicates over program (system)

variables (e.g., x < y). Then, the set of abstract states is the set

• {l1 ∧ . . . ∧ ln | ∀1 ≤ i ≤ n. li ∈ {pi,¬pi}}

and the abstraction function α is defined as

• α = λs.f(p1, s) ∧ . . . ∧ f(pn, s)

where

• f(p, s) = p if p holds in s (i.e., s |= p) and

• f(p, s) = ¬p otherwise.

❖ Basic predicate abstraction is suitable for verification of safety properties; for

verification of termination (liveness properties), transition predicates have later been

introduced by Podelski and Rybalchenko to avoid problems with artificial loops introduced

by collapsing states—we, however, limit ourselves to safety in what follows.

Predicate Abstraction – p.10/44

An Example

❖ Suppose that a program has two variables x, y with the domains Dx = Dy = {0, 1, 2},
and we use the set of predicates P = {p1 : (x = y), p2 : (x < y), p3 : (y = 2)}.

❖ Now, the abstract state space may contain up to 8 (= 23) states only:

¬p1 ∧ ¬p2 ∧ ¬p3 ∼ {(1, 0), (2, 0), (2, 1)},

¬p1 ∧ ¬p2 ∧ p3 ∼ ∅,

¬p1 ∧ p2 ∧ ¬p3 ∼ {(0, 1)},

¬p1 ∧ p2 ∧ p3 ∼ {(0, 2), (1, 2)},

p1 ∧ ¬p2 ∧ ¬p3 ∼ {(0, 0), (1, 1)},

p1 ∧ ¬p2 ∧ p3 ∼ {(2, 2)},

p1 ∧ p2 ∧ ¬p3 ∼ ∅,

p1 ∧ p2 ∧ p3 ∼ ∅.

❖ Note: When the set of predicates remains the same, the set of possibly reachable

abstract states of the program stays the same even if x and y are 64 bit integer variables

(or when the bit-width is a parameter yielding an infinite-state concrete system).

Predicate Abstraction – p.11/44

Predicate Abstraction – Continued

❖ Predicate abstraction is usually implemented as an over-approximating may

abstraction. (The labelling function typically associates states with the predicates used by

the predicate abstraction.)

❖ Hence, verification over abstract KS obtained by predicate abstraction is sound for

ACTL∗ properties. This means that once the model checker answers “a system is

correct”, then the system is indeed correct wrt the specification (the abstract system

contains all original behaviour). Formally, M̂ |= ϕ⇒M |= ϕ.

Predicate Abstraction – p.12/44

Predicate Abstraction – Continued

❖ Predicate abstraction is usually implemented as an over-approximating may

abstraction. (The labelling function typically associates states with the predicates used by

the predicate abstraction.)

❖ Hence, verification over abstract KS obtained by predicate abstraction is sound for

ACTL∗ properties. This means that once the model checker answers “a system is

correct”, then the system is indeed correct wrt the specification (the abstract system

contains all original behaviour). Formally, M̂ |= ϕ⇒M |= ϕ.

❖ On the other hand, the abstract KS can contain a path leading to an error state which is

not present in the original system: a so-called spurious counterexample.

Initial states

Reachable states

Bad states

State space

Predicate Abstraction – p.12/44

CEGAR

Predicate Abstraction – p.13/44

CEGAR

❖ To cope with spurious counterexamples, the approach of the so-called

Counterexample-Guided Abstraction Refinement was first proposed by E.M. Clarke,

O. Grumberg, S. Jha, Y. Lu, and H. Veith in 2000.

❖ For a given path representing a possible error, one can try to decide whether it is

spurious or not by executing the path in the original system.

• A symbolic execution with states represented, e.g., by suitable logic formulae (but

without abstraction) is needed if the original system is infinite-state (or large) and

non-deterministic (e.g., due to reading some input).

❖ If the path is found executable in the original system, then the system does not satisfy

the required property: a real error was found.

❖ If the path is not executable in the original system, then the abstract state space should

be refined by using additional predicates obtained from the spurious counterexample to

avoid the given error path, and the process should be repeated.

❖ Hopefully, at some point, the model checker answers either the “system is correct”, or it
gives a real counterexample.

❖ However, convergence is usually not guaranteed.

