
TRAPS in all senses

Report of post-doc research internship in ASP Group, OGI-OHSU,
March – September 2001

Jan P. Černocký

September 25, 2001 — version 1.0

Contents

1 Introduction 5

2 Generalities 6
2.1 TRAP architecture . 6

2.1.1 The input: Log energies . 6
2.1.2 Generation of TRAPS . 7
2.1.3 Band classifiers . 7
2.1.4 Post-processing of band-classifiers output . 8
2.1.5 Merger . 8
2.1.6 Merger output post-processing . 8

2.2 How do they look like ? . 9
2.3 Performance analysis . 9

2.3.1 Phoneme recognition accuracies . 9
2.3.2 Phoneme confusion matrices . 9
2.3.3 Word error rate of HMM recognizer . 10

3 Basic experiments: Stories–Numbers–Digits 11
3.1 Data used . 11

3.1.1 Band-classifier training: OGI Stories . 11
3.1.2 Merger training: OGI Numbers . 11
3.1.3 HMM recognizer: Digits . 11
3.1.4 Phoneme set . 11

3.2 HMM recognizer . 12
3.3 The baseline: base scripts . 13

3.3.1 Baseline – visualization . 13
3.4 Running everything on Linux: linux base . 15
3.5 No Hamming windowing, sentence-based mean and variance normalization: no hamming sent norm 15
3.6 No Hamming windowing, sentence-based mean and variance normalization, Quicknet generates

the TRAPs:
qmk no hamming sent norm . 15

3.7 Broad phonetic categories in bands broad categs 4 . 16
3.8 Tying closures with stops closures w stops . 17
3.9 Balanced training #1: limiting the silence less silence 4x . 17
3.10 Balanced training #2: suppressing the silence no sil in bands 17
3.11 Balanced training #3: real balancing of classes balance stories 18
3.12 Stories-Numbers-Digits: Conclusions . 18

4 Reference experiments: Timit and Stories 20
4.1 Data, phonemes and evaluation . 20

4.1.1 Phoneme set . 21
4.1.2 Evaluation . 21

4.2 The baseline: base . 21
4.3 Automatically generated 7 broad classes: classes bands 7 aut 25
4.4 Automatically generated 10 broad classes: classes bands 10 aut 25
4.5 Automatically generated 10 broad classes, based on soft confusion matrix: sconf classes bands 10 aut 27

2

4.6 Baseline with discarded ’other’ label: base no oth . 29
4.7 2-Band TRAPs – adjacent bands 2 band 51 300 300 . 29
4.8 2-Band TRAPs – band skipping 2 band 1 skip 51 300 300 . 29
4.9 2-Band TRAPs – a bit of brute force:

2 band 1 skip 101 500 1000 no oth . 30
4.10 Reference TRAPs – Conclusions . 30

5 TRAPS on SPINE 32
5.1 The data . 32
5.2 Labels and training sets . 32
5.3 Phoneme sets . 33
5.4 Experiments on original data . 33

5.4.1 The MFCC baseline: htk mfcc13 0 d a z – 1-5 . 33
5.4.2 TRAPs from Stories and Numbers traps merger on numbers 1b 101 nn 300 300 – 10 . 33
5.4.3 Merger trained on SPINE

traps merger on spine 1b 101 nn 300 300 – 9 . 36
5.4.4 Merger trained on SPINE - small set of 34 labels

traps merger on 34 spine 1b 101 nn 300 300 – 11 . 36
5.4.5 Everything trained on SPINE - small set of 34 labels

traps all on 34 spine 1b 101 nn 300 300 – 12 . 36
5.5 Experiments on “improved” data . 37

5.5.1 MFCC baseline idata htk mfcc13 0 d a z – 19 . 37
5.5.2 TRAPs from Stories and Numbers traps idata baseline -- 20 37
5.5.3 Nets from Reference experiments traps idata tnn mnn – 21 37
5.5.4 Band-nets from Reference experiments, merger on SPINE

traps idata tnn merger on 34 spine – 25 . 38
5.6 How to post-process merger output . 38

5.6.1 Processing of merger outputs . 38
5.6.2 Further tricks on merger outputs . 41

5.7 Brute force on SPINE . 41
5.8 TRAPs on SPINE: Conclusions . 42

6 Grand conclusions 43

7 The cook-book 44
7.1 Directory structure . 44
7.2 Environment variables . 45
7.3 README’s . 45
7.4 Notes on compiling C-programs . 45
7.5 Notes on scripts . 46
7.6 Trapper . 46

7.6.1 Input: . 46
7.6.2 Configuration . 47
7.6.3 Output . 48
7.6.4 Diagnostic output (stderr) . 48

7.7 Trapalyzer and related Matlab scripts . 48
7.7.1 Input . 48
7.7.2 Configuration . 48
7.7.3 Output . 48
7.7.4 Visualization of trapalyzer output . 49

7.8 FFrapalyzer and related Matlab scripts . 49
7.8.1 Input . 49
7.8.2 Configuration . 49
7.8.3 Outputs . 49
7.8.4 Running ffrapalyzer and visualization of its output . 49

7.9 Label file tools . 50
7.9.1 Label mapping . 50

3

7.9.2 Label file analysis . 50
7.10 SPINE . 50

7.10.1 Feature generation . 50
7.10.2 Running the recognizer . 51
7.10.3 Scoring . 51

4

Chapter 1

Introduction

This document covers the TRAP (TempoRAl Patterns) work I have done during the post-doctoral research
internship at OGI in the Anthropic Signal Processing Group of prof. Hynek Hermansky.

At the beginning of my stay, I worked on several other problems:

• features inspired by Lyon’s cochlea model

• PLP parameterization for the Aurora task

• some methods of post-processing of features prior to the recognizer (pre- and de-emphasizing features
using different powers).

None of those directions was truly conclusive and they are not covered in this report. Interested readers are
encouraged to study the README files and contact the author.

TRAPs were the core of my work from May till the end of the stay at OGI. The document is organized
as follows: chapter 2 gives generalities on TRAPS, comments on neural network (NN) use and contains the
description of how the TRAP experiments were evaluated. Chapter 3 describes experiments on the trinity
of databases Stories–Numbers–Digits (SND), used in previous work by Sangita and Pratibha. The following
chapter 4 describes experiments performed on the new set of databases with good phonetic coverage, defined by
Lukáš. Chapter 5 presents running TRAPS on the Spine task. Chapter 6 contains the conclusions and “todo’s”.
Finally, chapter 7 is intended for people wishing to continue the work on TRAPs using my scripts, C programs,
and csh, Matlab and Perl scripts.

Acknowledgments

Many thanks to Hynek Hermansky for having invited me to this post-doc and for many fruitful discussions.
Thanks to PhD students: Pratibha, Sachin, Sunil, Lukáš and Andre, for lots of theoretical and technical help
and also for lots of fun in the lab and elsewhere. Thanks also to Franta and Petr, especially for lots of fun on
hiking trips. Last but not least - to Hanka and Tomášek, for having accompanied me to the US and supported
me here all the time.

5

Chapter 2

Generalities

“Classical” features for speech processing (as MFCC’s) provide information about the entire spectrum of speech
signal for a very limited time (the spectrum is usually computed in frames of 20-25 ms with a window-shift
of 10 ms) [7]. If noise is present in the speech signal, it affects the entire feature vector, and impairs the
accuracy of the recognizer. Multi-stream approach [6] overcomes this problem by running several speech recog-
nizers independently in different frequency bands, and recombining their results. The recognition in bands and
recombination of results is mostly done using an HMM-ANN hybrid speech recognizer.

