Deductive Verification

Ondřej Lengál

SAV'23, FIT VUT v Brně

17 October 2023

Verified Programming

How to write software that is correct?

- First approach

1 First, write the software.
2 Then, whack it with whatever you can find (verify \& test it, burn it) until no bugs.

- Second approach
- Verified Programming: programming + deductive verification
- i.e., writing codes with annotations

cautionary tale: binary search

- algorithm first published in 1946, but first correct version didn't appear until 1962
- in 1988, a survey of 20 textbooks on algorithms found that at least 15 of them had errors
- Bentley reports giving it as a programming problem to over 100 professional programmers from Bell Labs and IBM, with 2 hours to produce a correct program. At least 90% of the solutions were wrong. Dijkstra reported similar statistics in experiments he performed at many institutions.
- Bentley published a CACM "programming pearl" on binary search and proving it correct, expanded to 14 pages in "Programming Pearls" (1986).
- Joshua Bloch used Bentley's code as a basis for the binary search implementation in the JDK, in 1997.
- in 2006, a bug was found in the JDK code, the same bug that was in Bentley's code, which nobody had noticed for 20 years. The same bug was in the C code Bentley published for the second edition of his book in 2000.
- these are not exactly your average programmers

> [from slides of Ernie Cohen]

Deductive Verification

- the system is accompanied by specification
- these are converted into proof obligations (program invariant-a big formula)

■ the truth of proof obligations imply correctness of the system

- this is discharged by different methods:
- SMT solvers (Z3, STP, CVC4, ...)
- automatic theorem provers (Vampire, Prover9, E, ...)
- interactive theorem provers (Coq, Isabelle, PVS, ...)
- Pros:
- strong correctness guarantees (e.g., program correct "up to bugs in the solver")
- modularity; can be quite general

■ Cons:

- quite manual \rightsquigarrow expensive, high user expertise needed
- garbage in, garbage out
- not always easy to get counterexamples
- not so strong tool support

A Bit of History ...

- 1949: Alan Turing: Checking a Large Routine.
- 1969: Tony Hoare: An Axiomatic Basis for Computer Programming.
- a formal system for rigorous reasoning about programs
- Floyd-Hoare triples \{pre\} stmt \{post\}
- 1967: Robert Floyd: Assigning Meaning to Programs
- 1971: Tony Hoare: Proof of a Program: FIND
- 1976: E. Dijkstra: A Discipline of Programming.
- weakest-precondition calculus
- 2000: efficient tool support starts

Floyd-Hoare Logic

Let us consider the following imperative programming language:

- Expression: $E::=n|x| E_{1}+E_{2} \mid E_{1} \times E_{2}$ for $n \in \mathbb{Z}$ and $x \in \mathbb{X}$ (set of program variables)
- Conditional: $C::=$ true \mid false $\left|E_{1}=E_{2}\right| E_{1} \leq E_{2} \mid E_{1}<E_{2}$
- Statement:

$$
\begin{align*}
S::= & x:=E \\
& S_{1} ; S_{2} \\
& \text { if } C \text { then } S_{1} \text { else } S_{2} \tag{if}\\
\mid & \text { while } C \text { do } S
\end{align*}
$$

(while)
A program is a statement.

Partial Correctness

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$
\{P\} S\{Q\}
$$

where

- S is a statement of the programming language
- P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
- P is called precondition
- Q is called postcondition

Meaning:

- if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- then the program state after S terminates satisfies formula Q.

Example

1 Is $\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1\}$ a valid Hoare triple?

Partial Correctness

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$
\{P\} S\{Q\}
$$

where

- S is a statement of the programming language
- P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
- P is called precondition
- Q is called postcondition

Meaning:

- if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- then the program state after S terminates satisfies formula Q.

Example

1 Is $\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1\}$ a valid Hoare triple?
2 $\{x=0 \wedge y=1\} \mathbf{x}:=\mathbf{x}+1\{x=1 \wedge y=2\}$?

Partial Correctness

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$
\{P\} S\{Q\}
$$

where

- S is a statement of the programming language
- P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
- P is called precondition
- Q is called postcondition

Meaning:

- if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- then the program state after S terminates satisfies formula Q.

Example

1 Is $\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1\}$ a valid Hoare triple? $3\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1 \vee y=2\}$?
2 $\{x=0 \wedge y=1\} \mathbf{x}:=\mathbf{x}+1\{x=1 \wedge y=2\}$?

Partial Correctness

Partial correctness of programs in Hoare logic is specified using Hoare triples:

$$
\{P\} S\{Q\}
$$

where

- S is a statement of the programming language
- P and Q are formulae in a suitable fragment of logic (usually first-order logic or SMT)
- P is called precondition
- Q is called postcondition

Meaning:

- if S is executed from a state (program configuration) satisfying formula P
- and the execution of S terminates,
- then the program state after S terminates satisfies formula Q.

Example

1 Is $\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1\}$ a valid Hoare triple? 3 $\{x=0\} \mathrm{x}:=\mathrm{x}+1\{x=1 \vee y=2\}$?
■ $\{x=0 \wedge y=1\} \mathrm{x}:=\mathrm{x}+1\{x=1 \wedge y=2\}$? $\quad 4\{x=0\}$ while true do $\mathrm{x}:=0\{x=1\}$?

Total Correctness

- $\{P\} S\{Q\}$ does not require S to terminate (partial correctness).
- Hoare triples for total correctness:

$$
[P] S[Q]
$$

Meaning:

- if S is executed from a state (program configuration) satisfying formula P,
- then the execution of S terminates and
- the program state after S terminates satisfies formula Q.

Example

Is $[x=0]$ while true do $\mathrm{x}:=0[x=1]$ valid?

In the following we focus only on partial correctness.