Predicate Abstraction – p.14/44

The CEGAR Loop

generate initial

abstraction

model check

generate

counterexample T̂

stop

stop

check whether T̂
is spurious

refine abstraction

M and an ACTL∗ formula ϕ

M̂

M̂ 2 ϕ

M̂ � ϕ

T̂

T̂ is spurious

T̂ is not spurious

Predicate Abstraction – p.15/44

Generating the Abstraction

❖ Generating first the concrete KS and then abstracting it is of course not practical at all:

• either an abstract system to be verified is first generated (e.g., abstracting a C

program to a Boolean program with Boolean variables representing the

predicates), or

• abstract states are generated on-the-fly from abstract predecessors states wrt

concrete transitions to be executed.

Predicate Abstraction – p.16/44

Some More
Technical Details

Predicate Abstraction – p.17/44

Control Flow Automata (CFA)

❖ To present predicate abstraction in more detail, we will consider verification of

(sequential) programs encoded by the so-called control flow automata.

❖ A CFA is a directed graph where

• nodes correspond to control locations in a given program,

– there is a designated initial node (associated with a possible constraint on

initial values of program variables),

• edges represent transitions between control locations; each edge is labelled

– by a basic block of instructions that are executed to move between the source

and destination location (no branching in the middle, no jump into the middle),
◦ depicted in boxes in what follows,

– by an assume predicate corresponding to a branch condition that must be true

for that edge to be taken,
◦ depicted in brackets in what follows.

Predicate Abstraction – p.18/44

Control Flow Automata (CFA)

❖ To present predicate abstraction in more detail, we will consider verification of

(sequential) programs encoded by the so-called control flow automata.

❖ A CFA is a directed graph where

• nodes correspond to control locations in a given program,

– there is a designated initial node (associated with a possible constraint on

initial values of program variables),

• edges represent transitions between control locations; each edge is labelled

– by a basic block of instructions that are executed to move between the source

and destination location (no branching in the middle, no jump into the middle),
◦ depicted in boxes in what follows,

– by an assume predicate corresponding to a branch condition that must be true

for that edge to be taken,
◦ depicted in brackets in what follows.

❖ A basic block can contain a (non-recursive) call to a function which is described by its

own CFA (with designated return nodes). The whole system is then described by a set of

CFAs closed under function calls with a specified top-level CFA.

Predicate Abstraction – p.18/44

Control Flow Automata (CFA)

❖ To present predicate abstraction in more detail, we will consider verification of

(sequential) programs encoded by the so-called control flow automata.

❖ A CFA is a directed graph where

• nodes correspond to control locations in a given program,

– there is a designated initial node (associated with a possible constraint on

initial values of program variables),

• edges represent transitions between control locations; each edge is labelled

– by a basic block of instructions that are executed to move between the source

and destination location (no branching in the middle, no jump into the middle),
◦ depicted in boxes in what follows,

– by an assume predicate corresponding to a branch condition that must be true

for that edge to be taken,
◦ depicted in brackets in what follows.

❖ A basic block can contain a (non-recursive) call to a function which is described by its

own CFA (with designated return nodes). The whole system is then described by a set of

CFAs closed under function calls with a specified top-level CFA.

❖ The (safety) properties that we want to verify for a given program are encoded by

reachability of designated error locations.

Predicate Abstraction – p.18/44

A Locking Example

❖ lock() can be called when the lock is not held:

lock() {

1: if (LOCK == 0) {

2: LOCK = 1;

} else {

err: ERROR

}

}

1 2

err ret

[LOCK = 0]

[LOCK = 1] LOCK = 1;

❖ unlock() can be called when the lock is held:

unlock() {

1: if (LOCK == 1) {

2: LOCK = 0;

} else {

err: ERROR

}

}

1 2

err ret

[LOCK = 1]

[LOCK = 0] LOCK = 0;

Predicate Abstraction – p.19/44

A Locking Example – Continued

example() {

1: if (*) {

7: do {

got lock = 0;

8: if (*) {

9: lock();

got lock++;

}

10: if (got lock) {

11: unlock();

}

12: } while (*);

}

2: do {

lock();

old = new;

3: if (*) {

4: unlock();

new++;

}

5: } while (new != old);

6: unlock();

}

Predicate Abstraction – p.20/44

Computing Successors in Predicate Abstraction

❖ Model checking based on predicate abstraction can in fact be viewed as a form of

symbolic model checking which works with sets of states represented by formulae built

over some predicates and their complements.