In recent years, people around Hynek Hermansky have shown [4, 5, 3, 1] that non-linear mapping using ANN
can be used in conventional HMM-GMM recognizers. The net simply produces a stream of features, which is,
after post-processing, used as input to HMMs. This opens the possibility to use such non-traditional features
with “standard architecture” speech recognizer, as HTK (in the Aurora task) or Sphinx (in the Spine project).

2.1 TRAP architecture

the TRAP system consists of the following:

• input features - log of energies in critical bands. We used 15 Bark-scale critical bands from 0 to 4000 Hz,
the log energies were computed by the ’rasta’ executable from ICSI. The issues concerning the edge-effects
are discussed in section 2.1.1. We need to have phonetic labels for the input data.

• generation of TRAPS. Section 2.1.2 discusses the normalization, Hamming widowing, and multi-band
traps.

• TRAP- or band-classifiers perform classification of TRAPs into phonetic classes or broad phonetic cate-
gories. See 2.1.3 for training of those nets.

• post-processing of band-classifier outputs. This involves conversion of linear probabilities to logs and
multiplication by priors (which, as we will see, is completely useless) - see section 2.1.4.

• merging net putting all the band-classifier outputs together. Section 2.1.5 gives more detail.

• post-processing of the merger output (again phoneme probabilities) to form features suitable for an HMM
recognizer. This very important step is presented in section 2.1.6.

• HMM recognizer. We worked with two HMM recognizers (Digits built using HTK and Sphinx on SPINE).
Those are described in respective chapters: 3 and 5. HMM recognizer was not tested with the “reference
set”, though some nets trained on the Timit portion of this set were used later in Spine.

2.1.1 The input: Log energies

are in all experiments computed in a very standard way using the rasta executable from ICSI with the following
command-line parameters: -M -T -A -w 25 -s 10 -L -R.

• the signal is divided into frames of 25 ms with widow shift of 10 ms. For used 8000 Hz sampling frequency,
this means 200-sample frames with shift of 80 samples.

• power FFT spectrum is taken.

• filter energies are computed using a 15-band Bark-scaled filterbank.

6

• log is taken.

We should note, that the TRAPs used need fairly long context (50 past and 50 future frames for 101-point
TRAPs), so that a special care must be given to the beginning and end of each file. In the baseline experiments,
the first 50 and last 50 frames of each utterance were flipped to create the context for first and last frame. In
recent experiments on spine (“improved data” - idata), the left context was taken from previous file(s) in the
data-set, while the context for the last frame was taken from the following file(s)1. The source file for TRAPs
were created with those extra left- and extra right-frames.

Precautions must be taken while playing with TRAPs of different lengths than for whose such source-files
have been generated. See documentation for the trapper program in the cook-book section of this report.

We used pre-generated phonetic labels:

• converted from Stories and Numbers label-files by Sangita for the Stories-Numbers-Digits (SND) experi-
ments.

• converted and re-mapped from Timit and Stories for the reference setup by Lukáš.

• generated by Sunil for SPINE.

Phoneme sets used in different experiments differ, and have been further re-mapped, see descriptions in respec-
tive experimental chapters.

Log energy features together with labels are stored in p-files (format defined for ICSI NN tools).

2.1.2 Generation of TRAPS

A TRAP is nothing but a piece of temporal trajectory of a given band energy of certain length. Most of
experiments were conducted with 101-point (1 second) TRAPs. The label of the TRAP is the original label of
its central frame. In addition to a mechanical re-arranging of 101-point trajectories into an output matrix, the
following options were tested:

• mean and variance normalization: mostly done independently for each TRAP. Sentence-based mean
and variance normalization were tested too (and proved to give similar results as the TRAP-based on SND).
Advantage of the sentence-based normalization is that we can tell the NN training software (Quicknet)
to select TRAPs on-line (just by specifying left and right context) rather than to create huge p-files. For
multi-band TRAPs, the normalization is always independent band-by-band.

• Hamming windowing of TRAPs was done rather for historical reasons (when Sangita did experiments
with distance-based classification of TRAPs, the Hamming windowing helped to pre-accentuate the center
of TRAP in the distance computation). As the NN training software does a global mean and variance
normalization of each feature prior to NN training, the effect of Hamming windowing is canceled.

• Discarding some labels. It was found advantageous to discard TRAPs carrying some data from the
training. In the SND experiments, all the phonemes that did not appear in Numbers had to be discarded.
In reference experiments, frames carrying the ’other’ label were discarded.

• Balancing the data. The amounts of frames per class in the training set are mostly heavily unbalanced
(most of silence frames, followed by long vowels, little data for phonemes like ’th’, etc.). The data can be
balanced prior to NN training by specifying down-sampling factors per class.

As the files with TRAPs are fairly big, and can be generated very quickly from the original data, they are rarely
kept. To save the disk space, they are mostly deleted immediately after the NN training or forward pass.

2.1.3 Band classifiers

Band classifiers (also called TRAP classifiers, small nets, first step, band-posterior estimators, or however you
want) classify the TRAPs into phonetic classes, or, in some experiments, into broad phonetic categories. Each
band classifier is a multi-layer perceptron (MLP) with 3 layers:

• the input layer’s size is determined by the length of TRAP (mostly 101 points).

• the hidden layer, with sigmoid non-linearities, having 300 neurons in most experiments.

1a context-list was created, and if a left-context file was shorter than 50 frames, the algorithm went deeper to the list to gather
sufficient number of frames.

7

• the output layer whose size is given by the number of classes. The softmax non-linearity was used in final
layer in band-classifiers.

The training data is split into a training and cross-validation (CV) sets. The learning rate of the net is
determined upon the accuracy on the CV set after each epoch by the “new-Bob” algorithm (the constants
below apply to our training scripts):

1. the training starts with a learning rate of 0.008.

2. if the improvement of error on CV set is >0.5%, the training continues with the initial rate.

3. if it is less, the learning rate will be halved in each of consecutive epochs. This is called “ramping”.

4. if the improvement of the CV accuracy is <0.5%, the training would stop. In case the improvement was
negative (deterioration), the weights are restored from a backup of the previous (more successful) epoch.

2.1.4 Post-processing of band-classifiers output

Before being introduced to the merger, the following processing is done on class posteriors:

• log is taken to gaussianize the posteriors. An experiment was conducted also with letting the softmax
output intact, but it gave slightly worse performance.

• multiplication by priors (some experiments) done physically as the addition of priors in the log-domain.
This is again a historical step, which does not have sense while training the merger: before training, the
data are globally mean and variance normalized so that any prior effect is canceled.

• priors are merged into p-files for merger training. One pfiles would generally exceed the physical size limit
(2.1 Gbyte), so that 2 pfiles are created and recombined by the NN training software.

2.1.5 Merger

The merger is generally trained on different data from those used for training band-classifiers. It implies that
for this training data, TRAPs must be generated and forward-passed through the band classifiers. Resulting
posteriors (after post-processing described above) are then used to train the merger.

The classifier is an MLP with 3 layers:

• the input layer’s size is determined by the product of number of bands times the number of classes per
band. For example, for 15 bands and 42 phonemes, the input layer size is 630.

• the hidden layer, with sigmoid non-linearities. We used mostly 300 neurons in the hidden layer, which
seems quite few compared to the input layer size,. Unfortunately, more neurons in the hidden layer result
in very long training files.

• the output layer whose size is given by the number of classes. Softmax was used in final layer for training.
In the forward-pass, the softmax was kept and followed by an additional off-net non-linearity (log or
atanh), or it was completely removed.