Examples

Example

What are the meanings of the following Hoare triples? 11 true $\} S\{Q\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$

- $\{P\} S\{$ true $\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$

- $\{P\} S$ true $\}$

3 [$P] S$ [true $]$

Examples

Example

What are the meanings of the following Hoare triples?
11 true $\} S\{Q\}$
■ $\{P\} S$ true $\}$
3 [P] S [true]
4 \{true $\}$ Sfalse $\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$

- $\{P\} S$ true $\}$
$3[P] S$ [true]
4 \{true $\}$ \{false\}
5 $\{$ false $\} S\{Q\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$
■ $\{P\} S$ \{true $\}$
$3[P] S$ [true $]$
4 \{true $\}$ \{false\}
5 $\{$ false $\} S\{Q\}$

Example

Are the following Hoare triples valid or invalid?
$1\{i=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}++\{i=n\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$
■ $\{P\} S$ \{true $\}$
$3[P] S[$ true $]$
4 \{true $\}$ Sfalse\}
5 $\{$ false $\} S\{Q\}$

Example

Are the following Hoare triples valid or invalid?
$\square\{i=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}++\{i=n\}$
『 $\{i=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}++\{i \geq n\}$

Examples

Example

What are the meanings of the following Hoare triples?
1 \{true $\} S\{Q\}$

- $\{P\} S$ true $\}$
$3[P] S$ [true $]$
4 \{true $\}$ Sfalse\}
5 $\{$ false $\} S\{Q\}$

Example

Are the following Hoare triples valid or invalid?
$\boxed{1}\{i=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}++\{i=n\}$
[$\{i=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\mathrm{i}++\{i \geq n\}$
$3\{i=0 \wedge j=0 \wedge n \geq 0\}$ while $\mathrm{i}<\mathrm{n}$ do $\{\mathrm{i}++; \mathrm{j}+=\mathrm{i}\}\{2 j=n(1+n)\}$

Inference Rules

We write proof rules in Hoare logic as inference rules:

$$
\frac{\vdash\left\{P_{1}\right\} S_{1}\left\{Q_{1}\right\} \quad \ldots \quad \vdash\left\{P_{n}\right\} S_{n}\left\{Q_{n}\right\}}{\vdash\{P\} S\{Q\}}
$$

Meaning:
■ If all Hoare triples $\left\{P_{1}\right\} S_{1}\left\{Q_{1}\right\}, \ldots,\left\{P_{n}\right\} S_{n}\left\{Q_{n}\right\}$ are provable, then $\{P\} S\{Q\}$ is also provable.
 The proof system will have one rule for every statement of our language:

- an axiom for atomic statements: assignments,

■ inference rules for composite statements: sequence, if, while

- auxiliary "helper" rules

Proof Rule (Assignment)

For assignment $x:=E$, we have the following proof rule:

$$
\overline{\vdash\{Q[E / x]\} x:=E\{Q\}}{ }^{\text {AssGN }}
$$

where $Q[E / x]$ denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

Which of the following Hoare triples can we prove using this rule?
■ $\{y=4\} \mathrm{x}:=4\{y=x\}$

Proof Rule (Assignment)

For assignment $x:=E$, we have the following proof rule:

$$
\overline{\vdash\{Q[E / x]\} x:=E\{Q\}} \text { AsSGN }
$$

where $Q[E / x]$ denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

Which of the following Hoare triples can we prove using this rule?
$1\{y=4\} \mathrm{x}:=4\{y=x\}$
$2\{x=n-1\} \mathbf{x}:=\mathrm{x}+1\{x=n\}$

Proof Rule (Assignment)

For assignment $x:=E$, we have the following proof rule:

$$
\overline{\vdash\{Q[E / x]\} x:=E\{Q\}}{ }^{\text {AssGN }}
$$

where $Q[E / x]$ denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

Which of the following Hoare triples can we prove using this rule?
1 $\{y=4\} \mathrm{x}:=4\{y=x\}$
$2\{x=n-1\} \mathrm{x}:=\mathrm{x}+1\{x=n\}$
$3\{y=x\}$ y $:=2\{y=x\}$

Proof Rule (Assignment)

For assignment $x:=E$, we have the following proof rule:

$$
\overline{\vdash\{Q[E / x]\} x:=E\{Q\}} \text { Assgn }
$$

where $Q[E / x]$ denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

Which of the following Hoare triples can we prove using this rule?
1 $\{y=4\} \mathrm{x}:=4\{y=x\}$
$2\{x=n-1\} \mathrm{x}:=\mathrm{x}+1\{x=n\}$
$3\{y=x\}$ y $:=2\{y=x\}$
$4\{z=3\}$ y $:=\mathrm{x}\{z=3\}$

Proof Rule (Assignment)

For assignment $x:=E$, we have the following proof rule:

$$
\overline{\vdash\{Q[E / x]\} x:=E\{Q\}} \text { Assgn }
$$

where $Q[E / x]$ denotes the formula obtained from Q by substituting all free occurrences of x by E

Example

Which of the following Hoare triples can we prove using this rule?
$1\{y=4\} \mathrm{x}:=4\{y=x\}$
$2\{x=n-1\} \mathbf{x}:=\mathrm{x}+1\{x=n\}$
$3\{y=x\}$ y $:=2\{y=x\}$
$4\{z=3\}$ y $:=\mathrm{x}\{z=3\}$
$5\{z=3\}$ y $:=\mathrm{x}\{x=y\}$

Strengthening/Weakening

Strengthening/weakening might be necessary in order to be able to apply some rules

Precondition Strengthening

$$
\frac{\vdash\left\{P^{\prime}\right\} S\{Q\} \quad P \Rightarrow P^{\prime}}{\vdash\{P\} S\{Q\}} \text { STRENGTH }
$$

Precondition can be always tightened to something stronger.

Postcondition Weakening

$$
\frac{\vdash\{P\} S\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\vdash\{P\} S\{Q\}} \text { WEAK }
$$

Postcondition can be always relaxed to something weaker.