❖ In standard model checking over a program written in some programming language,

successors of a state being explored are generated by simply systematically executing

the given program (while taking into account all possible context switches, etc.).

❖ In predicate abstraction, to compute the abstract successor Q of some abstract state P
and an action A, we have to compute the so-called strongest postcondition over the given

predicates, i.e., the strongest formula over the given predicates describing the set of

states reachable from the set of states described by P after executing A.

Predicate Abstraction – p.21/44

Computing Successors in Predicate Abstraction

❖ Model checking based on predicate abstraction can in fact be viewed as a form of

symbolic model checking which works with sets of states represented by formulae built

over some predicates and their complements.

❖ In standard model checking over a program written in some programming language,

successors of a state being explored are generated by simply systematically executing

the given program (while taking into account all possible context switches, etc.).

❖ In predicate abstraction, to compute the abstract successor Q of some abstract state P
and an action A, we have to compute the so-called strongest postcondition over the given

predicates, i.e., the strongest formula over the given predicates describing the set of

states reachable from the set of states described by P after executing A.

❖ However, computing the strongest postcondition is expensive. Instead, one can use

a Cartesian approximation based on

• checking for each predicate p and its negation ¬p in isolation whether the weakest

precondition of p or ¬p to hold after executing A holds in P (i.e., before executing A),

• followed by considering as the successor Q the conjunction of those predicates

and their negations whose weakest preconditions hold in P (provided the action is

executable).

Predicate Abstraction – p.21/44

Weakest Precondition

❖ A formula P ′ is the weakest precondition of a formula P wrt an action A, denoted

wp(P,A), iff P ′ is the weakest formula s.t.:

• if P ′ holds before A is executed from its source location, then the execution of A
terminates in the target location of A and P holds after that.

A

wp(P,A)

P

Predicate Abstraction – p.22/44

Computing Weakest Preconditions

❖ The weakest precondition of an assignment statement without side effects and pointer

aliasing can be computed as follows:

wp(P, x← e) = P [e/x]

P

wp(new = old, new ← new + 1) =
new + 1 = old

new = old

x = e; new = new + 1;

Predicate Abstraction – p.23/44

WP and Pointer Aliasing

❖ Unfortunately, the variable assignments are not always that easy. For example, one also

has to take care of the situations containing pointers, which can but need not be aliased.

❖ For example, let x← 0 be a statement. Then, the weakest precondition of ∗p = 1 is:

wp(∗p = 1, x← 0) = (p = &x ∧ 0 = 1) ∨ (p 6= &x ∧ ∗p = 1)

❖ In general, for k pointers, the weakest precondition would contain O(2k) disjuncts, each

considering a possible alias scenario of the k addresses with x.

❖ To improve the efficiency, it is possible to use some conservative pointer analysis

(Steensgaard, Andersen, ...). If it says that x and y cannot be aliased, then all disjuncts

with x and y aliased can be taken away from the formula.

Predicate Abstraction – p.24/44

WP and Pointer Aliasing

❖ Unfortunately, the variable assignments are not always that easy. For example, one also

has to take care of the situations containing pointers, which can but need not be aliased.

❖ For example, let x← 0 be a statement. Then, the weakest precondition of ∗p = 1 is:

wp(∗p = 1, x← 0) = (p = &x ∧ 0 = 1) ∨ (p 6= &x ∧ ∗p = 1)

❖ In general, for k pointers, the weakest precondition would contain O(2k) disjuncts, each

considering a possible alias scenario of the k addresses with x.

❖ To improve the efficiency, it is possible to use some conservative pointer analysis

(Steensgaard, Andersen, ...). If it says that x and y cannot be aliased, then all disjuncts

with x and y aliased can be taken away from the formula.

❖ Other complications include dealing with side-effects, dynamic allocation, dynamic

linked data structures, arrays, type-casting, ...

• Beyond the scope of the lecture, often subject to further research, may be handled

outside of the basic predicate abstraction framework.

• It is possible to try to abstract away all such data manipulation (replacing program

conditions based on them by a non-deterministic choice).

Predicate Abstraction – p.24/44

Computing the Successors – Continued

❖ As we already mentioned, computing the abstract successors precisely is expensive.

Therefore the abstract successors are sometimes overapproximated using the weakest

precondition computation separately for each predicate and its negation.