The training of the merger was also driven by the “new-Bob” algorithm for determination of the learning rate.

2.1.6 Merger output post-processing

We want to convert the output of the merger to feature files suitable for HMM recognizer. Two steps are
necessary:

1. Gaussianization: the outputs of softmax are not Gaussian at all, they have bi-modal distribution with
sharp peaks closed to 0 and 1 for most represented classes (as silence) and peaky uni-modal distribution
(peak closed to 0) for the other classes. The Gaussianization can be done in 3 ways:

(a) taking log of the softmax output. This is going to expand the probabilities closed to 0 to an ap-
proximately Gaussian shape, but the problem of probabilities closed to 1 persists: they are going to
create a sharp edge in the resulting distribution, or even a peak.

(b) hyperbolic arcus-tangens of softmax output: atanh(2x + 1), where x is the softmax output, which
produces more Gaussian distribution.

8

(c) removing the softmax from the output layer of the net, which is the simplest solution (no Gaussian-
ization necessary) and gave the best results.

2. De-correlation. HMM’s with diagonal covariance matrices like the features de-correlated. Therefore a
PCA is computed on the training data, and then applied to the entire data. Experiments were done on
the PCA using raw or normalized covariance matrix.

In addition to those two steps, we can test some processing known from “standard” features, as delta and
acceleration coefficient computation, mean and variance normalization, etc. Experiments described at the end
of SPINE chapter 5 covered those post-processing tricks.

2.2 How do they look like ?

It is difficult to visualize weights and biases of a trained net. Mean TRAPs were generated to see, if they
are consistent with Sangita’s results and also if they are consistent among experiments. In addition, the
analysis software ’trapalyzer’ can produce variance (or better standard-deviation) TRAPs, that tell us, how
much variability can we expect at which place of the time trajectory. Some pictures are included at beginnings
of SND chapter 3 and reference experiment chapter 4.

2.3 Performance analysis

2.3.1 Phoneme recognition accuracies

are the quickest way to learn, if nets are classifying TRAPs well or bad. Cross-validation set accuracy is the
figure to look at both in band-classifier and merger training. Also, phoneme recognition accuracy per class is
helpful. Quicknet software can not output this per-class accuracy, but it can be obtain using the ’ffrapalyzer’
software.

2.3.2 Phoneme confusion matrices

are the way to see how precisely the net is able to classify, and where does it make most of the errors. Consider
number of classes L, and a data set with N frames. We have correct labels for this set, so that we know, that
class i has Ni frames. The priors of classes are therefore given:

Pl =
Nl

N
(2.1)

For each frame, we have a vector of net outputs giving class posteriors: x = [x1, x2 . . . xL].

Hard confusion matrix

for each posterior vector, the highest posterior determines the classification of the frame. We can compute how
many times a phoneme of correct class i was classified as class j (in ideal case, i would be always equal to j):
counts Cij . The hard confusion matrix is then given by a simple division by prior counts:

Hij =
Cij

Ni

(2.2)

Ideally, this matrix would be unity (everything correctly classified).

Soft confusion matrix

Rather than taking a decision, this matrix takes into account all the posteriors, and sums them up for each
class. Each row of the soft confusion matrix is then defined:

Si,: =

∑

∀i x

Ni

(2.3)

where
∑

∀i x means the sum of all posterior vectors for frames with correct label i. This matrix is therefore
going to give more ’blurred’ picture of how the posteriors look like for different classes. Ideally, this matrix
would be again unity (net each time sure, that it is the correct class and no else).

9

Variance matrix of posteriors per class

The motivation to compute this matrix was: “if a variance of the posterior for a given correct class is low, it
does not matter, if this posterior is high where it should not be – the net works consistently and the merger
will take care of it”. It is defined by:

Vi,: = E{(x∀i − µi)
2} (2.4)

where E denotes the expectation, x∀i all posterior vectors for correct class i and µi the mean posterior vector
for this correct class. Unfortunately, we found this matrix not very representative, as the variances of posteriors
depend on their values (higher variances for posteriors >> 0 and very low for posteriors →0). The resulting
matrix is therefore very similar to the soft confusion one.

Net output covariance matrix

Here, we do not use any knowledge of the correct classes, we just compute the correlation of posteriors at the
output of the net. The covariance matrix is given by definition:

C = E{(xT x − µT µ)} (2.5)

where µ is the global posterior mean. For the visualization and class clustering, we have computed normalized
covariance-matrix, with elements:

ρij =
cij√
ciicjj

(2.6)

The ideal form of this matrix is again unity (no outputs correlated with each other).

Note on visualization of matrices

Except for the normalized covariance matrix, the visualization suffers from silence class being recognized more
precisely than the other classes. The other elements then do not have sufficient resolution. It is then a good
idea to visualize the matrices without the row and column corresponding to the silence.

2.3.3 Word error rate of HMM recognizer

The ultimate number while using TRAPs is the word-error rate (WER) of the HMM recognizer using merger-
posteriors as features (after some post-processing). This number should be compared to the WER obtained
using “classical” features, as MFCC’s.

10

Chapter 3

Basic experiments:
Stories–Numbers–Digits

Those experiments were conducted exactly on the same data Pratibha and Sangita used in their work, the
results are therefore directly comparable. See conclusions at the end of this chapter 3.12 for the reasons we
migrated toward different set of databases (called “reference” ones).

3.1 Data used

3.1.1 Band-classifier training: OGI Stories

this database is described in Sangita’s thesis [6], section 2.2. We disposed already of a pfile with generated
band log-energies, and with processed beginnings and ends of files (by flipping). There are 208 sentences, with
1010318 frames (2.8 hours). After selecting TRAPS, the number of frames is 810288 (discarding beginnings and
ends and also some TRAPs with unusable labels (see below)). For the training of the net, the utterances are
made shorter (cache problems of the SPERT board), their final number is 1620. 1400 are used for the training
and 221 for the cross-validation (CV).

3.1.2 Merger training: OGI Numbers

this database is also described in Sangita’s thesis [6], section 2.2 and we disposed of a pre-generated pfile as
well. There are 3590 sentences and the source pfile contains 1034177 frames (2.87 hours of speech). Utterances
contain all the numbers from the database (including “eleven”, “ninety”, etc).)After again discarding flipped
beginnings ends (all labels are used in numbers), the total number of frames was 675177 (1.88 hours). The
sentences were already short enough not to cause SPERT cache problems, so that no shortening was necessary.
3400 sentences were used for the training, 190 for CV.

3.1.3 HMM recognizer: Digits

Digits (not to confound with TI-digits!) are a subset of Numbers containing only digits from “zero” to “nine”
and “oh”. Digits are divided into train and test portion, for the HMM recognizer training. For both, we disposed
of pre-generated pfiles.

The training part has 2547 sentences, with the original number of frames 713282 (1.98 hours). After
discarding beginnings and ends (no label discarding here (no NN was trained on Digits)), the number of frames
is 458582 (1.27 hours). The training part overlapped with the Numbers database used for merger training.

The test part has 2169 sentences, with the original number of frames 843489 (2.34 hours). After discarding
beginnings and ends, the number of frames is 626589 (1.74 hours). This set did not overlap with Numbers used
for merger training and CV.