Conclusion (generalisation of the two above rules)

$$
\frac{P \Rightarrow P^{\prime} \quad \vdash\left\{P^{\prime}\right\} S\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\vdash\{P\} S\{Q\}} \text { ConCL }
$$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\}$ y $:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \quad z=3 \Rightarrow \text { true } \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\} \\
\text { StRENGTH }
\end{array}
\end{aligned}
$$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\}$ y $:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \quad z=3 \Rightarrow \text { true } \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}
\end{array} \text { StRENGTH }
\end{aligned}
$$

Example

Assume $\vdash\{$ true $\} S\{x=y \wedge z=2\}$. Which of the following can we prove?
1 \{true $\} S\{x=y\}$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \quad z=3 \Rightarrow \text { true } \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}
\end{array} \text { StRENGTH }
\end{aligned}
$$

Example

Assume $\vdash\{$ true $\} S\{x=y \wedge z=2\}$. Which of the following can we prove?
11 \{true $\} S\{x=y\}$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \quad z=3 \Rightarrow \text { true } \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}
\end{array} \text { StRENGTH }
\end{aligned}
$$

Example

Assume $\vdash\{$ true $\} S\{x=y \wedge z=2\}$. Which of the following can we prove?
1 \{true $\} S\{x=y\}$
2 $\{$ true $\} S\{z=2\}$
B $\{$ true $\} S\{z>0\}$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}
\end{array} \quad z=3 \Rightarrow \text { true } \text { StRENGTH }
\end{aligned}
$$

Example

Assume $\vdash\{$ true $\} S\{x=y \wedge z=2\}$. Which of the following can we prove?
1 \{true $\} S\{x=y\}$
2 $\{$ true $\} S\{z=2\}$
3 \{true $\} S\{z>0\}$
4 \{true $\} S\{\forall u(x=u)\}$

Strengthening/Weakening (contd.)

Example

We can now prove the following: $\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}$

$$
\begin{aligned}
& \overline{\vdash\{(x=y)[x / y]\} \mathrm{y}:=\mathrm{x}\{x=y\}} \text { Assgn } \\
& \begin{array}{c}
\vdash\{\text { true }\} \mathrm{y}:=\mathrm{x}\{x=y\} \\
\vdash\{z=3\} \mathrm{y}:=\mathrm{x}\{x=y\}
\end{array} \quad z=3 \Rightarrow \text { true } \text { StRENGTH }
\end{aligned}
$$

Example

Assume $\vdash\{$ true $\} S\{x=y \wedge z=2\}$. Which of the following can we prove?
1 \{true $\} S\{x=y\}$
[2 true $\}$ S $\{z=2\}$
3 \{true $\} S\{z>0\}$
4 \{true $\} S\{\forall u(x=u)\}$
5 \{true $\} S\{\exists u(x=u)\}$

Proof Rule (Sequence)

For a sequence of two statements $S_{1} ; S_{2}$, we have the following proof rule:

$$
\frac{\vdash\{P\} S_{1}\{R\} \quad \vdash\{R\} S_{2}\{Q\}}{\vdash\{P\} S_{1} ; S_{2}\{Q\}} \mathrm{SEQ}
$$

Often, we need to find an appropriate R.

Example

Prove the correctness of $\{$ true $\} \mathrm{x}:=2 ; \mathrm{y}:=\mathrm{x}\{x=2 \wedge y=2\}$:

Proof Rule (Sequence)

For a sequence of two statements $S_{1} ; S_{2}$, we have the following proof rule:

$$
\frac{\vdash\{P\} S_{1}\{R\} \quad \vdash\{R\} S_{2}\{Q\}}{\vdash\{P\} S_{1} ; S_{2}\{Q\}} \mathrm{SEQ}
$$

Often, we need to find an appropriate R.

Example

Prove the correctness of $\{$ true $\} \mathrm{x}:=2$; $\mathrm{y}:=\mathrm{x}\{x=2 \wedge y=2\}$:

$$
\frac{\overline{\vdash\{\text { true }\} \mathrm{x}:=2\{x=2\}} \text { ASSGN }}{\qquad \vdash\{x=2\} \mathrm{y}:=\mathrm{x}\{x=2 \wedge y=2\}} \text { ASSGN }
$$

Proof Rule (If)

For if C then S_{1} else S_{2} we have the following proof rule:

$$
\frac{\vdash\{P \wedge C\} S_{1}\{Q\} \quad \vdash\{P \wedge \neg C\} S_{2}\{Q\}}{\vdash\{P\} \text { if } C \text { then } S_{1} \text { else } S_{2}\{Q\}} \text { IF }
$$

Example

Prove the correctness of $\{$ true $\}$ if $\mathrm{x}>0$ then $\mathrm{y}:=\mathrm{x}$ else $\mathrm{y}:=-\mathrm{x}\{y \geq 0\}$.

Proof Rule (If)

For if C then S_{1} else S_{2} we have the following proof rule:

$$
\frac{\vdash\{P \wedge C\} S_{1}\{Q\} \quad \vdash\{P \wedge \neg C\} S_{2}\{Q\}}{\vdash\{P\} \text { if } C \text { then } S_{1} \text { else } S_{2}\{Q\}} \text { IF }
$$

Example

Prove the correctness of $\{$ true $\}$ if $\mathrm{x}>0$ then $\mathrm{y}:=\mathrm{x}$ else $\mathrm{y}:=-\mathrm{x}\{y \geq 0\}$.

$$
\frac{\frac{\vdash\{x \geq 0\} \mathrm{y}:=\mathrm{x}\{y \geq 0\}}{\frac{\vdash}{\vdash} \text { ASSGN }} \text { STRENGTH }}{\frac{\vdash\{x>0\} \mathrm{y}:=\mathrm{x}\{y \geq 0\}}{\vdash\{x \geq 0\} \mathrm{y}:=-\mathrm{x}\{y \geq 0\}}} \text { ASSGN }
$$

Proof Rule (While)

Consider the following code:

```
i := 0; j := 0; n := 10;
while i < n do {
    i := i + 1;
    j := i + j;
```

\}

Which of the following formulae are loop invariants?

$$
i \leq n \quad i<n \quad j \geq 0
$$

For while C do S we have the following proof rule:

Proof Rule (While)

Consider the following code:

```
i := 0; j := 0; n := 10;
while i < n do {
    i := i + 1;
    j := i + j;
}
```

Which of the following formulae are loop invariants?

$$
i \leq n \quad i<n \quad j \geq 0
$$

For while C do S we have the following proof rule:

$$
\frac{\vdash\{P \wedge C\} S\{P\}}{\vdash\{P\} \text { while } C \text { do } S\{P \wedge \neg C\}} \text { While }
$$

"If P is a loop invariant, then $P \wedge \neg C$ must hold after the loop terminates."

