
Static Analysis and Verification
SAV 2023/2024

Tomáš Vojnar
vojnar@fit.vutbr.cz

Brno University of Technology
Faculty of Information Technology

Božetěchova 2, 612 66 Brno

BDDs – p.1/25

Binary Decision Diagrams

BDDs

BDDs – p.2/25

Introduction

❖ BDDs were introduced by Randal E. Bryant:

• Randal E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.

IEEE Transactions on Computers, C-35(8):677–691, 1986.

❖ BDDs provide a (usually) very compact and canonical representation of Boolean

functions (i.e., functions of the form {0, 1}k −→ {0, 1}, k ≥ 0), corresponding to

propositional formulae (possibly representing finite sets or relations).

❖ BDDs have a form of rooted, directed, connected, acyclic graph, which consists of

internal Boolean decision nodes and terminal Boolean result nodes.

❖ BDDs may be viewed to arise from Boolean decision trees by removing redundancies

from them (merging isomorphic sub-trees, removing useless nodes with isomorphic children).

❖ Operations on BDDs are done without uncompressing the represented objects.

❖ Applications: synthesis of circuits, symbolic verification, fault tree analysis,
decision procedures, automata with large alphabets in pattern matching,

quantum circuit simulation, program synthesis from examples (FlashFill), . . .
BDDs – p.3/25

From Formulae to BDDs

❖ The propositional formula ϕ = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) may be represented by:

(a) its truth table

a b c ϕ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

BDDs – p.4/25

From Formulae to BDDs

❖ The propositional formula ϕ = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) may be represented by:

(a) its truth table

a b c ϕ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(b) a decision tree

(a not reduced BDD)

a

b

c

0 0

c

0 0

b

c

0 0

c

1 1

BDDs – p.4/25

From Formulae to BDDs

❖ The propositional formula ϕ = (a ∧ b ∧ c) ∨ (a ∧ b ∧ ¬c) may be represented by:

(a) its truth table

a b c ϕ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

(b) a decision tree

(a not reduced BDD)

a

b

c

0 0

c

0 0

b

c

0 0

c

1 1

(c) a (reduced) BDD

a

b

0 1

BDDs – p.4/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

BDDs – p.5/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

• var : N −→ Var labels the internal nodes by variables.

BDDs – p.5/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

• var : N −→ Var labels the internal nodes by variables.

• low , high : N −→ N ∪ T define the low and high successors of internal nodes

n ∈ N , for the value of var(n) being 0 or 1, respectively.

– It is required that G is acyclic, i.e., ∄n ∈ N : n(low ∪ high)+n.

BDDs – p.5/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

• var : N −→ Var labels the internal nodes by variables.

• low , high : N −→ N ∪ T define the low and high successors of internal nodes

n ∈ N , for the value of var(n) being 0 or 1, respectively.

– It is required that G is acyclic, i.e., ∄n ∈ N : n(low ∪ high)+n.

• root ∈ N ∪ T is the root node such that ∀n ∈ (N ∪ T) \ {root} : root(low ∪ high)+n

(note that root cannot have any incoming edges without breaking the acyclicity

requirement).

BDDs – p.5/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

• var : N −→ Var labels the internal nodes by variables.

• low , high : N −→ N ∪ T define the low and high successors of internal nodes

n ∈ N , for the value of var(n) being 0 or 1, respectively.

– It is required that G is acyclic, i.e., ∄n ∈ N : n(low ∪ high)+n.

• root ∈ N ∪ T is the root node such that ∀n ∈ (N ∪ T) \ {root} : root(low ∪ high)+n

(note that root cannot have any incoming edges without breaking the acyclicity

requirement).

• val : T −→ {0, 1} labels the leaves by their values.

BDDs – p.5/25

A Formal Definition of BDDs

❖ A BDD G over a set of Boolean variables Var is defined as a 7-tuple

G = (N,T, var , low , high, root , val) where:

• N is a finite set of non-terminal (internal) nodes,

T is a finite set of terminal nodes (leaves), N ∩ T = ∅.

• var : N −→ Var labels the internal nodes by variables.

• low , high : N −→ N ∪ T define the low and high successors of internal nodes

n ∈ N , for the value of var(n) being 0 or 1, respectively.

– It is required that G is acyclic, i.e., ∄n ∈ N : n(low ∪ high)+n.

• root ∈ N ∪ T is the root node such that ∀n ∈ (N ∪ T) \ {root} : root(low ∪ high)+n

(note that root cannot have any incoming edges without breaking the acyclicity

requirement).

• val : T −→ {0, 1} labels the leaves by their values.

❖ For convenience, we often assume that Var is indexed by some bijection f : I ↔ Var

over the set of indices I = {1, . . . , n}, yielding an indexed family of variables denoted {vi}i∈I .