3.1.4 Phoneme set

The phoneme set used contains 29 phonemes, and is determined by the phonemes of Numbers:
d t k dcl tcl kcl s z f th v m n l r w iy ih eh ey ae

11

Stories Numbers
label index count perc% count perc%

d 0 5687 0.70 441 0.06
t 1 19606 2.42 22200 3.28
k 2 12956 1.60 2765 0.40

dcl 3 13761 1.70 521 0.07
tcl 4 27241 3.36 21215 3.14
kcl 5 17250 2.13 6800 1.00
s 6 50978 6.29 39880 5.90
z 7 14635 1.81 7003 1.03
f 8 17131 2.11 28389 4.2
th 9 5162 0.64 11728 1.73
v 10 9675 1.19 14977 2.21
m 11 20948 2.59 38 0.00
n 12 36695 4.53 50424 7.46
l 13 23079 2.85 916 0.13
r 14 20860 2.57 29717 4.40
w 15 15043 1.86 20485 3.03
iy 16 34554 4.26 32362 4.79
ih 17 38111 4.70 16640 2.46
eh 18 22200 2.74 13970 2.06
ey 19 20328 2.51 19085 2.82
ae 20 26146 3.23 162 0.02
ay 21 28054 3.46 53922 7.98
ah 22 49583 6.12 28219 4.17
ao 23 5867 0.72 4027 0.59
ow 24 16639 2.05 47529 7.03
uw 25 11086 1.37 28103 4.16
er 26 15137 1.87 2633 0.38
ax 27 11301 1.39 853 0.12
h# 28 220575 27.22 170173 25.20
total 810288 675177

Table 3.1: Phoneme coverage in Stories and Numbers

ay ah ao ow uw er ax h#

In Stories, with a richer phoneme set, TRAPs carrying the labels not appearing in Numbers are discarded.
The band-classifiers are therefore trained on 29 classes as well.

The phoneme coverage in Stories and Numbers (for Stories already only the “correct” labels) is given in
Table 3.1. We can see that especially the silence is heavily over-represented. Therefore, some experiments with
balanced training were conducted.

3.2 HMM recognizer

was common to all experiments. Pratibha’s setup was used without any changes. The recognizer uses context-
independent phoneme models and multiple-pronunciation dictionary. It is built using HTK tools. The phoneme
set contains 23 units:
w ah n ow th r iy f s eh v ih tcl t uw kcl ay ey k ax ao z si

The pronunciation dictionary contains multiple pronunciation variants for digits “zero” – “nine” and “oh”. The
steps of training are the following:

1. initialization of models using phonetic transcriptions by HInit.

2. 3 iterations of context-independent Baum-Welch re-estimation of the models HRest.

3. 5 iterations of context-dependent Baum-Welch re-estimation of the models (embedded-training) HERest.

12

The decoding was performed using HVite with cross-word transition log penalty of -25.5 (this number was found
as optimal by Pratibha).The scoring was done using standard tool HResults. Only 2168 files out of 2169 are
used for the scoring. Results are reported in terms of word-recognition accuracy.

The standard MFCC coefficients with log-energy, ∆ and ∆∆ coefficients without cepstral-mean subtraction
give 94.07 word accuracy on this setup. This, together with Pratibha’s TRAP baseline accuracy of 93.15 served
as comparison numbers.

3.3 The baseline: base scripts

Section titles contain names of directories for easier orientation in directory structure. The data directory name was base

here. Beginning with the following experiment, the name of script directory was kept coherent with the data directory.

See cook-book section 7.1 to find out more on directory names.

Why: to reproduce Pratibha’s results and make the whole experiment run faster (before, all the processing
including the generation of TRAPs was done on Sparc stations which was very slow.)
TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: 29 phonemes both for band-classifiers and the merger.
Nets: bands: 101–300–29, merger 15×29–300–29
Post-processing: log and PCA.
Results: the following results are provided here as well as for the other experiments:

• final phoneme recognition accuracy on the cross-validation set of Stories while training the band-classifiers
for 3 bands (0-th, 5-th and 10-th) on Stories. In tables noted Scv0, Scv5 and Scv10.

• phoneme recognition accuracy while forward-passing the Numbers through the band-classifiers for 3 bands
(0-th, 5-th and 10-th). In tables noted Nfwd0, Nfwd5 and Nfwd10.

• final phoneme recognition accuracy on the cross-validation set of Numbers in merger training. Noted Mcv
in tables.

• and finally the word recognition accuracy of the HMM-HTK recognizer on Digits, using class posteriors
(with post-processing) as features.

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

35.51 40.41 37.75 23.55 31.80 30.60 81.45 93.36

Comments: On contrary to Pratibha, who run the entire experiment on Sparc stations with SPERT boards,
great portion of the processing was moved to Linux. The training of nets is indeed very fast on SPERT, but
the preparation of the data (especially creation of huge p-files) took horrible time on Sparcs. Now, the data
preparation and all forward passes are done on Linux, just the net training is run on SPERT. This results in
much smaller run-time (1 week before, 3 days now with almost no data-parallelization).

A problem was found in Numbers and Digits databases: the covariance matrix from which PCA was com-
puted (estimated on training part of Digits) was full of NaNs (not-a-number - result of division 0/0).

After tracking the problem down to the original data, it was found, that at one place, the training file for
digits contained more than 100 frames with exactly the same values: sentence 1355 frames 140 ... 146, which
corresponds to file /net/data/numbers/release1/speechfiles/41/NU-4132.zipcode.wav. As creation of
TRAPS involves variance normalization, there was a division of 0/0=NaN. The generation of TRAPs and their
normalization were corrected, so that if variance=0, the output is just a zero-trap.

It was further found, that when the merger was trained, it also saw those NaN data, as numbers are super-set
of digits. Therefore, also data of Numbers were corrected and the merger was re-trained. The result on Digits
recognition: 93.36% is naturally better than Pratibha’s number 93.15%, but worse than MFCC baseline 94.07%.
Conclusions: Pratibha’s experiment was successfully reproduced including a little patch. Everything runs
faster. Good basis for following experiments.

3.3.1 Baseline – visualization

Mean TRAPs were generated on Stories (5th band) and are shown in Fig. 3.1. They correspond to Sangita’s
results in [6]. In addition, variance-TRAPs were generated (Fig 3.2) showing the variability of the 101 points
for each label.

13

−1

0

1
d

−1

0

1
t

−1

0

1
k

−2

0

2
dcl

−2

0

2
tcl

−2

0

2
kcl

−0.5

0

0.5
s

−1

0

1
z

−1

0

1
f

−1

0

1
th

−1

0

1
v

−0.5

0

0.5
m

−0.5

0

0.5
n

−1

0

1
l

−1

0

1
r

−1

0

1
w

−0.5

0

0.5
iy

−1

0

1
ih

−2

0

2
eh

−1

0

1
ey

−2

0

2
ae

−2

0

2
ay

−1

0

1
ah

−2

0

2
ao

−1

0

1
ow

−1

0

1
uw

−1

0

1
er

−0.5

0

0.5
ax

−1

0

1
h#

Figure 3.1: Mean TRAPs on Stories

0.5

1

1.5
d

0.5

1

1.5
t

0.5

1

1.5
k

0.5

1

1.5
dcl

0.5

1

1.5
tcl

0.5

1

1.5
kcl

0.5

1

1.5
s

0.5

1

1.5
z

0.5

1

1.5
f

0.5

1

1.5
th

0.5

1

1.5
v

0.5

1

1.5
m

0.5

1

1.5
n

0.5

1

1.5
l

0.5

1

1.5
r

0.5

1

1.5
w

0.5

1

1.5
iy

0.5

1

1.5
ih

0.5

1

1.5
eh

0.5

1

1.5
ey

0.5

1

1.5
ae

0.5

1

1.5
ay

0.5

1

1.5
ah

0

1

2
ao

0.5

1

1.5
ow

0.5

1

1.5
uw

0.5

1

1.5
er

0.5

1

1.5
ax

0.5

1

1.5
h#

Figure 3.2: Variance (or better standard deviation) TRAPs on Stories

14

3.4 Running everything on Linux: linux base

Why: running also the training of nets on Linux, to check if the results are comparable to SPERT and to
measure the necessary times. The configuration is exactly the same as for base, except for the place if net
training (SPERT vs. Linux).
TRAPS: 101-point, TRAP-based mean and variance normalization
Classes: 29 phonemes both for band-classifiers and the merger.
Nets: bands: 101–300–29, merger 15×29–300–29
Post-processing: log and PCA.
Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

35.52 41.02 37.77 23.73 31.80 32.61 81.72 93.17

Conclusions: Not exactly the same but very comparable result (before 93.36) for training of Linux. While
the training of band classifiers was slightly faster on Linux (Pentium II – 500 MHz (pilsner)), SPERT still
outperforms Pentia for bigger nets (merger): compare 9.50 hours (10 epochs) for SPERT and 11.50 hours (just
9 epochs) for Linux.