Proof Rule (While)

Example

Prove the correctness of $\{x \leq n\}$ while $\mathrm{x}<\mathrm{n}$ do $\mathrm{x}:=\mathrm{x}+1\{x \geq n\}$.

Proof Rule (While)

Example

Prove the correctness of $\{x \leq n\}$ while $\mathrm{x}<\mathrm{n}$ do $\mathrm{x}:=\mathrm{x}+1\{x \geq n\}$.

$$
\begin{aligned}
& \frac{\vdash\{x+1 \leq n\} \mathrm{x}:=\mathrm{x}+1\{x \leq n\}}{\vdash\{x<n\} \mathrm{x}:=\mathrm{x}+1\{x \leq n\}} \text { ASSGN } \\
& \frac{\vdash\{x \leq n \wedge x<n\} \mathrm{x}:=\mathrm{x}+1\{x \leq n\}}{\vdash\{\text { Strength }} \\
& \hline \text { while } \mathrm{x}<\mathrm{n} \text { do } \mathrm{x}:=\mathrm{x}+1\{x \leq n \wedge \neg(x<n)\} \quad \text { While } \quad x \leq n \wedge \neg(x<n) \Rightarrow x \geq n \\
& \qquad \vdash x \leq n\} \text { while } \mathrm{x}<\mathrm{n} \text { do } \mathrm{x}:=\mathrm{x}+1\{x \geq n\}
\end{aligned}
$$

Exercise

Prove partial correctness of the program below

```
/* {y=12} */
x := y;
while (x < 30) {
    x := x * 2;
    x := x - 2;
}
/* { x = 42 } */
```

Hint: a suitable candidate for the loop invariant might be the formula $\left(\exists n \in \mathbb{N}: x=2^{n}(y-2)+2\right) \wedge(x \leq 42)$.

How does it work in practice?

In the following, we will be using VCC (A Verifier for Concurrent C):

- available at https://github.com/microsoft/vcc
- can run as a MS Visual Studio plugin (needs older VS)
- currently somewhat orphaned and not industrial-strong
- but used to verify MS Hyper-V hypervisor
- 60 KLOC of operating system-level concurrent C and $\times 64$ assembly code
- interactive web interface: https://rise4fun.com/Vcc
- other systems exist (Frama-C, OpenJML, ...)

Example 1

Let's start with something simple

```
#include <vcc.h>
```

unsigned add(unsigned x, unsigned y)
\{
unsigned $\mathrm{w}=\mathrm{x}+\mathrm{y}$;
return w;
\}

Example 1

VCC

```
Does this C program always work?
    #include <vcc.h>
    unsigned add(unsigned x, unsigned y)
    {
        unsigned w = x + y;
        return w;
    }
```

		Description
\times	1	$\mathrm{x}+\mathrm{y}$ might overflow.

 Line Column
 | 5 | 16 |
| :--- | :--- |

Verification of add failed. [1.83]
snip(5,16) : error VC8004: $x+y$ might overflow.
Verification errors in 1 function(s)
Exiting with 3 (1 error(s).)

Example 1

```
Fix attempt #1:
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX) // <-- added precondition
{
    unsigned w = x + y;
    return w;
}
```


Example 1

```
Meresearch
vcc
Does this C program always work?
    1 #include <vcc.h>
    2
    3 unsigned add(unsigned x, unsigned y)
    4 _(requires x + y <= UINT_MAX)
    5 {
    6 unsigned w = x + y;
    7 return w;
    8 }
```

Verification of add succeeded. [1.83]

Example 1

```
Micoserearch
vcc
Does this C program always work?
    1 #include <vcc.h>
    2
    3 unsigned add(unsigned x, unsigned y)
    4 _(requires x + y <= UINT_MAX)
    { {
    6 unsigned w = x + y;
    7 return w;
    8 }
```

Verification of add succeeded. [1.83]

- verifies, but what?

Example 1

```
Fix attempt #2:
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y) // <-- added postcondition
{
    unsigned w = x + y;
    return w;
}
```


Example 1

```
Microsoft
                    Research
VCC
Does this C program always work?
    #include <vcc.h>
    unsigned add(unsigned x, unsigned y)
        _(requires x + y <= UINT_MAX)
        _(ensures \result == x + y)
    {
        unsigned w = x + y;
        return w;
    }
```


Verification of add succeeded. [1.88]

- verifies wrt the specification \o/

Example 1 - post mortem

What did we do?
1 First, we tried to verify a code with no annotations

- VCC has a set of default correctness properties
- e.g. no NULL pointer dereference, (over/under)-flows, 0-division, ...
- one property was violated

2 We fixed the violation using a _ (requires φ) annotation

- precondition: formula φ holds on entry to to the function (extended C syntax)

3 We provided an _ (ensures ψ) annotation to define what we expect as a result

- postcondition: formula ψ holds on return from the function (\result is the output)

$$
\text { preconditions }+ \text { postconditions }=\text { function contract }
$$

Example 1 - post mortem

What happened behind the scenes?