BDDs – p.5/25

Functions Represented by BDDs

❖ A node x ∈ N ∪ T of a BDD G = (N,T, var , low , high, root , val) over an indexed family

of variables {vi}i∈I , I = {1, . . . , k}, k ≥ 0, represents the Boolean function

fx : {0, 1}
k −→ {0, 1} defined as follows:

1. If x ∈ T , then fx(v1, . . . , vk) = val(x).

2. If x ∈ N and var(x) = vi for some i ∈ I, then

fx(v1, . . . , vk) = (¬vi ∧ flow(x)(v1, . . . , vk)) ∨ (vi ∧ fhigh(x)(v1, . . . , vk)).

❖ G itself represents the function froot(v1, . . . , vk).

BDDs – p.6/25

Functions Represented by BDDs

❖ A node x ∈ N ∪ T of a BDD G = (N,T, var , low , high, root , val) over an indexed family

of variables {vi}i∈I , I = {1, . . . , k}, k ≥ 0, represents the Boolean function

fx : {0, 1}
k −→ {0, 1} defined as follows:

1. If x ∈ T , then fx(v1, . . . , vk) = val(x).

2. If x ∈ N and var(x) = vi for some i ∈ I, then

fx(v1, . . . , vk) = (¬vi ∧ flow(x)(v1, . . . , vk)) ∨ (vi ∧ fhigh(x)(v1, . . . , vk)).

❖ G itself represents the function froot(v1, . . . , vk).

❖ An example:

n1

n2 n3

t1 t2

v1

v2 v2

0 1

BDDs – p.6/25

Functions Represented by BDDs

❖ A node x ∈ N ∪ T of a BDD G = (N,T, var , low , high, root , val) over an indexed family

of variables {vi}i∈I , I = {1, . . . , k}, k ≥ 0, represents the Boolean function

fx : {0, 1}
k −→ {0, 1} defined as follows:

1. If x ∈ T , then fx(v1, . . . , vk) = val(x).

2. If x ∈ N and var(x) = vi for some i ∈ I, then

fx(v1, . . . , vk) = (¬vi ∧ flow(x)(v1, . . . , vk)) ∨ (vi ∧ fhigh(x)(v1, . . . , vk)).

❖ G itself represents the function froot(v1, . . . , vk).

❖ An example:

n1

n2 n3

t1 t2

v1

v2 v2

0 1

ft1(v1, v2) = 0, ft2(v1, v2) = 1,

fn2
(v1, v2) = (¬v2 ∧ ft1(v1, v2)) ∨ (v2 ∧ ft2(v1, v2)) = v2,

fn3
(v1, v2) = (¬v2∧ft2(v1, v2))∨(v2∧ft1(v1, v2)) = ¬v2,

fn1
(v1, v2) = (¬v1 ∧ v2) ∨ (v1 ∧ ¬v2).

BDDs – p.6/25

Reduced BDDs

❖ Two BDDs G1 = (N1, T1, var1, low1, high1, root1, val1) and

G2 = (N2, T2, var2, low2, high2, root2, val2) over the same set of variables are

isomorphic iff there exists a bijection h : N1 ∪ T1 ←→ N2 ∪ T2 such that:

1. H(N1) = N2 and H(T1) = T2 for the pointwise extension H of h to sets of

elements.

2. ∀n ∈ N1 :
h(low1(n)) = low2(h(n)) ∧
h(high1(n)) = high2(h(n)) ∧
var1(n) = var2(h(n)).

3. h(root1) = root2.

4. ∀t ∈ T1 : val1(t) = val2(h(t)).

BDDs – p.7/25

Reduced BDDs

❖ Two BDDs G1 = (N1, T1, var1, low1, high1, root1, val1) and

G2 = (N2, T2, var2, low2, high2, root2, val2) over the same set of variables are

isomorphic iff there exists a bijection h : N1 ∪ T1 ←→ N2 ∪ T2 such that:

1. H(N1) = N2 and H(T1) = T2 for the pointwise extension H of h to sets of

elements.

2. ∀n ∈ N1 :
h(low1(n)) = low2(h(n)) ∧
h(high1(n)) = high2(h(n)) ∧
var1(n) = var2(h(n)).

3. h(root1) = root2.

4. ∀t ∈ T1 : val1(t) = val2(h(t)).

❖ A BDD G is reduced iff

1. there is no node n ∈ N such that low(n) = high(n) and

2. there are no two nodes x1, x2 ∈ N ∪ T such that the BDDs obtained from G by
making x1 and x2 the roots and removing their predecessors are isomorphic.

BDDs – p.7/25

Ordered BDDs

❖ Given some (strict, total) ordering ≺ on V ar, a BDD G is ordered wrt ≺ iff ∀n ∈ N.

1. low(n) ∈ N =⇒ var(n) ≺ var(low(n)) and

2. high(n) ∈ N =⇒ var(n) ≺ var(high(n)).

❖ Intuitively, in an ordered BDD, the variables encountered in any path from the root are
ordered in an ascending way wrt ≺.