3.5 No Hamming windowing, sentence-based mean and variance

normalization: no hamming sent norm

Why: In the baseline experiment, Hamming windowing was done for historical reasons. The data is globally
mean and variance normalized before nets, so that application of a constant on a single stream is canceled, and
does not have any effect.

The sentence-normalization was tested because in the following experiment, we wanted to generate TRAPs
on-line by the training software Quicknet. As Quicknet can not do mean and variance normalization of each
input vector, it called for testing sentence-based one. Here however, the “old” way of the training was done (all
TRAPs generated before) to ensure coherence with previous experiments.
TRAPS: 101-point, sentence-based mean and variance normalization
Classes: 29 phonemes both for band-classifiers and the merger.
Nets: bands: 101–300–29, merger 15×29–300–29
Post-processing: log and PCA.
Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

35.42 41.62 38.59 29.47 34.94 31.52 82.95 93.84

Conclusions: showed that sentence-based normalization gives better results than TRAP-based one. As for
“classical” methods, this is probably due to more reliable estimation of mean and variance on the length
of a sentence rather than on 101-point TRAP. Unfortunately, this also brings sentence-latency and is not
suitable for tasks like Aurora. Sentence-based normalization was tested in several following experiments, but
for the Reference traps (chapter 4) and SPINE experiments (chapter 5), we returned to the original TRAP-
normalization.

3.6 No Hamming windowing, sentence-based mean and variance
normalization, Quicknet generates the TRAPs:

qmk no hamming sent norm

QMK in the name of the directories stands for “Quicknet makes kontext”.
Why: This experiment was primarily meant to test the creation of TRAPs directly by the NN-training software
Quicknet. While generating the TRAPs by Quicknet:

+ the size of generated pfiles is much smaller (actually we select just one stream of features) and the net
training is faster, as there is less disk input-output.

- TRAP-based normalization cannot be done, as Quicknet cannot do it dynamically.

15

- We have a problem with the ’bad’ labels (labels appearing in Stories but not in Numbers, see section 3.1.4).
Quicknet cannot discard labels, so that an additional processing was necessary at the input, deleting fea-
tures carrying those ’bad’ labels, defining new sentence boundaries in places, where those labels originally
were, and re-generating the context for those sentence boundaries1. The whole processing was quite
complex and messy. . .

- as a result of new sentence boundaries, it was necessary to re-define the training and cross-validation set
for the NN training, resulting in results not fully 100% comparable with the rest.

TRAPS: 101-point, sentence-based mean and variance normalization. Done by Quicknet.

Classes: 29 phonemes both for band-classifiers and the merger.

Nets: bands: 101–300–29, merger 15×29–300–29

Post-processing: log and PCA.

Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

35.32 42.23 38.48 28.70 35.13 31.82 82.81 93.88

Conclusions: Though minor differences in the bands, the overall result was very similar to the previous case,
where the TRAPs were generated explicitly (merger 82.95, HTK recognizer 93.84). However, the pre-processing
of feature stream is not straightforward, so that this approach was later abandoned.

3.7 Broad phonetic categories in bands broad categs 4

Why: to test if broad phonetic categories in bands can perform well in classification of phonemes and in the
word recognition. While band-classifiers were trained with 4 broad phonetic categories, the merger’s task was
to recognize phonemes.

The phonemes were mapped according to the following table:

phoneme category

d t k dcl tcl kcl STOP
s z f th v FRICATIVE
m n l r w iy ih eh ey ae ay ah ao ow uw er ax VOCALIC-SONORANT
h# SILENCE

TRAPS: 101-point, sentence-based mean and variance normalization. Done by Quicknet.

Classes: 4 broad classes for band-classifiers. 29 phonemes for the merger.

Nets: bands: 101–300–4, merger 15×4–300–29

Post-processing: log and PCA.

Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

74.08 77.90 73.94 69.23 60.45 64.27 68.14 86.66

Conclusions: The training and recognition performance in bands obviously increased from phonemes to broad
categories. Unfortunately, given the probabilities only for 4 categories per band, the merger is not able to
recognize phonemes reliably and this is translated into a big hit on the overall recognition performance. However,
this was a very simple experiment and the following points should be worked on:

1. by the limitation of inputs, we are also limiting the number of parameters of the merger. For a fair
comparison, the size of hidden layer should be increased.

2. the phonetic categories are quite rough.

3. the merger should be trained to recognize just the categories coming from bands.

1remember, that a TRAP is not generated for a ’bad’ label, bad frames carrying this label are still used for the context!

16

3.8 Tying closures with stops closures w stops

Why: we have seen that broad phonetic categories did not perform very well. A more gentle way to limit the
number of classes is to tie just some phonemes. The most obvious is to consider closures and the explosions as
the same phoneme:
tcl+t ⇒ t
dcl+d ⇒ d
kcl+k ⇒ k
Unlike the previous experiment, this tying was done also for Numbers, so that the phoneme sets for band-
classifiers and the merger were coherent.
TRAPS: 101-point, TRAP-based mean and variance normalization. Pfiles again generated explicitly, as for
the baseline (no TRAP generation using Quicknet).
Classes: 26 phonemes (stops tied with closures) both for band classifiers and the merger.
Nets: bands: 101–300–26, merger 15×26-300–26
Post-processing: log and PCA.
Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

35.83 40.94 37.27 25.38 33.01 30.46 81.42 87.74

Conclusions: We have seen comparable results with the baseline in bands and also during the merger training
(merger CV accuracy for baseline was 81.45 – just slightly better than in this experiment). However, in the
HMM recognizer word accuracy, we have seen a big hit (from 93.36 to 87.74). This is probably due to the fact,
that the HMM recognizer uses the closures (see section 3.2), that we have linked with corresponding stops here.
The models for closures then can not be reliably trained. A lesson from this is that the phoneme set used for
TRAPs should be the most coherent possible with what we use for the HMM recognizer.

3.9 Balanced training #1: limiting the silence less silence 4x

Why: The statistics (section 3.1.4) show clearly that the amount of data available for training different classes
is very unbalanced. This and the following experiments aim at the balancing of training data. The balancing
was done only for the band classifiers - the merger training was left intact, with the full phoneme set and full
amounts of data for each class.