- the function and its specification were converted into a formula of the form

$$
\left(\text { pre } \wedge \varphi_{P}\right) \rightarrow\left(\text { post } \wedge \text { safe }_{P}\right)
$$

- pre is the precondition
- post is the postcondition
- φ_{P} is a formula representing the function
- safe $_{P}$ represents implicit safety conditions on P
- no overflows, no out-of-bounds array accesses, ...

```
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned w = x + y;
    return w;
}
```

$$
\left(x_{0}+y_{0} \leq \text { UINT_MAX } \wedge w_{1}=x_{0}+y_{0} \wedge \text { res }=w_{1}\right) \rightarrow\left(\text { res }=x_{0}+y_{0} \wedge x_{0}+y_{0} \leq \text { UINT_MAX }\right)
$$

- the formula is tested for validity with an SMT solver (Z3) that supports the theories

Example 2

Suppose we don't believe our compiler's implementation of " + ": let's write our own!

```
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned i = x; // ORIGINAL CODE:
    unsigned j = y; // unsigned w = x + y;
    // return w;
    while (i > 0)
    {
        --i;
        ++j;
    }
    return j;
}
```


Example 2

```
Microsoft
    Research
VCC
Does this C program always work?
    #include <vcc.h>
2
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned i = x;
    unsigned j = y;
9|
while (i > 0)
    {
            --i;
            ++j;
        }
        return j;
}
```


Example 2

"

Research
VCC

```
Does this C program always work?
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned i = x;
    unsigned j = y;
    |
        while (i > 0)
    {
        --i;
            ++j;
    }
    return j;
}
\begin{tabular}{|l|l|l|l|l|}
\hline & Description & Line & Column \\
\hline\(\otimes\) & 1 & \(++j\) might overflow. & 13 & 5 \\
\hline\(\circledast\) & 2 & Post condition '\result \(==x+y^{\prime}\) did not verify. & 16 & 3 \\
\hline\(\circledast\) & 3 & (related information) Location of post condition. & 5 \\
\hline
\end{tabular}
```


Example 2

Microsoft
 Research

vCC

```
Does this C program always work?
#include <vcc.h>
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned i = x;
    unsigned j = y;
    |
        while (i > 0)
    {
        --i;
            ++j;
    }
    return j;
}
\begin{tabular}{|l|l|l|l|l|}
\hline & Description & Line & Column \\
\hline \multirow{8}{|l|}{} & \(++j\) might overflow. & 13 & 5 \\
\hline & 2 & Post condition '\result \(==x+y^{\prime}\) did not verify. & 16 & 3 \\
\hline\(\otimes\) & 3 & (related information) Location of post condition. & 5 & 13 \\
\hline
\end{tabular}
```

- doesn't verify, but the violation $++j$ might overflow. is spurious. How to get rid of it?

TUMTITIUS

Example 2

Fix \#1:

```
unsigned add(unsigned x, unsigned y)
    _(requires x + y <= UINT_MAX)
    _(ensures \result == x + y)
{
    unsigned i = x; // ORIGINAL CODE:
    unsigned j = y; // unsigned w = x + y;
                                // return w;
```

 while (i > 0)
 _(invariant i + \(\mathrm{j}=\mathrm{x}+\mathrm{y}\)) // <-- added invariant
 \{
 --i;
 \(++j\);
 \}
 return j;
 \}

Example 2

Research

 VCC```
Does this C program always work?
 #include <vcc.h>
 unsigned add(unsigned x, unsigned y)
 _(requires }\textrm{x}+\textrm{y}<=\mathrm{ UINT_MAX)
 _(ensures \result == x + y)
 {
 unsigned i = x;
 unsigned j = y;
 while (i > 0)
 _(invariant i + j == x + y)
 {
 --i;
 ++j;
 }
 return j;
}
```

Verification of add succeeded. [0.78]

■ verifies wrt the specification \o/

## Example 2 - post mortem

What did we do?
1 We substituted implementation of a function with a different one

- the contract is still the same

2 The new implementation cannot be verified as is

- unbounded loops cannot be easily transformed into a static formula

3 We needed to provide a loop invariant: _(invariant $I$ ) where $I$ is a formula s.t.

- I holds every time the loop head is reached (before evaluating the loop test)


## Example 2 - post mortem

```
while (C)
 _(invariant I)
 // Body
}
We can then substitute the loop by
_(assert I)
_(assume I \&\& ! C)
```

but we also need to check validity of the formula

$$
\left(I \wedge \varphi_{B}\right) \rightarrow\left(I \wedge \operatorname{safe}_{B}\right)
$$

- $\varphi_{B}$ is a formula representing the loop body

■ safe $_{B}$ represents implicit safety conditions on the loop body


## Example 3

```
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
{
 unsigned i;
 for (i = 0; i < sz; i = 1)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```


## Example 3

## Mesearch <br> VCC

```
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result => ar[i] != elt)
 {
 unsigned i;
 for (i = 0; i < sz; i = 1)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
 }
 Description
 Line Column
 Assertion 'ar[i] is thread local' did not verify.
 9 9
 Post condition '\forall unsigned i; i < sz && i < \result ==> ar[i] != elt)' did not verify.
 9 23
 (related information) Location of post condition.
```


## Example 3

```
Fix #1:
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz)) // <-- added precondition
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
{
 unsigned i;
 for (i = 0; i < sz; i = 1)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```


## Example 3

## Research

## VCC

```
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 {
 unsigned i;
 for (i = 0; i < sz; i = 1)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
 }
 Description Line Column
 Post condition '\forall unsigned i; i < sz && i < \result ==> ar[i] != elt)' did not verify. 9 23
 (related information) Location of post condition.
 13
```


## Example 3

## Research

## VCC

```
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 {
 unsigned i;
 for (i = 0; i < sz; i = 1)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
 }
 Description line Column
 Post condition '\forall unsigned i; i < sz && i < \result ==> ar[i] != elt)' did not verify. 9}2
 (related information) Location of post condition.
 4 13
```

■ still doesn't verify

## Example 3

```
Fix #2: Let's provide a loop invariant!
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
{
 unsigned i;
 for (i = 0; i < sz; i = 1)
 _(invariant \forall unsigned j; j < i ==> ar[j] != elt) // <-- added invariant
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```


## Example 3

```
 MResearch
VCC
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 {
 unsigned i;
 for (i = 0; i < sz; i = 1)
 _(invariant \forall unsigned j; j < i => ar[j] != elt)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
 }
```

Verification of lsearch succeeded. [2.19]

## Example 3

## Microsoft vCC

```
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 {
 unsigned i;
 for (i = 0; i < sz; i = 1)
 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
 }
```

```
Verification of lsearch succeeded. [2.19]
```

- Verifies! Great!!!! ... or is it?