❖ We abbreviate ordered BDDs as OBDDs and reduced OBDDs as ROBDDs.

BDDs – p.8/25

Ordered BDDs

❖ Given some (strict, total) ordering ≺ on V ar, a BDD G is ordered wrt ≺ iff ∀n ∈ N.

1. low(n) ∈ N =⇒ var(n) ≺ var(low(n)) and

2. high(n) ∈ N =⇒ var(n) ≺ var(high(n)).

❖ Intuitively, in an ordered BDD, the variables encountered in any path from the root are
ordered in an ascending way wrt ≺.

❖ We abbreviate ordered BDDs as OBDDs and reduced OBDDs as ROBDDs.

❖ Theorem (canonical representation of Boolean functions by BDDs). For every

Boolean function f over some set of variables V ar and every variable ordering ≺ on V ar,

there is a unique (up to isomorphism) ROBDD (wrt ≺) Gf which represents f .

❖ Corollary. Checking equivalence of the functions represented by two ROBDDs G1 and

G2 wrt the same ordering ≺ amounts to checking isomorphism of G1 and G2.

BDDs – p.8/25

Ordered BDDs

❖ Given some (strict, total) ordering ≺ on V ar, a BDD G is ordered wrt ≺ iff ∀n ∈ N.

1. low(n) ∈ N =⇒ var(n) ≺ var(low(n)) and

2. high(n) ∈ N =⇒ var(n) ≺ var(high(n)).

❖ Intuitively, in an ordered BDD, the variables encountered in any path from the root are
ordered in an ascending way wrt ≺.

❖ We abbreviate ordered BDDs as OBDDs and reduced OBDDs as ROBDDs.

❖ Theorem (canonical representation of Boolean functions by BDDs). For every

Boolean function f over some set of variables V ar and every variable ordering ≺ on V ar,

there is a unique (up to isomorphism) ROBDD (wrt ≺) Gf which represents f .

❖ Corollary. Checking equivalence of the functions represented by two ROBDDs G1 and

G2 wrt the same ordering ≺ amounts to checking isomorphism of G1 and G2.

❖ Moreover, if several Boolean functions are represented by a generalised BDD with

multiple roots, the equivalence checking amounts to checking identity of the roots.

BDDs – p.8/25

Obtaining ROBDDs from OBDDs

❖ For a fixed ordering ≺, the ROBDD can be obtained from an OBDD by a procedure

denoted Reduce which applies the following three transformation rules until no rule is

applicable anymore:

• Rule 1—remove duplicate leaves: merge all equivalued leaves into a single node,

which becomes the target of all the edges leading to the merged nodes.

• Rule 2—remove duplicate nonterminals: if there are inner nodes n1, n2 ∈ N such

that n1 6= n2, but var(n1) = var(n2), low(n1) = low(n2), and high(n1) = high(n2),

then merge n1 and n2 into a single node being the target of all the edges coming

originally into n1 and n2.

n1 n2

n3 n4

vi vi n1

n3 n4

vi

BDDs – p.9/25

Obtaining ROBDDs from OBDDs

• Rule 3—remove redundant nodes: remove inner nodes n ∈ N with
low(n) = high(n) and redirect all edges coming into n to low(n).

n1

n2 n2

❖ An example: the decision tree from Slide 4 (which is an OBDD but not reduced) can be

transformed into the BDD from Slide 4 (which is in fact the appropriate ROBDD).

BDDs – p.10/25

Obtaining ROBDDs from OBDDs

• Rule 3—remove redundant nodes: remove inner nodes n ∈ N with
low(n) = high(n) and redirect all edges coming into n to low(n).

n1

n2 n2

❖ An example: the decision tree from Slide 4 (which is an OBDD but not reduced) can be

transformed into the BDD from Slide 4 (which is in fact the appropriate ROBDD).

❖ Constant ROBDDs:

BDDs – p.10/25

Obtaining ROBDDs from OBDDs

• Rule 3—remove redundant nodes: remove inner nodes n ∈ N with
low(n) = high(n) and redirect all edges coming into n to low(n).

n1

n2 n2

❖ An example: the decision tree from Slide 4 (which is an OBDD but not reduced) can be

transformed into the BDD from Slide 4 (which is in fact the appropriate ROBDD).

❖ Constant ROBDDs:

• A propositional formula is not satisfiable iff its ROBDD is isomorphic to the “0”

ROBDD (a ROBDD consisting of a single 0-valued leaf only).

• A propositional formula is a tautology iff its ROBDD is isomorphic to the “1”

ROBDD (a ROBDD consisting of a single 1-valued leaf only).
BDDs – p.10/25

Variable Ordering

❖ The size of the ROBDD depends very significantly on the chosen variable ordering.

❖ For example, for the function f(x1, ..., x2n) = (x1 ∧ x2)∨ (x3 ∧ x4)∨ · · · ∨ (x2n−1 ∧ x2n),

• 2n+1 ROBDD nodes are needed when using the variable ordering

x1 < x3 < · · · < x2n−1 < x2 < x4 < · · · < x2n, but

• 2n+ 2 nodes suffice when using the ordering
x1 < x2 < x3 < x4 < · · · < x2n−1 < x2n.