❖ Given a set of predicates {p1, p2, . . . , pn}, an abstract source state P and a program

action A (other than an assumption), we compute the abstract successor Q using

a procedure denoted AbsSucc as follows. First, we set Q = true and then we iterate over

the set of predicates and modify Q in the following way:

Q←

Q ∧ pi if P ⇒ wp(pi, A)

Q ∧ ¬pi if P ⇒ wp(¬pi, A)

Q otherwise

Predicate Abstraction – p.25/44

Computing the Successors – Continued

❖ As we already mentioned, computing the abstract successors precisely is expensive.

Therefore the abstract successors are sometimes overapproximated using the weakest

precondition computation separately for each predicate and its negation.

❖ Given a set of predicates {p1, p2, . . . , pn}, an abstract source state P and a program

action A (other than an assumption), we compute the abstract successor Q using

a procedure denoted AbsSucc as follows. First, we set Q = true and then we iterate over

the set of predicates and modify Q in the following way:

Q←

Q ∧ pi if P ⇒ wp(pi, A)

Q ∧ ¬pi if P ⇒ wp(¬pi, A)

Q otherwise

❖ To check the implications on the right-hand side, we use some automatic theorem prover.

❖ In the third case, we may actually overapproximate the strongest postcondition over the

given predicates (due to we use a single conjunction only).

• We also generalize the abstract states wrt Slide 10 a bit by allowing some

predicate to be completely missing.

❖ Assume statements will be dealt in a special way: See Slide 26.

Predicate Abstraction – p.25/44

Forward Search with Predicate Abstraction

❖ In the first phase of model checking based on predicate abstraction and CEGAR, given

a program described by a CFA M (with correctness criteria built in in the form of error

locations) and an initial set of predicates P (may be empty), an abstract reachability tree

(ART) T is (partially) built – the construction is stopped when an error is reached.

❖ An abstract reachability tree (used instead of KS):

• a computation tree obtained by unwinding a CFA from its start state, with nodes

labelled by program locations and reachable regions, and edges labelled by basic

blocks or assumptions according to the corresponding edges in the CFA.

❖ A reachable region (RR) R

• is given by a conjunction of predicates from P and their negations,

• it represents a set of concrete states of the original program that satisfy R.

Predicate Abstraction – p.26/44

Forward Search: Initialization

❖ Construct the root of the ART as a node labelled by the initial location of M and

a region corresponding to possible constraints on the initial state of M ,

• the initial region can be constructed by checking implications between the initial

constraints on M and the predicates from P and their negations;

• if there is no initial constraint (and the program initialisation is a part of the

program), start with true.

Predicate Abstraction – p.27/44

Forward Search

❖ Process nodes of T in the depth-first order as follows—let the node n being processed

be labelled with an RR R:

• Skip n if it has already been covered by another ART node (i.e., if its RR R implies

the RR of some other node with the same program location).

• Examine edges between the CFA node corresponding to n in M and its successors:

– For an edge labelled by an assume predicate P :
◦ Check using a decision procedure (automatic theorem prover) whether

R ∧ P is satisfiable; if not, do nothing.
◦ Otherwise, create a [P]-labelled edge to a child node labelled by

a conjuction of the predicates or their negations that are implied by R ∧ P .

– For a basic block B, create a B-labelled edge to a successor node labelled

with a region R′ obtained by iterating the AbsSucc procedure over B.

❖ Terminate when all nodes in T are covered (i.e., the program is correct, no error

location is reached), or some error location is reached.

Predicate Abstraction – p.28/44

Forward Search: An Example

❖ Consider the locking example with predicates P = {LOCK = 0} and an initial

assumption LOCK = 0.

LOCK = 0

LOCK = 0

¬(LOCK = 0)

¬(LOCK = 0)

LOCK = 0

LOCK = 0

LOCK = 0

1

2

3

4

5

6

err

[T]

lock();

old = new;

[T]

unlock();
new++;

[new = old]

unlock();

Predicate Abstraction – p.29/44

Forward Counterexample Analysis

❖ When an error location is hit within the forward search, the suspected error path has to

be analysed—one way how to do it is a concrete (symbolic) forward execution of the

given sequence of statements.

• More precisely, given a (partial) ART T and a suspected counterexample path in T
leading to some error location, we check in a forward way whether the path is real

or spurious (i.e., whether the corresponding sequence of transitions can be

executed in the concrete system or not).