## Example 3

```
Fix #3: provide a termination requirement
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 _(decreases 0) // <-- added termination requirement
{
 unsigned i;
 for (i = 0; i < sz; i = 1)
 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```


## Example 3

## Research <br> vCC

Does this C program always work?
unsigned lsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX ==> ar[\result] == elt)
_(ensures \forall unsigned i; i < sz \&\& i < \result ==> ar[i] != elt)
_(decreases 0)
\{
unsigned i;
for ( $i=0 ; i<s z ; i=1$ )
_(invariant \forall unsigned $j$; $j<i==>$ ar[j] != elt)
\{
if (ar[i] == elt) return i;
\}
return UINT_MAX;
5 \}

|  | Description | Cine | Column |
| :--- | :--- | :--- | :--- | :--- |
| $\otimes$ | 1 | the loop fails to decrease termination measure. | 3 |

- Ooops: the loop fails to decrease termination measure.


## Example 3

```
Fix #4: fix the code
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 _(decreases 0)
{
 unsigned i;
 for (i = 0; i < sz; i += 1) // <-- code fix
 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```


## Example 3

## Research

```
Does this C program always work?
 unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 _(decreases 0)
 {
 unsigned i;
 for (i = 0; i < sz; i += 1)
 _(invariant \forall unsigned j; j < i ==> ar[j] != elt)
 {
 if (ar[i] == elt) return i;
 }
 return UINT_MAX;
}
```

Verification of lsearch succeeded. [3.41]

- Verifies!


## Example 3 - post mortem

What did we do?

- our annotations got more complex:

```
unsigned lsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 _(decreases 0)
```

■ ==>, <==: implication, <==>: equivalence, \forall: $\forall$, \exists: $\exists —$ quantifiers (typed)

- thread_local_array (ar, sz): ar points to (at least) sz items of the type of *a, which are "owned" by this thread
- _ (decreases 0): simply states that 1 search terminates
- for more complex code, termination measure needs to be provided on loops
- the measure should decrease in every iteration of the loop
- for recursive procedures, termination measure should decrease in every call


## Example 3 - post mortem

■ partial correctness: every answer returned by a program is correct - total correctness: above + the algorithm also terminates

## Example 4

```
unsigned bsearch(int elt, int *ar, unsigned sz)
 _(requires \thread_local_array(ar, sz))
 _(ensures \result != UINT_MAX ==> ar[\result] == elt)
 _(ensures \forall unsigned i; i < sz && i < \result ==> ar[i] != elt)
 _(decreases 0)
{
 if (sz == 0) return UINT_MAX;
 unsigned left = 0;
 unsigned right = sz - 1;
 while (left < right) {
 unsigned mid = (left + right) / 2;
 if (ar[mid] < elt) {
 left = mid + 1;
 } else if (ar[mid] > elt) {
 right = mid - 1;
 } else {
 return mid;
 }
 }
 return UINT_MAX;
}
```


## Example 4

## Research <br> vcc

Does this C program always work?
unsigned bsearch(int elt, int *ar, unsigned sz)
_(requires \thread_local_array(ar, sz))
_(ensures \result != UINT_MAX $\Rightarrow=$ ar[\result] $==\mathrm{elt}$ )
_(ensures \forall unsigned $i$; $i<s z \& \& i<$ result $\Rightarrow \Rightarrow$ ar[i] != elt)
-
_(decreases 0)
\{
if ( $s z==0$ ) return UINT_MAX;
unsigned left $=0$;
unsigned right $=\mathbf{s z}-1$;
while (left < right) \{ $\quad$ -
unsigned mid $=$ (left + right) $/ 2 ;$ -
left = mid + 1;
\} else if (ar[mid] > elt) \{

return mid;
\}
\}
return UINT_MAX;
\}


## Example 5

```
unsigned add(unsigned x, unsigned y)
 _(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
 _(ensures \result == x + y + z)
{
 unsigned w = add(x, y);
 w = add(w, z);
 return w;
}
```


## Example 5

```
 Research
VCC
Does this C program always work?
1 unsigned add(unsigned x, unsigned y)
 _(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
 _(ensures \result == x + y + z)
 {
 unsigned w = add(}x,y\mathrm{);
 w = add (w, z);
 return w;
 }
```

Verification of super_add succeeded. [2.88]

- Verifies!