The most represented class is the silence. Here, we limited the number of silence TRAPs to 1

4
, so that its

proportion approaches the most represented phoneme (’s’ with 6.29%). After this limitation, the proportion of
’s’ was 7.91% while that of silence was 8.55%.
TRAPS: 101-point, TRAP-based mean and variance normalization. Pfiles again generated explicitly, as for
the baseline (no TRAP generation using Quicknet).
Classes: 29 phonemes both for band classifiers and the merger.
Nets: bands: 101–300–29, merger 15×29-300–29
Post-processing: log and PCA.
Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

20.52 27.07 24.05 21.09 28.23 30.33 81.58 92.70

Conclusions: In bands, the CV and Numbers recognition accuracies are lower than for the baseline. This
should not however be considered a hit, as we have limited the number of occurrences of class (silence), which is
mostly recognized correctly. We see more coherence between the Stories and Numbers ’band-results’ here. The
merger CV result is even slightly better than the baseline 81.45. However, the HMM recognizer shows a slight
hit from 93.36. This would suggest that limiting the silence is not a good step (silence is quite an important
phoneme in the recognition). A thorough study of phoneme confusion matrix of the HMM recognizer would
however be needed to prove this hypothesis.

3.10 Balanced training #2: suppressing the silence no sil in bands

Why: Even in the previous experiment, we still saw a lot of silence. We wanted to test, how the suppression

of silence in bands affects the phoneme recognition accuracy and the HMM recognizer WER.

17

The silence was deleted only from Stories. The configuration of merger training was kept, including the
silences in Numbers.

TRAPS: 101-point, TRAP-based mean and variance normalization. Pfiles again generated explicitly, as for
the baseline (no TRAP generation using Quicknet).
Classes: 28 (no silence) for band classifiers. 29 (including silence) for the merger.

Nets: bands: 101–300–29, merger 15×29-300–29. Here, the number in bands should have been 28 and the
input of the merger 15×28. However, 29 was accidentally left in the scripts. The band classifiers therefore saw
no data for class 28: the corresponding neuron in the output layer was therefore trained to produce always 0.
Post-processing: log and PCA.

Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

15.70 22.34 19.99 (8.36) (14.92) (11.30) 81.96 92.77

Conclusions: Band results for Stories confirm, that the main class responsible for the numbers around 30% on
CV Stories was the silence. When it is completely suppressed, the numbers drop to 15-22%. The band-accuracies
on Numbers are low, because the silence (the most represented class) could never be correctly recognized
(remember: there was (accidentally) a neuron for silence, but trained to produce 0 all the time). The merger
CV accuracy is however better that that of the baseline (81.45). This is unfortunately not translated in the
improvement of HMM recognizer accuracy, confirming our previous conclusion, that the silence is necessary.

3.11 Balanced training #3: real balancing of classes balance stories

Why: the limitation or suppression of silence was a playing just with one class. Here, the training data of ALL
classes were balanced using a generalized down-sampler2.

After the balancing, the amount of data was 149726 TRAPs, which was 5.4× less than for baseline (810288).
The amounts of data for Numbers (merger training) are not changed.

TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: 29 for both band classifiers and the merger.

Nets: bands: 101–300–29, merger 15×29-300–29.
Post-processing: log and PCA.

Results:

Scv0 Scv5 Scv10 Nfwd0 Nfwd5 Nfwd10 Mcv HTK W. accur.

14.09 20.22 18.11 14.51 23.41 26.13 81.35 92.60

Conclusions: If the band-classifier nets were well trained here, we should see similar performance on the
recognition of Numbers data. Unfortunately, we do not reach the baseline’s performance, which suggests badly
trained nets. The CV-accuracy of the merger is just as good as the baseline and we have a .7% hit in HMM
recognizer. We can conclude, that the band-nets should be trained with all the available data.

3.12 Stories-Numbers-Digits: Conclusions

We have reproduced the baseline experiment with satisfactory results and performed some other experiments
with broad phonetic classes and balancing of the training data. The results were represented in terms of band-
classifier cross-validation accuracy, phoneme recognition accuracy on Numbers, CV accuracy when training the
merger and finally of word recognition accuracy of the HMM recognizer.

There are however the following problems with the SND experiments:

1. the phoneme set for band-classifier training is not full and contains only the 29 phonemes present in
Numbers. There are lots of ’bad labels’ we have to discard.

2Standard down-sampling requires integer decimation factor d. The samples taken must satisfy: i mod d = 0, where i is the
sample-index. Generalized down-sampling allows for fractional decimation factors d. The indices of retained samples must satisfy:

i − d
⌊

i

d

⌋

∈ [0, 1). Example: the “classical” decimation with d = 5 would produce indices 0 5 10 15 20 25 30 35 40 45 50 55. The

fractional decimation with d = 5.3 produces 0 6 11 16 22 27 32 38 43 48 53 59. We can see, that the samples are not equi-distant,
which is not hurting us. The amounts of data can be perfectly balanced using fractional decimation.

18

2. Although Stories provide good phonetic coverage, Numbers contain a very limited vocabulary, so that
the phonemes appear all the time in the same context. This may heavily bias the phoneme recognition
accuracies.

3. Global numbers are biased by the distribution of data among classes. We need more detailed analysis of
what is happening in bands and in the merger.

Some of those issues were addressed in the ’Reference’ experiments described in the following chapter.

19

Chapter 4

Reference experiments: Timit and
Stories

The reasons for switching to this experimental setup from SND were:

1. to have a coherent phoneme set for both band-classifier and merger training.

2. to dispose of phonemes in various context for both band-classifier and merger training.

Also, some visualization tools were produced for this setup allowing to see the confusion matrices and to do
detailed per-class analysis. Those experiments are called ’Reference-TRAPs’.

4.1 Data, phonemes and evaluation

Lukáš defined 4 data-sets:

part purpose sub-division source amount comment

1 eventually for LDA training train Stories 165 min -
2 Band-classif. training train TIMIT 106 min -

CV TIMIT 20 min -
3 Merger training train Stories 145 min same data as for part 1

CV Stories 20 min -
4 phoneme HMM recognizer train TIMIT 84 min -

test TIMIT 49 min different data from part 2

only part #2 and #3 were used in the current experiments. If performed, recognition tests were done on SPINE
(see next chapter).

The part for band-classifier training and CV is often mentioned as ’tnn’ (trap-neural-network), while the
part serving for merger training and CV is often called ’mnn’.

For TRAPs, it is good to have long signal files, so that we have less transition on boundaries (and hence
less problems with ’border’ TRAPs). For Stories (mnn), this is not a problem, as the signal files are long. For
TIMIT, Lukáš concatenated the signals to one big signal file per speaker. To ensure context variability, the 2
sentences repeating for all speakers (sa1 and sa2) were not included.

For tnn-timit we disposed of 783866 frames (including 50+50 flipped at the beginning and end of each file),
resulting in 752966 TRAPs. We had 260 training sentences and 49 CV ones, totaling in 309 sentences. As in
the previous setup, it was necessary to make the sentences shorter to fit in SPERT’s cache. After some tests in
the baseline experiment, the size of a sentence was chosen to be 1450, resulting in 599 ’new’ sentences for the
training and 82 ’new’ sentences for the CV.

For mnn-stories we disposed of 1007823 frames (including 50+50 flipped at the beginning and end of each
file), resulting in 987023 TRAPs. We had 183 training sentences and 25 CV ones, totaling in 208 sentences.
As in the previous setup, it was necessary to make the sentences shorter to fit in SPERT’s cache. The size of
a sentence was chosen to be 500, resulting in 1267 ’new’ sentences for the training and 239 ’new’ sentences for
the CV.

20

4.1.1 Phoneme set

The unique phoneme set was defined by Lukáš as common for Stories and TIMIT (some phonemes had to be
mapped). Table 4.1 gives the coverage of those phonemes on both data-sets. We can see, that sufficient number
of examples is provided for all phonemes in both sets.