BDDs – p.11/25

Variable Ordering

❖ Variable ordering is usually fixed at the beginning and maintained throughout all

operations with BDDs.

❖ Finding an optimal ordering is NP-hard.

❖ Various heuristics may be used, e.g., based on putting close to each other the

variables which are in some sense closely related (the value of one is computed from the

other one or they are together used as an input of some function, etc.).

❖ Another possibility is the so-called dynamic reordering:

• It is started when the size of the ROBDD starts to grow.

• It is based on moving (one-by-one: the so-called sifting) the individual variables to

different positions in the ordering by iteratively re-ordering two successive variables

vi and vi+1 via swapping the “0-1” and “1-0” successors of nodes labelled with vi.

– Richard Rudell. Dynamic Variable Ordering for OBDDs. In Proc. of CAD 1993.

IEEE CS.

BDDs – p.12/25

Operations on ROBDDs

❖ Operations on ROBDDs:

• equivalence checking: isomorphism checking (in O(min(|N1|, |N2|))) or

just root (pointer) comparison (in O(1)),

• negation: simply invert the value of leaves (in O(1)),

• binary Boolean operations (16 in total)—via a single function Apply:

– uses restriction, Shannon expansion, and dynamic programming,

– works in O(|N1| · |N2|) as we shall see.

BDDs – p.13/25

Operations on ROBDDs

❖ Operations on ROBDDs:

• equivalence checking: isomorphism checking (in O(min(|N1|, |N2|))) or

just root (pointer) comparison (in O(1)),

• negation: simply invert the value of leaves (in O(1)),

• binary Boolean operations (16 in total)—via a single function Apply:

– uses restriction, Shannon expansion, and dynamic programming,

– works in O(|N1| · |N2|) as we shall see.

❖ Restriction of a Boolean function f is a Boolean function obtained by fixing some

parameter of f to a given value: f |vi←b(v1, . . . , vn) = f(v1, . . . , vi−1, b, vi+1, . . . , vn).

• On ROBDDs:

1. for each node n ∈ N such that var(n) = vi, redirect all edges leading to n to

low(n) if b = 0 and to high(n) if b = 1, respectively, and remove n,

2. apply Reduce (to obtain a canonical form again).

BDDs – p.13/25

Shannon Expansion and Apply

❖ The Shannon expansion of a Boolean function f(v1, . . . , vi, . . . , vn) wrt a variable vi:

f(v1, . . . , vn) = (¬vi ∧ f |vi←0(v1, . . . , vn)) ∨ (vi ∧ f |vi←1(v1, . . . , vn))

❖ Using the Shannon expansion as a basis of the Apply function:

• f op g = (¬v ∧ (f |v←0 op g|v←0)) ∨ (v ∧ (f |v←1 op g|v←1)).

• For example:

– f ∧ g = (¬v ∧ (f |v←0 ∧ g|v←0)) ∨ (v ∧ (f |v←1 ∧ g|v←1)).

– f ∨ g = (¬v ∧ (f |v←0 ∨ g|v←0)) ∨ (v ∧ (f |v←1 ∨ g|v←1)).

❖ Intuitively, the functions are unfolded into their decision trees on whose leaves the
appropriate operation is done.

BDDs – p.14/25

The Apply Function

Function Apply

Input: a binary Boolean operator op, ROBDDs G1, G2 representing Boolean functions f1,

f2, respectively, over the same indexed family of variables {vi}i∈I ordered wrt ≺.

Output: a ROBDD G representing the Boolean function f1 op f2 over {vi}i∈I .

Method:

1. Call ApplyFrom(op,G1, G2, root1, root2).

2. Apply Reduce on the result of step 1 and return the result.

BDDs – p.15/25

ApplyFrom (part 1/2)

Function ApplyFrom

Input: a binary Boolean operator op, ROBDDs G1, G2 over the same indexed family of

variables {vi}i∈I ordered wrt ≺, and nodes x1 ∈ N1 ∪ T1, x2 ∈ N2 ∪ T2.

Output: an OBDD G representing the Boolean function f1 op f2 over {vi}i∈I where f1, f2
are Boolean functions represented by G1 and G2, respectively, when x1 and x2 are

considered as the roots (and their predecessors are ignored).

Method:

BDDs – p.16/25

ApplyFrom (part 1/2)

Function ApplyFrom

Input: a binary Boolean operator op, ROBDDs G1, G2 over the same indexed family of

variables {vi}i∈I ordered wrt ≺, and nodes x1 ∈ N1 ∪ T1, x2 ∈ N2 ∪ T2.

Output: an OBDD G representing the Boolean function f1 op f2 over {vi}i∈I where f1, f2
are Boolean functions represented by G1 and G2, respectively, when x1 and x2 are

considered as the roots (and their predecessors are ignored).