## Example 5

How about when we add an implementation of add?

```
unsigned add(unsigned x, unsigned y)
```

    _(ensures \result == x + y);
    unsigned super_add(unsigned $x$, unsigned $y$, unsigned $z$ )
_(ensures \result == $\mathrm{x}+\mathrm{y}+\mathrm{z}$ )
\{
unsigned $w=\operatorname{add}(x, y)$;
w = add (w, z) ;
return w;
\}
unsigned add(unsigned x, unsigned y) // <-- added implementation
\{
return $\mathrm{x}+\mathrm{y}$;
\}

## Example 5

```
 Mcoserearch
VCC
Does this C program always work?
 unsigned add(unsigned }x\mathrm{ , unsigned }y\mathrm{)
 _(ensures \result == x + y);
 unsigned super_add(unsigned }x\mathrm{ , unsigned }y\mathrm{ , unsigned z)
 _(ensures \result == x + y + z)
 {
 unsigned w = add(x, y);
 w = add(w, z);
 return w;
 }
 unsigned add(unsigned x, unsigned y)
 {
```



```
 }
 Description

\section*{Example 5}

\section*{Research \\ }

Does this C program always work?
1 unsigned add(unsigned \(x\), unsigned \(y\))
_(ensures \result \(==x+y\));
unsigned super_add(unsigned \(x\), unsigned \(y\), unsigned \(z\)) _(ensures \result \(=x+y+z\))
6 \{
unsigned \(w=\operatorname{add}(x, y)\);
\(\mathrm{w}=\operatorname{add}(\mathrm{w}, \mathrm{z})\);
return w;
\}
unsigned add(unsigned \(x\), unsigned \(y\))
\{
return \(x+y\);
5 \}
Description
\begin{tabular}{|l|l|l|}
\hline & & Description \\
\hline\(\bigotimes\) & 1 & \(x+y\) might overflow. \\
\hline
\end{tabular}

■ Ouch!

\section*{Example 5}
```

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX) // <-- added precondition
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;
}
unsigned add(unsigned x, unsigned y)
{
return x + y;
}

```

\section*{Example 5}

\section*{VCC \\ Research}
```

Does this C program always work?
1 unsigned add(unsigned }x\mathrm{ , unsigned y)
_(requires }x+y<=\mathrm{ UINT_MAX)
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)
{
unsigned w = add(x,y);
w = add (w,z);
return W;
}
unsigned add(unsigned }x\mathrm{ , unsigned }y\mathrm{ )
{
return x + y;
16 }

|  |  | Description | Line | Column |
| :---: | :---: | :---: | :---: | :---: |
| - 1 | 1 | Call 'add( $x, y$ )' did not verify. | 8 | 16 |
| - 2 | 2 | (related information) Precondition: 'x + y <= 0xffffffff'. | 2 | 14 |
| - 3 | 3 | Call 'add(w, z)' did not verify. | 9 | 7 |
| ® 4 |  | (related information) Precondition: 'x + y <= 0xffffffff'. | 2 | 14 |

```

\section*{Example 5}

\section*{VCC}
```

Does this C program always work?
1 unsigned add(unsigned }x\mathrm{ , unsigned y)
_(requires }x+y<=\mathrm{ UINT_MAX)
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add (w,z);
return w;
}
unsigned add(unsigned }x\mathrm{ , unsigned }y\mathrm{ )
{
return x + y;
}

|  |  | Description | Line | Column |
| :---: | :---: | :---: | :---: | :---: |
| - 1 | 1 | Call 'add( $x, y$ )' did not verify. | 8 | 16 |
| - 2 | 2 | (related information) Precondition: 'x + y <= 0xffffffff'. | 2 | 14 |
| - 3 | 3 | Call 'add(w, z)' did not verify. | 9 | 7 |
| ® 4 |  | (related information) Precondition: 'x + y <= 0xffffffff'. | 2 | 14 |

```

■ Not enough...

\section*{Example 5}
```

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX) // <-- added precondition
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;
}
unsigned add(unsigned x, unsigned y)
{
return x + y;
}

```

\section*{Example 5}

\section*{Research}
```

Does this C program always work?
unsigned add(unsigned x, unsigned y)
_(requires }x+y<=\mathrm{ UINT_MAX)
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;
}
13
unsigned add(unsigned x, unsigned y)
{
return x + y;
}

```

Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]

\section*{Example 5}

\section*{Research}
```

Does this C program always work?
unsigned add(unsigned x, unsigned y)
_(requires }x+y<=\mathrm{ UINT_MAX)
_(ensures \result == x + y);
unsigned super_add(unsigned x, unsigned y, unsigned z)
_(requires x + y + z <= UINT_MAX)
_(ensures \result == x + y + z)
{
unsigned w = add(x, y);
w = add(w, z);
return w;
}
13
unsigned add(unsigned x, unsigned y)
{
return x + y;
}

```

Verification of add succeeded. [1.81]
Verification of super_add succeeded. [0.00]
- Verifies!

\section*{Example 5 - post mortem}

\section*{What happened?}

■ super_add was using add in its body
■ during verification of super_add, the call to add was substituted by its contract:
_ (assert add_requires) // precondition
_(assume add_ensures) // postcondition
■ validity of all asserts and super_add's postcondition needed to be checked:
```

unsigned add(unsigned x, unsigned y)
_(requires x + y <= UINT_MAX)
_(ensures \result == x + y);

```
unsigned super_add (unsigned \(x\), unsigned \(y\),
 _(requires \(\mathrm{x}+\mathrm{y}+\mathrm{z}<=\) UINT_MAX)
 _(ensures \result == x + y + z)
\{
 unsigned \(w=\operatorname{add}(x, y)\);
 w \(=\operatorname{add}(\mathrm{w}, \mathrm{z})\);
 return w;

1 for \(\operatorname{add}(\mathrm{x}, \mathrm{y})\) :
\[
(x+y+z \leq \text { UINT_MAX }) \rightarrow(x+y \leq \text { UINT_MAX })
\]

2 for \(\operatorname{add}(\mathrm{w}, \mathrm{z})\) :
\[
\left(x+y+z \leq \text { UINT_MAX } \wedge w_{1}=x+y\right) \rightarrow\left(w_{1}+z \leq \text { UINT_MAX }\right)
\]

3 super_add's postcondition:
\[
\left(x+y+z \leq \text { UINT_MAX } \wedge w_{1}=x+y \wedge w_{2}=w_{1}+z\right) \rightarrow\left(w_{2}=x+y+z\right)
\]

\section*{Example 6}
```