Unfortunately, even here we could not avoid some ’strange’ or ’bad’ label. Lukáš has left some places in
his label files void, as they contained phonemes not common to the 2 databases: namely the epinthetic closure
’epi’ and glottal onset and stop ’q’. We have mapped all those to the ’other’ label (number 42), as there can
be no gaps in label files associated to frames. Only then we realized that the acoustics of ’epi’ and ’q’ is very
different. Therefore, some experiments had to be re-done discarding the ’oth’ label.

4.1.2 Evaluation

no HMM recognizer was trained at the top of Reference TRAPs. The evaluation of results was based on what
we have seen during the training and cross-validation of nets. The following results are provided:

• final phoneme recognition accuracy on the cross-validation set of tnn-timit while training the band-
classifiers for 3 bands (0-th, 5-th and 10-th) on Stories. In tables noted Tcv0, Tcv5 and Tcv10.

• phoneme recognition accuracy while forward-passing Stories through the band-classifiers for 3 bands (0-th,
5-th and 10-th). In tables noted Sfwd0, Sfwd5 and Sfwd10.

• final phoneme recognition accuracy on the cross-validation set of Stories in merger training. Noted Mcv
in tables. This was the ultimate number.

4.2 The baseline: base

Why: baseline experiment with the same TRAP generation and net configuration as for SND, to assess the
phoneme recognition accuracy in bands and at the output of the merger, and to do class-based analysis.
TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: 43 phonemes (including ’other’) both for band-classifiers and the merger.
Nets: bands: 101–300–43, merger 15×43–300–43
Post-processing: no post-processing, remember that there was no HMM recognizer at the end.
Results:

Tcv0 Tcv5 Tcv10 Sfwd0 Sfwd5 Sfwd10 Mcv

25.58 30.24 27.01 22.92 26.66 23.39 50.04

Conclusions: The CV accuracies in bands are lower than in the SND setup, which is understandable, as we
have much less silence in TNN-Timit than in the original Stories (14% here versus 27% before). What is more
shocking is the accuracy after training the merger: from 80% for the SND experiment, we go down to mere
50%. A smaller proportion of silence in MNN-Stories (19% versus 25% before in Numbers) can be blamed, but
is not solely responsible for 30% hit. The variability of contexts is probably the factor responsible for this huge
difference.
Visualization and further conclusions: On this baseline experiment, new visualization and analysis tools
were tested. First, the mean and variance TRAPs were computed (for the 5th band) to see, if they are coherent
with what we have seen previously on SND. Comparison of figures 4.1 and 3.1 (mean TRAPs) and 4.2 and 3.2
shows, that we were probably not mistaken in the generation and selection of TRAPs - the shapes for phonemes
carrying the same label are similar.

To asses the performance of TRAPs in bands, hard and soft confusion matrices and output normalized
covariance matrices (see section 2.3.2) were computed for each band, based on the MNN-Stories data forward-
passed through the band-classifiers. For band #5, they can be seen in Figure 4.3.

On all three matrices we can see, that the phonemes form clusters similar to broad phonetic categories. It
is impossible to include all the figures for all the bands in this report, but it is interesting to see, how certain
phonemes (especially liquids) “travel” among classes from band to band.

The y-axis of figures is completed by two important numbers: the first is the percentage of occurrences of
the given phoneme in MNN-Stories while the second is the recognition accuracy (’hit-rate’) of this phoneme.
Not surprisingly, we see, that the silence is hit in most cases (82%). The differences in recognition accuracy of
the other phonemes would need further analysis.

21

TNN-TIMIT MNN-Stories
label index count perc% count perc%

b 0 12465 1.65 13282 1.34
d 1 16835 2.23 19615 1.98
g 2 7001 0.92 7186 0.72
p 3 20223 2.68 18984 1.92
t 4 32531 4.32 47976 4.86
k 5 28006 3.71 29794 3.01
dx 6 3550 0.47 3381 0.34
jh 7 4132 0.54 3461 0.35
ch 8 4676 0.62 4652 0.47
s 9 45753 6.07 51472 5.21
sh 10 11460 1.52 7662 0.77
z 11 20497 2.72 14817 1.5
f 12 15426 2.04 17348 1.75
th 13 4429 0.58 5311 0.53
v 14 8130 1.07 9906 1.00
dh 15 5874 0.78 8499 0.86
m 16 15896 2.11 22497 2.27
n 17 27044 3.59 42616 4.31
ng 18 4871 0.64 7352 0.74
l 19 24045 3.19 26155 2.64
r 20 17925 2.38 20942 2.12
w 21 9064 1.20 14974 1.51
y 22 3451 0.45 4181 0.42
hh 23 7518 0.99 8106 0.82
iy 24 29613 3.93 35051 3.55
ih 25 21910 2.90 38274 3.87
eh 26 20393 2.70 22505 2.28
ey 27 19132 2.54 20705 2.09
ae 28 20357 2.70 27182 2.75
aa 29 18649 2.47 24118 2.44
aw 30 7752 1.02 9648 0.97
ay 31 20343 2.70 28962 2.93
ah 32 13644 1.81 54794 5.55
ao 33 16089 2.13 13526 1.37
oy 34 3863 0.51 1831 0.18
ow 35 13871 1.84 17055 1.72
uh 36 2723 0.36 2573 0.26
uw 37 12595 1.67 12390 1.25
er 38 26161 3.47 20415 2.06
ax 39 12258 1.62 11384 1.15
ix 40 25046 3.32 5178 0.52

pau 41 104555 13.88 191146 19.36
oth 42 13210 1.75 40117 4.06
total 43 752966 987023