Predicate Abstraction – p.30/44

Forward Counterexample Analysis

❖ When an error location is hit within the forward search, the suspected error path has to

be analysed—one way how to do it is a concrete (symbolic) forward execution of the

given sequence of statements.

• More precisely, given a (partial) ART T and a suspected counterexample path in T
leading to some error location, we check in a forward way whether the path is real

or spurious (i.e., whether the corresponding sequence of transitions can be

executed in the concrete system or not).

❖ A sketch of the algorithm:

• Start at the root of T in the initial (concrete) state of the system given by the initial

constraint of the CFA.

Predicate Abstraction – p.30/44

Forward Counterexample Analysis

❖ When an error location is hit within the forward search, the suspected error path has to

be analysed—one way how to do it is a concrete (symbolic) forward execution of the

given sequence of statements.

• More precisely, given a (partial) ART T and a suspected counterexample path in T
leading to some error location, we check in a forward way whether the path is real

or spurious (i.e., whether the corresponding sequence of transitions can be

executed in the concrete system or not).

❖ A sketch of the algorithm:

• Start at the root of T in the initial (concrete) state of the system given by the initial

constraint of the CFA.

• Traverse the sequence of edges that appear in the suspected error path:

– For an edge labelled with an assume predicate P , check whether S ∧ P is

satisfiable for S being the constraint describing the concrete states reached so

far; if not, then the counterexample is spurious, otherwise conjoin P to S and

continue from there on.

Predicate Abstraction – p.30/44

Forward Counterexample Analysis

❖ When an error location is hit within the forward search, the suspected error path has to

be analysed—one way how to do it is a concrete (symbolic) forward execution of the

given sequence of statements.

• More precisely, given a (partial) ART T and a suspected counterexample path in T
leading to some error location, we check in a forward way whether the path is real

or spurious (i.e., whether the corresponding sequence of transitions can be

executed in the concrete system or not).

❖ A sketch of the algorithm:

• Start at the root of T in the initial (concrete) state of the system given by the initial

constraint of the CFA.

• Traverse the sequence of edges that appear in the suspected error path:

– For an edge labelled with an assume predicate P , check whether S ∧ P is

satisfiable for S being the constraint describing the concrete states reached so

far; if not, then the counterexample is spurious, otherwise conjoin P to S and

continue from there on.

– For an edge labelled with a basic block B, perform a concrete symbolic execution

of B from the current symbolic state using the strongest postcondition calculus:
◦ sp(S, x← E) = ∃x′. S[x′/x] ∧ x = E[x′/x] (for E with no side-effects).
◦ ...

Predicate Abstraction – p.30/44

Forward Counterexample Analysis: An Example

LOCK = 0

LOCK = 0

LOCK = 1 ∧ old = new

LOCK = 1 ∧ old = new

LOCK = 0 ∧ old = new − 1

1

2

3

4

5

6

err

[T]

lock();

old = new;

[T]

unlock();
new++;

[new = old]

unlock();

❖ Refinement when a spurious counterexample is detected: take as new predicates

atomic formulae appearing in the failed concrete execution of the spurious counterexample.

Predicate Abstraction – p.31/44

Lazy Abstraction

Predicate Abstraction – p.32/44

Lazy Abstraction

❖ Lazy abstraction was introduced by T.A. Henzinger, R. Jhala, R. Majumdar, and

G. Sutre in 2002.

❖ Uses different sets of predicates (and hence different degrees of precision) in different

parts of the ART:

• abstraction refinement is done for a part of the system only (for which it is too

coarse and produces spurious counterexamples),

• avoids repetition of work between iterations of the CEGAR loop (parts of the model

which have already been proven safe need not be re-checked using a refined

abstraction).

❖ A backward counterexample analysis is used.

Predicate Abstraction – p.33/44

Backward Counterexample Analysis

❖ We will use the so-called bad regions (BR) as an additional labelling of nodes in

a (partial) ART T which appear on the path of the suspected counterexample.

• A BR labelling an ART node n that is introduced wrt some suffix π of the suspected

error path is a formula representing the set of states that can execute the actions

labelling the edges of π starting from the control location of n in the CFA and

leading to an error.

• In figures, we will draw BRs in curly braces.

❖ A pivot node is a node where the intersection of the reachable region and the bad

region becomes empty (i.e., the conjunction of the corresponding formulas becomes

unsatisfiable) for the first time when going backwards through the suspected error path.