void swap(int* x, int* y)
_(ensures *x == \old(*y) \&\& *y == \old(*x))
{
int z = *x;
*x = *y;
*y = z;
}

```

\section*{Example 6}

\section*{vcc}

Does this C program always work?
```

void swap(int* x, int* y)

```
_(ensures *x == \old(*y) \&\& *y == \old(*x))
\{
int \(z={ }^{*} x\);
 \({ }^{*} x=* y\);
 \({ }^{*} y=z\);
 \}
\begin{tabular}{|l|l|l|l|l|}
\hline & & Description & Line & Column \\
\hline\(\approx\) & 1 & Assertion 'x is thread local' did not verify. & 4 & 12 \\
\hline\(\approx\) & 2 & Assertion 'x is writable' did not verify. & 5 & 4 \\
\hline\(\approx\) & 3 & Assertion 'y is thread local' did not verify. & 5 & 9 \\
\hline\(\approx\) & 4 & Assertion 'y is writable' did not verify. & 6 & 4 \\
\hline
\end{tabular}

\section*{Example 6}

\section*{vcc}

Does this C program always work?
```

void swap(int* x, int* y)
_(ensures *x == \old(*y) \&\& *y == \old(*x))
{
int z = *x;
*x = *y;
*y = z;
}

```
\begin{tabular}{|l|l|l|l|l|}
\hline & & Description & Line & Column \\
\hline\(\otimes\) & 1 & Assertion 'x is thread local' did not verify. & 4 & 12 \\
\hline\(\approx\) & 2 & Assertion 'x is writable' did not verify. & 5 & 4 \\
\hline\(\approx\) & 3 & Assertion 'y is thread local' did not verify. & 5 & 9 \\
\hline\(\approx\) & 4 & Assertion 'y is writable' did not verify. & 6 & 4 \\
\hline
\end{tabular}
- side effect

\section*{Example 6}
```

void swap(int* x, int* y)
_(writes x)
_(writes y)
_(ensures *x == \old(*y) \&\& *y == \old(*x))
{
int z = *x;
*x = *y;
*y = z;
}

```

\section*{Example 6}

\section*{Microsoft}

\section*{Research}
```

Does this C program always work?

```
 1 void swap(int* \(x\), int* \(y\))
 2 _(writes x)
 3 _(writes \(y\))
 4 _(ensures *x == \old(*y) \&\& *y == \old(*x))
 5 \{
 6 int \(z={ }^{*} x\);
 \(7 \quad{ }^{*} x=* y\);
 \(8 \quad\) *y = z;
 9 \}

Verification of swap succeeded. [2.64]

\section*{Example 6}

\section*{Microsoft}

\section*{Research}
4 _(ensures *x == \old(*y) \&\& *y == \old(*x))
5 \{
 6 int \(z={ }^{*} x\);
\(7 \quad{ }^{*} x={ }^{*} y\);
\(8 \quad\) *y \(=z\);
9 \}

\section*{Verification of swap succeeded. [2.64]}

■ _(writes x) talks about a side-effect

\section*{Example 7}
```

\#define RADIX ((unsigned)(-1) + ((\natural)1))
\#define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((\natural)1)))
typedef struct LongUint {
_(ghost \natural val)
unsigned low, high;
_(invariant val == low + high * RADIX) // coupling invariant
} LongUint;
void luint_inc(LongUint* x)
_(maintains \wrapped(x))
_(writes x)
_(requires x->val + 1 < LUINT_MAX)
_(ensures x->val == \old(x->val) + 1)
{
_(unwrapping x) {
if (x->low == UINT_MAX) {
++(x->high);
x->low = 0;
} else {
++(x->low);
}
_(ghost x->val = x->val + 1)
}
}

```

\section*{Example 7}

\section*{Research \\ VCC}

Does this \(C\) program always work?
\#define RADIX ((unsigned)(-1) + ((Inatural)1))
\#define LUINT_MAX ((unsigned)(-1) + (unsigned)(-1) * ((unsigned)(-1) + ((natural)1)))
typedef struct LongUint \{
_(ghost \natural val)
unsigned low, high;
_(invariant val == low + high * RADIX) // coupling invariant
\} LongUint;

void luint_inc(LongUint* x)
_(maintains \wrapped(x))
_(writes \(x\))
_(requires \(x->\) val \(+1<\) LUINT_MAX)
_(ensures \(x->v a l==\operatorname{lold}(x->v a l)+1)\)
4 \{
_(unwrapping \(x\)) \{
if (\(x->\) low \(==\) UINT_MAX) \{
\(++(x->h i g h)\);
x->low = 0;
\} else \{
\(++(x->\) low \()\);
\}
_(ghost \(\mathrm{x}->\mathrm{val}=\mathrm{x}->\mathrm{val}+1)\)

\section*{Example 7 - post mortem}

What did we do?
- we needed to provide a data structure invariant via _(invariant Inv)
- it describes what need to hold about the data structure in a consistent state
- the invariant talks about a ghost variable
- helps with verification but is not part of the compiled program
- can have an "ideal" type (e.g., \natural, \integer, ...)
- or can also be an inductive (functional-style) data type, e.g.
_(datatype List \{ case nil(); case cons(int v, List l); \})
- we needed to use _(unwrapping x) \{ . . \} for the block of code where the invariant is temporarily broken

\section*{Further issues}
- concurrency (atomic actions, shared state)
- hardware

■ assembly code (need to model instructions using function contract)
- talking about memory (possible aliasings)

\section*{Other Tools}
- Dafny: a full programming language with support for specifications
- Why3: a programming language (WhyML) + specifications
- Frama-C (Jessie plug-in): deductive verification of \(C+\) ACSL annotations
- KeY: Java + JML annotations
- Prusti: Rust
- IVy: specification and implementation of protocols
- Ada, Eiffel, programming languages with in-built support for specifications

\section*{Used materials from}
- Ernie Cohen, Amazon (former Microsoft)
- Ișıl Dillig, University of Texas, Austin```