Method:

1. If x1 ∈ T1 and x2 ∈ T2 (i.e., both x1 and x2 are leaves), return the ROBDD consisting of

a single leaf with the value val(x1) op val(x2).

BDDs – p.16/25

ApplyFrom (part 1/2)

Function ApplyFrom

Input: a binary Boolean operator op, ROBDDs G1, G2 over the same indexed family of

variables {vi}i∈I ordered wrt ≺, and nodes x1 ∈ N1 ∪ T1, x2 ∈ N2 ∪ T2.

Output: an OBDD G representing the Boolean function f1 op f2 over {vi}i∈I where f1, f2
are Boolean functions represented by G1 and G2, respectively, when x1 and x2 are

considered as the roots (and their predecessors are ignored).

Method:

1. If x1 ∈ T1 and x2 ∈ T2 (i.e., both x1 and x2 are leaves), return the ROBDD consisting of

a single leaf with the value val(x1) op val(x2).

2. Otherwise (at least one of x1 and x2 is an inner node):

BDDs – p.16/25

ApplyFrom (part 1/2)

Function ApplyFrom

Input: a binary Boolean operator op, ROBDDs G1, G2 over the same indexed family of

variables {vi}i∈I ordered wrt ≺, and nodes x1 ∈ N1 ∪ T1, x2 ∈ N2 ∪ T2.

Output: an OBDD G representing the Boolean function f1 op f2 over {vi}i∈I where f1, f2
are Boolean functions represented by G1 and G2, respectively, when x1 and x2 are

considered as the roots (and their predecessors are ignored).

Method:

1. If x1 ∈ T1 and x2 ∈ T2 (i.e., both x1 and x2 are leaves), return the ROBDD consisting of

a single leaf with the value val(x1) op val(x2).

2. Otherwise (at least one of x1 and x2 is an inner node):

(a) If var(x1) = var(x2) = v for some variable v,

• let G′1 = ApplyFrom(op,G1, G2, low1(x1), low2(x2)), i.e., compute

f1|v←0 op f2|v←0 using the fact that fi|v←0 = lowi(xi) for i ∈ {1, 2},

BDDs – p.16/25

ApplyFrom (part 1/2)

Function ApplyFrom

Input: a binary Boolean operator op, ROBDDs G1, G2 over the same indexed family of

variables {vi}i∈I ordered wrt ≺, and nodes x1 ∈ N1 ∪ T1, x2 ∈ N2 ∪ T2.

Output: an OBDD G representing the Boolean function f1 op f2 over {vi}i∈I where f1, f2
are Boolean functions represented by G1 and G2, respectively, when x1 and x2 are

considered as the roots (and their predecessors are ignored).

Method:

1. If x1 ∈ T1 and x2 ∈ T2 (i.e., both x1 and x2 are leaves), return the ROBDD consisting of

a single leaf with the value val(x1) op val(x2).

2. Otherwise (at least one of x1 and x2 is an inner node):

(a) If var(x1) = var(x2) = v for some variable v,

• let G′1 = ApplyFrom(op,G1, G2, low1(x1), low2(x2)), i.e., compute

f1|v←0 op f2|v←0 using the fact that fi|v←0 = lowi(xi) for i ∈ {1, 2},

• let G′2 = ApplyFrom(op,G1, G2, high1(x1), high2(x2)),

• return the OBDD constructed from G′1 and G′2 having roots root′1 and root′2,

resp., by uniting their sets of terminals and non-terminals (assumed to be

disjoint), the var, low, high, and val functions, and by adding a new root node

n such that var(n) = v, low(n) = root′1, and high(n) = root′2.

BDDs – p.16/25

ApplyFrom (part 2/2)

Continuation of step 2:

(b) Otherwise, if var(x1) = v for some variable v and either x2 ∈ T2 or x2 ∈ N2 and

v ≺ var(x2) (meaning that f2 is independent of v, i.e., f2|v←0 = f2|v←1 = f2),

BDDs – p.17/25

ApplyFrom (part 2/2)

Continuation of step 2:

(b) Otherwise, if var(x1) = v for some variable v and either x2 ∈ T2 or x2 ∈ N2 and

v ≺ var(x2) (meaning that f2 is independent of v, i.e., f2|v←0 = f2|v←1 = f2),

• let G′1 = ApplyFrom(op,G1, G2, low1(x1), x2),

• let G′2 = ApplyFrom(op,G1, G2, high1(x1), x2),

• return the OBDD constructed from G′1 and G′2 having roots root′1 and root′2,

respectively, by uniting their sets of terminals and non-terminals (assumed to

be disjoint), the var, low, high, and val functions, and by adding a new root

node n such that var(n) = v, low(n) = root′1, and high(n) = root′2.