Predicate Abstraction – p.34/44

Backward Counterexample Analysis – Continued

❖ The backward counterexample analysis starts with the error node at the end of a given

suspected error path and labels it with the BR true.

❖ Edges of the suspected error path are examined in the reverse order as

follows—assume that the backward computation has currently reached a BR B:

• In case the next edge to be backtracked through is labelled with an assume

predicate AP , let the new bad region be B ∧AP .

• In case the next edge to be backtracked through is labelled with a basic block BB,

let the new BR be wp(B,BB).

❖ At each step of the backward computation which reaches a BR B at an ART node

labelled with an RR R, satisfiability of B ∧ R is checked. If the satisfiability check fails,

a pivot has been found.

• At the initial node, one needs to check satisfiability of the conjuction of B and the
concrete initial state too.

Predicate Abstraction – p.35/44

Backward Counterexample Analysis – Continued

❖ If a pivot node is found, the counterexample is spurious.

❖ To introduce new predicates and thus get rid off the spurious counterexample in the

next round of the CEGAR loop, one can use a theorem prover which provides a proof of

unsatisfiability and use the predicates which appear in the proof.

❖ In order to maintain the syntactic form of predicates in which they originate from

assignments, tests, etc. (instead of having all this composed into a complex predicate

whose validity would not be that useful at different lines of the code), it is advantageous to

compute the weakest preconditions using explicit substitutions:

• wp(ϕ, x← E) = ∃x′. x′ = E ∧ ϕ[x′/x].

Predicate Abstraction – p.36/44

Backward Counterexample Analysis: An Example

❖ When using the classical weakest precondition computation in the backward analysis

of the already mentioned suspected counterexample in the locking example, we get:

LOCK = 0

LOCK = 0
{LOCK = 0 ∧ new + 1 = new}

LOCK = 1
{LOCK = 1 ∧ new + 1 = old}

LOCK = 1
{LOCK = 1 ∧ new + 1 = old}

LOCK = 0
{LOCK = 0 ∧ new = old}

LOCK = 0
{LOCK = 0}

LOCK = 0
{ true }

1

2

3

4

5

6

err

[T]

lock();

old = new;

[T]

unlock();
new++;

[new = old]

unlock();

Predicate Abstraction – p.37/44

Backward Counterexample Analysis: An Example

❖ When using the explicit substitution, we get the weakest precondition:

(∃LOCK′′. LOCK′′ = 1 ∧ (∃old′. old′ = new ∧ (∃LOCK′. LOCK′ = 0 ∧

(∃new′. new′ = new + 1 ∧ LOCK′ = 0 ∧ new′ = old′)) ∧ LOCK′′ = 1)) ∧ LOCK = 0.

❖ From this, we learn that we should use the new predicate old = new.

Predicate Abstraction – p.38/44

The Locking Example: A Refined Forward Search

LOCK = 0

LOCK = 0

¬(LOCK = 0) ∧ new = old

¬(LOCK = 0) ∧ new = old

LOCK = 0 ∧ new 6= old

LOCK = 0 ∧ new 6= old

LOCK = 0 ∧ new = old

¬(LOCK = 0) ∧ new = old

1

2

3

4

5

2

5

6

ret

6

2

[T]

[T]

[new 6= old]

[T]

[new = old]

unlock();

❖ One more refinement is then needed in the other possible continuation of node 1

(adding a predicate got_lock = 0).

Predicate Abstraction – p.39/44

Craig Interpolation

Predicate Abstraction – p.40/44

Path Formulae

❖ Given a suspected error path, the corresponding path formula (PF) is constructed by

transforming the path into the static single-assignment (SSA) form in the following way:

• For each variable x and each statement i of the path, we create a new variable xi.

• For each statement i of the path, we build a statement formula which is defined as

follows:

– if the statement is an assignment x = E, then the formula is

(
∧

y∈V ar\{x}

yi = yi−1) ∧ xi = E[xi−1/x, yi−1/y, . . .],

– if the statement is an assumption [C], the formula is

(
∧

y∈V ar

yi = yi−1) ∧ C[xi−1/x, yi−1/y, . . .].

• The path formula is the conjunction of all statement formulae.

• In practice, the number of variables may be reduced by introducing a fresh variable

only when the value of some variable changes.

❖ Clearly, a PF is satisfiable iff the corresponding path is feasible in the concrete program.