BDDs – p.17/25

ApplyFrom (part 2/2)

Continuation of step 2:

(b) Otherwise, if var(x1) = v for some variable v and either x2 ∈ T2 or x2 ∈ N2 and

v ≺ var(x2) (meaning that f2 is independent of v, i.e., f2|v←0 = f2|v←1 = f2),

• let G′1 = ApplyFrom(op,G1, G2, low1(x1), x2),

• let G′2 = ApplyFrom(op,G1, G2, high1(x1), x2),

• return the OBDD constructed from G′1 and G′2 having roots root′1 and root′2,

respectively, by uniting their sets of terminals and non-terminals (assumed to

be disjoint), the var, low, high, and val functions, and by adding a new root

node n such that var(n) = v, low(n) = root′1, and high(n) = root′2.

(c) Otherwise var(x2) = v for some variable v and either x1 ∈ T1 or x1 ∈ N1 and

v ≺ var(x1) and a symmetric step to step 2(b) is taken:

• let G′1 = ApplyFrom(op,G1, G2, x1, low2(x2)),

• let G′2 = ApplyFrom(op,G1, G2, x1, high2(x2)),

• return the OBDD constructed from G′1 and G′2 having roots root′1 and root′2,

respectively, by uniting their sets of terminals and non-terminals (assumed to

be disjoint), the var, low, high, and val functions, and by adding a new root

node n such that var(n) = v, low(n) = root′1, and high(n) = root′2.

BDDs – p.17/25

ApplyFrom: Further Remarks

❖ An example: use Apply over the ROBDDs representing v1 ∧ ¬v2 and ¬v1 ∧ v2,

respectively, with op being either ∧ or ∨.

BDDs – p.18/25

ApplyFrom: Further Remarks

❖ An example: use Apply over the ROBDDs representing v1 ∧ ¬v2 and ¬v1 ∧ v2,

respectively, with op being either ∧ or ∨.

❖ Every call to ApplyFrom can result in two new calls to ApplyFrom:

hence exponential complexity!

BDDs – p.18/25

ApplyFrom: Further Remarks

❖ An example: use Apply over the ROBDDs representing v1 ∧ ¬v2 and ¬v1 ∧ v2,

respectively, with op being either ∧ or ∨.

❖ Every call to ApplyFrom can result in two new calls to ApplyFrom:

hence exponential complexity!

❖ Use dynamic programming:

• store results of finished invocations of ApplyFrom in a hash table together with the

appropriate arguments,

• use the hash table to avoid re-computation of ApplyFrom over arguments on which

it has already been applied.

BDDs – p.18/25

ApplyFrom: Further Remarks

❖ An example: use Apply over the ROBDDs representing v1 ∧ ¬v2 and ¬v1 ∧ v2,

respectively, with op being either ∧ or ∨.

❖ Every call to ApplyFrom can result in two new calls to ApplyFrom:

hence exponential complexity!

❖ Use dynamic programming:

• store results of finished invocations of ApplyFrom in a hash table together with the

appropriate arguments,

• use the hash table to avoid re-computation of ApplyFrom over arguments on which

it has already been applied.

❖ The number of subgraphs in ROBDDs depends on the number of vertices V = N ∪ T ,

• hence we have O(|V1| · |V2|) ways how to call ApplyFrom,

• so the complexity becomes O(|V1| · |V2|).

BDDs – p.18/25

Other Flavours of Decision Diagrams

❖ BDDs with complemented edges: low-edges can be tagged as complemented, i.e.,

they represent negation of the subformula

BDDs – p.19/25

Other Flavours of Decision Diagrams

❖ BDDs with complemented edges: low-edges can be tagged as complemented, i.e.,

they represent negation of the subformula

❖ MTBDDs (multi-terminal BDDs): represent a function {0, 1}k → D for an arbitrary

domain D

BDDs – p.19/25

Other Flavours of Decision Diagrams

❖ BDDs with complemented edges: low-edges can be tagged as complemented, i.e.,

they represent negation of the subformula

❖ MTBDDs (multi-terminal BDDs): represent a function {0, 1}k → D for an arbitrary

domain D

❖ ZDDs (zero-suppressed DDs): a missing node corresponds to a node with the

high-edge going to 0 (and the low-edge continuing)

BDDs – p.19/25

Other Flavours of Decision Diagrams

❖ BDDs with complemented edges: low-edges can be tagged as complemented, i.e.,

they represent negation of the subformula

❖ MTBDDs (multi-terminal BDDs): represent a function {0, 1}k → D for an arbitrary

domain D

❖ ZDDs (zero-suppressed DDs): a missing node corresponds to a node with the

high-edge going to 0 (and the low-edge continuing)

❖ TBDDs, CBDDs/CZDDs, ESRBDDs, QMDDs, . . .

BDDs – p.19/25

Other Flavours of Decision Diagrams

❖ BDDs with complemented edges: low-edges can be tagged as complemented, i.e.,

they represent negation of the subformula

❖ MTBDDs (multi-terminal BDDs): represent a function {0, 1}k → D for an arbitrary

domain D

❖ ZDDs (zero-suppressed DDs): a missing node corresponds to a node with the

high-edge going to 0 (and the low-edge continuing)

❖ TBDDs, CBDDs/CZDDs, ESRBDDs, QMDDs, . . .

❖ (B)DD packages: BuDDy, CUDD, Sylvan, Adiar, . . .

BDDs – p.19/25

BDDs in Symbolic Verification

BDDs – p.20/25

Symbolic Model Checking

❖ In symbolic model checking, one does not work with individual states, exploring them

one by one.

❖ Instead, (possibly large, sometimes even infinite) sets of states are represented using

some formalism and handled at the same time.

❖ This is, one, e.g., does not compute the successor/predecessor of one state at a time

but of all the states in the set, leading to a set of successor/predecessor states.

❖ The sets of states can be represented as automata, formulae, graphs with summary

nodes, BDDs, ...

❖ One needs to be able to perform transitions on the symbolic representation (unfolding it

as little as possible), possibly leading to representing also transitions or Kripke structures

symbolically.

BDDs – p.21/25

Encoding Kripke Structures by BDDs

❖ For symbolic model checking, we need to represent Kripke structures and sets of their

states satisfying some formulae using BDDs.

BDDs – p.22/25

Encoding Kripke Structures by BDDs

❖ For symbolic model checking, we need to represent Kripke structures and sets of their

states satisfying some formulae using BDDs.

❖ Hence, we need to use BDDs to encode sets of states and relations on states:

• the labelling function L of Kripke structures can be encoded by encoding

separately, for each atomic proposition p ∈ AP , the set of states in which p holds.

BDDs – p.22/25

Encoding Kripke Structures by BDDs

❖ For symbolic model checking, we need to represent Kripke structures and sets of their

states satisfying some formulae using BDDs.

❖ Hence, we need to use BDDs to encode sets of states and relations on states:

• the labelling function L of Kripke structures can be encoded by encoding

separately, for each atomic proposition p ∈ AP , the set of states in which p holds.

❖ Having a finite set S of states:

• We may code each state using a binary vector with ⌈log2 |S|⌉ bits.

• An i-th bit may be assigned a Boolean variable vi and sets of the states may be

coded as propositional formulae and hence BDDs:

BDDs – p.22/25

Encoding Kripke Structures by BDDs

❖ For symbolic model checking, we need to represent Kripke structures and sets of their

states satisfying some formulae using BDDs.

❖ Hence, we need to use BDDs to encode sets of states and relations on states:

• the labelling function L of Kripke structures can be encoded by encoding

separately, for each atomic proposition p ∈ AP , the set of states in which p holds.

❖ Having a finite set S of states:

• We may code each state using a binary vector with ⌈log2 |S|⌉ bits.

• An i-th bit may be assigned a Boolean variable vi and sets of the states may be

coded as propositional formulae and hence BDDs:

– For example, for S = {s1, s2, s3},
◦ we may use 2 bits;
◦ encode s1 as 00, s2 as 01, s3 as 10;
◦ associate the most-significant bit with v1, the least-significant bit with v2;
◦ code S as ¬v1 ∨ (v1 ∧ ¬v2); and use the corresponding ROBDD.

BDDs – p.22/25

Encoding Kripke Structures by BDDs

❖ For symbolic model checking, we need to represent Kripke structures and sets of their

states satisfying some formulae using BDDs.

❖ Hence, we need to use BDDs to encode sets of states and relations on states:

• the labelling function L of Kripke structures can be encoded by encoding

separately, for each atomic proposition p ∈ AP , the set of states in which p holds.

❖ Having a finite set S of states:

• We may code each state using a binary vector with ⌈log2 |S|⌉ bits.

• An i-th bit may be assigned a Boolean variable vi and sets of the states may be

coded as propositional formulae and hence BDDs:

– For example, for S = {s1, s2, s3},
◦ we may use 2 bits;
◦ encode s1 as 00, s2 as 01, s3 as 10;
◦ associate the most-significant bit with v1, the least-significant bit with v2;
◦ code S as ¬v1 ∨ (v1 ∧ ¬v2); and use the corresponding ROBDD.

– In practice, the encoding schema may reflect the internal structure of states

(e.g., if states contain one 8-bit integer encoding a line number, two 8-bit

integer variables, and 2 Boolean flags, we may use 26 bits by concatenating

the bit representations of all the mentioned state variables).

BDDs – p.22/25

Encoding Kripke Structures by BDDs

❖ A transition relation R ⊆ S × S for S coded on n bits, associated with Boolean variables
v1, . . . , vn, may be coded using 2n bits, associated with the Boolean variables v1, . . . , vn
and also Boolean variables v′1, . . . , v′n constraining future values of the state variables.