Predicate Abstraction – p.41/44

An Example of a Path Formula

❖ A simplified PF for the infeasible error path in the locking example:

pc path SSA form path formula

init LOCK0 = 0 LOCK0 = 0 ∧

1 assume(true) assume(true) true ∧

2-L1 assume(LOCK==0) assume(LOCK0 == 0) LOCK0 = 0 ∧

2-L2 LOCK = 1; LOCK1 = 1; LOCK1 = 1 ∧

2 old = new; old1 = new0; old1 = new0 ∧

3 assume(true) assume(true) true ∧

4-U1 assume(LOCK==1) assume(LOCK1 == 1) LOCK1 = 1 ∧

4-U2 LOCK = 0; LOCK2 = 0; LOCK2 = 0 ∧

4 new++; new1 = new0 + 1; new1 = new0 + 1 ∧

5 assume(old==new) assume(old1 == new1) old1 = new1 ∧

6-U1 assume(LOCK==0) assume(LOCK2 == 0) LOCK2 = 0

6-err ERROR ERROR

Predicate Abstraction – p.42/44

New Predicates via Craig Interpolation

❖ Over an unsatisfiable path formula, one can use the so-called Craig interpolation to find

out which predicates should be tracked at which location to get rid off the path:

• these predicates summarise and abstract the information present in the path in

a way sufficient to show infeasibility at any chosen location,

• this decreases the number of predicates to be tracked and allows their localisation.

❖ A Craig interpolant ψ is a formula that, for a given inconsistent pair of formulae ϕ−, ϕ+

(i.e., such that ϕ− ∧ ϕ+ is not satisfiable), satisfies:

1. ϕ− ⇒ ψ,

2. ¬(ψ ∧ ϕ+),

3. ψ contains only those non-logical symbols (variables, uninterpreted function and

predicate symbols) that are common to both ϕ− and ϕ+.

❖ Given an infeasible PF φ,

• we can cut φ at each location and create ϕ− (containing the fragment of φ up to the

given location) and ϕ+ containing the rest,

• for each pair ϕ−, ϕ+, we may compute an interpolant ψ that likely contains good

predicates for refining the abstraction at the given location.

Predicate Abstraction – p.43/44

Computing Craig Interpolants

❖ Algorithms for computing Craig interpolants exist for various logical fragments, enabling

a use of Craig interpolation if the given PF is in the appropriate fragment.

❖ Interpolation is implemented within (or on top of) various SMT solvers (e.g., MathSat,

interpolating Z3, SMTinterpol, ...) as well as various automatic theorem provers (Princess,

Vampire).

❖ Like with SMT/automated theorem proving, generation of interpolants is still being

improved.

Predicate Abstraction – p.44/44

	
	Towards Abstraction
	Towards Abstraction -- Continued
	Towards Abstraction -- Continued
	What about Transitions?
	An Example
	Towards Abstraction -- Continued
	
	Predicate Abstraction
	An Example
	Predicate Abstraction -- Continued
	
	CEGAR
	The CEGAR Loop
	Generating the Abstraction
	
	Control Flow Automata (CFA)hspace
*{-2mm}
	A Locking Example
	A Locking Example -- Continued
	mbox {Computing Successors in Predicate Abstractionhspace *{3mm}}
	Weakest Precondition
	Computing Weakest Preconditions
	WP and Pointer Aliasing
	mbox {Computing the Successors -- Continuedhspace *{3.5mm}}
	mbox {Forward Search with Predicate Abstraction}
	Forward Search: Initialization
	Forward Searchhspace *{2mm}
	Forward Search: An Examplehspace *{2mm}
	Forward Counterexample Analysishspace *{2mm}
	mbox {Forward Counterexample Analysis: An Examplehspace *{2mm}}
	
	Lazy Abstraction
	Backward Counterexample Analysishspace *{2mm}
	mbox {Backward Counterexample Analysis -- Continuedhspace *{2mm}}
	mbox {Backward Counterexample Analysis -- Continuedhspace *{2mm}}
	mbox {Backward Counterexample Analysis: An Examplehspace *{2mm}}
	mbox {Backward Counterexample Analysis: An Examplehspace *{2mm}}
	mbox {The Locking Example: A Refined Forward Searchhspace *{2mm}}
	
	Path Formulae
	An Example of a Path Formula
	New Predicates via Craig Interpolationhspace *{0.5mm}
	Computing Craig Interpolantshspace *{0.5mm}