❖ For example, for the set S = {s1, s2, s3} and the encoding of s1 as 00, s2 as 01, and s3
as 10 from the previous slide,

• the relation R = {(s1, s2), (s1, s3), (s2, s3), (s3, s3)} may be encoded as

• (¬v1 ∧ ¬v2 ∧ ((¬v′1 ∧ v′2) ∨ (v′1 ∧ ¬v
′

2))) ∨

(¬v1 ∧ v2 ∧ v′1 ∧ ¬v
′

2) ∨

(v1 ∧ ¬v2 ∧ v′1 ∧ ¬v
′

2),

• which can in turn be represented as a ROBDD over 4 variables.

❖ The encoding of the transition relation may again reflect the internal structure of the

states and the bitwise implementation of the transitions on the components of states.

BDDs – p.23/25

CTL Predicate Transformers

❖ Consider a Kripke structure M = (S, S0, R, L). The meaning of the CTL operators

(including atomic formulae viewed as nullary operators) over M can be defined in terms

of predicate transformers as follows (for S′, S1, S2 ⊆ S):

τp() = JpK

τ¬(S
′) = S \ S′

τ∨(S1, S2) = S1 ∪ S2

τEX(S′) = {s ∈ S | ∃s′ ∈ S
′
. (s, s′) ∈ R}

τEG(S
′) = νZ. S

′ ∩ τEX(Z)

τE[.U.](S1, S2) = µZ.S2 ∪ (S1 ∩ τEX(Z))

❖ Going along the syntax tree of a given CTL formula ϕ from its leaves to the root, the

above can be used to compute the sets of states satisfying all subformulae of ϕ and at

last the entire formula ϕ —this allows one to perform CTL model checking by just

checking that S0 is included in the final computed set.

BDDs – p.24/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

BDDs – p.25/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

• fixpoint computations which can be implemented by iteratively applying the

appropriate transformers starting from true (νf) or false (µf) till the result stops

changing,

BDDs – p.25/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

• fixpoint computations which can be implemented by iteratively applying the

appropriate transformers starting from true (νf) or false (µf) till the result stops

changing,

• application of the transition relation which maps to a conjunction of the formulae

representing a set of states and the relation,

BDDs – p.25/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

• fixpoint computations which can be implemented by iteratively applying the

appropriate transformers starting from true (νf) or false (µf) till the result stops

changing,

• application of the transition relation which maps to a conjunction of the formulae

representing a set of states and the relation,

• quantification on Boolean variables (we are dealing with quantified Boolean

formulae, abbreviated as QBF)—can be done easily on ROBDDs using restriction

and Apply:

BDDs – p.25/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

• fixpoint computations which can be implemented by iteratively applying the

appropriate transformers starting from true (νf) or false (µf) till the result stops

changing,

• application of the transition relation which maps to a conjunction of the formulae

representing a set of states and the relation,

• quantification on Boolean variables (we are dealing with quantified Boolean

formulae, abbreviated as QBF)—can be done easily on ROBDDs using restriction

and Apply:

– ∃v.f ≡ f |v←0 ∨ f |v←1,

– ∀v.f ≡ f |v←0 ∧ f |v←1.

BDDs – p.25/25

The CTL Fixpoint Semantics and BDDs

❖ The operations used within the CTL fixpoint semantics include:

• set operations on sets of states (like union, intersection, and set complement)

which directly map to the corresponding operations on propositional formulae

representing the sets wrt. some bit-vector encoding of the states (disjunction,

conjunction, negation) and which are easy to implement on BDDs,

• fixpoint computations which can be implemented by iteratively applying the

appropriate transformers starting from true (νf) or false (µf) till the result stops

changing,

• application of the transition relation which maps to a conjunction of the formulae

representing a set of states and the relation,

• quantification on Boolean variables (we are dealing with quantified Boolean

formulae, abbreviated as QBF)—can be done easily on ROBDDs using restriction

and Apply:

– ∃v.f ≡ f |v←0 ∨ f |v←1,

– ∀v.f ≡ f |v←0 ∧ f |v←1.

• renaming of primed variables to unprimed (after quantification): trivial.

BDDs – p.25/25

	
	Introduction
	From Formulae to BDDs
	A Formal Definition of BDDs
	Functions Represented by BDDs
	Reduced BDDs
	Ordered BDDs
	Obtaining ROBDDs from OBDDs
	Obtaining ROBDDs from OBDDs
	Variable Ordering
	Variable Ordering
	Operations on ROBDDs
	Shannon Expansion and 	exttt {Apply}
	The 	exttt {Apply} Function
		exttt {ApplyFrom} (part 1/2)hspace
*{-2mm}
		exttt {ApplyFrom} (part 2/2)hspace
*{-2mm}
		exttt {ApplyFrom}: Further Remarks
	Other Flavours of Decision Diagrams
	
	Symbolic Model Checking
	Encoding Kripke Structures by BDDs
	Encoding Kripke Structures by BDDs
	CTL Predicate Transformers
	The CTL Fixpoint Semantics and BDDs