Table 4.1: Phoneme coverage in TNN-Timit and MNN-Stories

22

−2

0

2
b

−1

0

1
d

−1

0

1
g

−1

0

1
p

−1

0

1
t

−1

0

1
k

−1

0

1
dx

−1

0

1
jh

−1

0

1
ch

−1

0

1
s

−1

0

1
sh

−1

0

1
z

−1

0

1
f

−1

0

1
th

−1

0

1
v

−1

0

1
dh

−0.5

0

0.5
m

−0.5

0

0.5
n

−1

0

1
ng

−1

0

1
l

−1

0

1
r

−1

0

1
w

−0.5

0

0.5
y

−1

0

1
hh

−0.5

0

0.5
iy

−1

0

1
ih

−2

0

2
eh

−1

0

1
ey

−2

0

2
ae

−2

0

2
aa

−2

0

2
aw

−2

0

2
ay

−2

0

2
ah

−2

0

2
ao

−1

0

1
oy

−1

0

1
ow

−1

0

1
uh

−0.5

0

0.5
uw

−1

0

1
er

−1

0

1
ax

−1

0

1
ix

−1

0

1
pau

−1

0

1
oth

Figure 4.1: Mean TRAPs on TNN-Timit

0.8

1

1.2
b

0.5

1

1.5
d

0.5

1

1.5
g

0.8

1

1.2
p

0.8

1

1.2
t

0.8

1

1.2
k

0

1

2
dx

0.5

1

1.5
jh

0.5

1

1.5
ch

0

1

2
s

0

1

2
sh

0.5

1

1.5
z

0.5

1

1.5
f

0.5

1

1.5
th

0.5

1

1.5
v

0.5

1

1.5
dh

0.5

1

1.5
m

0.5

1

1.5
n

0

1

2
ng

0

1

2
l

0.5

1

1.5
r

0.5

1

1.5
w

0.5

1

1.5
y

0.5

1

1.5
hh

0

1

2
iy

0

1

2
ih

0

1

2
eh

0

1

2
ey

0

1

2
ae

0

1

2
aa

0

1

2
aw

0

1

2
ay

0

1

2
ah

0

1

2
ao

0

1

2
oy

0

1

2
ow

0

1

2
uh

0

1

2
uw

0

1

2
er

0.5

1

1.5
ax

0

1

2
ix

0.5

1

1.5
pau

0.5

1

1.5
oth

Figure 4.2: Variance (or better standard deviation) TRAPs on TNN-Timit

23

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 24

d 02 08

g 01 00

p 02 17

t 05 21

k 03 30

dx 00 41

jh 00 00

ch 00 01

s 05 32

sh 01 03

z 02 11

f 02 14

th 01 00

v 01 02

dh 01 06

m 02 12

n 04 17

ng 01 00

l 03 06

r 02 03

w 02 03

y 00 01

hh 01 04

iy 04 23

ih 04 13

eh 02 19

ey 02 18

ae 03 02

aa 02 18

aw 01 00

ay 03 25

ah 06 05

ao 01 01

oy 00 00

ow 02 01

uh 00 00

uw 01 05

er 02 11

ax 01 12

ix 01 37

pau 19 82

oth 04 01

soft conf5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 24

d 02 08

g 01 00

p 02 17

t 05 21

k 03 30

dx 00 41

jh 00 00

ch 00 01

s 05 32

sh 01 03

z 02 11

f 02 14

th 01 00

v 01 02

dh 01 06

m 02 12

n 04 17

ng 01 00

l 03 06

r 02 03

w 02 03

y 00 01

hh 01 04

iy 04 23

ih 04 13

eh 02 19

ey 02 18

ae 03 02

aa 02 18

aw 01 00

ay 03 25

ah 06 05

ao 01 01

oy 00 00

ow 02 01

uh 00 00

uw 01 05

er 02 11

ax 01 12

ix 01 37

pau 19 82

oth 04 01

hard conf5

−0.2

0

0.2

0.4

0.6

0.8

1

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 24

d 02 08

g 01 00

p 02 17

t 05 21

k 03 30

dx 00 41

jh 00 00

ch 00 01

s 05 32

sh 01 03

z 02 11

f 02 14

th 01 00

v 01 02

dh 01 06

m 02 12

n 04 17

ng 01 00

l 03 06

r 02 03

w 02 03

y 00 01

hh 01 04

iy 04 23

ih 04 13

eh 02 19

ey 02 18

ae 03 02

aa 02 18

aw 01 00

ay 03 25

ah 06 05

ao 01 01

oy 00 00

ow 02 01

uh 00 00

uw 01 05

er 02 11

ax 01 12

ix 01 37

pau 19 82

oth 04 01

norm. covariance)5

Figure 4.3: Soft, hard and normalized covariance matrix of band #5 (reference TRAPs–baseline experiment).

24

Normalized covariance and soft-confusion matrices were used for automatic generation of broad phonetic
categories in experiments classes bands 7 aut, classes bands 10 aut and sconf classes bands 10 aut –
see sections 4.3, 4.4 and 4.5.

Similar matrices were generated also at the output of the merger – see Figure 4.4.

4.3 Automatically generated 7 broad classes: classes bands 7 aut

Why: we have seen that the phoneme recognition performance in bands is quite poor. Broad phonetic classes
should be better recognized, providing more reliable information to the merger. The classes can be generated
using a-priori phonetic knowledge, or by automatic clustering on some of the confusion matrices. Moreover,
they can be uniform for all the bands or band specific. In this experiment, we have chosen to generate the
classes automatically based on the normalized covariance matrix in each band.

The number of classes per band was set to 7. For the class computation, we used Sachin’s function
make_phn_clusters2.m using Matlab functions pdist, linkage. The distance used is ’cityblock’ and the
linkage type is ’ward’.

The generated clusters for bands 0, 5 and 10 are summarized in the following table:

band class0 class1 class2 class3 class4 class5 class6

0 b d g jh z
v oth

dx dh hh p t k ch s
sh f th

pau l r iy ey
ae aa aw
ay ao oy
ow uw er

ih eh ah
uh ax ix

m n ng w
y

5 jh ch s sh
z f th

pau l r ey ae
aa aw ay
ao oy ow
er

ih eh ah
uh

b d g p t
k

dx v dh m
n ng y hh
oth

w iy uw
ax ix

10 dx jh ch
dh

s sh z f y
hh

b d g p t
k

pau th v m n
ng l w oth

r ih eh ey
ae aa aw
ay ah er

iy ao oy
ow uh uw
ax ix

We can again observe “traveling” of certain phonemes among clusters.

TRAPS: 101-point, TRAP-based mean and variance normalization.

Classes: bands: 7 broad classes per band, generated automatically from normalized covariance matrix. merger:
full set of 43 phonemes (including ’other’).

Nets: bands: 101–300–7, merger 15×7–300–43

Results:

Tcv0 Tcv5 Tcv10 Sfwd0 Sfwd5 Sfwd10 Mcv

64.52 66.01 59.64 41.83 51.62 49.93 46.44

Conclusions: The band accuracies are not comparable with the previous setup, as we have lower number of
broader classes. Obviously, the accuracy is higher. At the output of the merger, we have 4% hit. As it was
mentioned already in section 3.7, by limiting the number of classes per band, we have also limited the number
of merger’s parameters. A fair comparison would require increasing the size of the hidden layer. Also, a simpler
experiment with uniform classes for all bands should be conducted.

4.4 Automatically generated 10 broad classes: classes bands 10 aut

Why: same reasons as for the previous experiment, but increasing the number of classes. 10 broad classes per
band were generated using the same procedure as before. The generated clusters for bands 0, 5 and 10 are
summarized in the following table:

25

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 40

d 02 31

g 01 22

p 02 43

t 05 56

k 03 44

dx 00 47

jh 00 30

ch 00 28

s 05 69

sh 01 57

z 02 30

f 02 46

th 01 03

v 01 23

dh 01 18

m 02 47

n 04 71

ng 01 34

l 03 41

r 02 45

w 02 50

y 00 40

hh 01 44

iy 04 69

ih 04 47

eh 02 21

ey 02 48

ae 03 50

aa 02 42

aw 01 32

ay 03 65

ah 06 51

ao 01 31

oy 00 08

ow 02 41

uh 00 04

uw 01 42

er 02 50

ax 01 15

ix 01 10

pau 19 95

oth 04 21

soft conf merger

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 40

d 02 31

g 01 22

p 02 43

t 05 56

k 03 44

dx 00 47

jh 00 30

ch 00 28

s 05 69

sh 01 57

z 02 30

f 02 46

th 01 03

v 01 23

dh 01 18

m 02 47

n 04 71

ng 01 34

l 03 41

r 02 45

w 02 50

y 00 40

hh 01 44

iy 04 69

ih 04 47

eh 02 21

ey 02 48

ae 03 50

aa 02 42

aw 01 32

ay 03 65

ah 06 51

ao 01 31

oy 00 08

ow 02 41

uh 00 04

uw 01 42

er 02 50

ax 01 15

ix 01 10

pau 19 95

oth 04 21

hard conf merger

−0.2

0

0.2

0.4

0.6

0.8

1

b d g p t k dx jh ch s sh z f th v dh m n ng l r w y hh iy ih eh ey ae aa aw ay ah ao oy ow uh uw er ax ix pau oth

b 01 40

d 02 31

g 01 22

p 02 43

t 05 56

k 03 44

dx 00 47

jh 00 30

ch 00 28

s 05 69

sh 01 57

z 02 30

f 02 46

th 01 03

v 01 23

dh 01 18

m 02 47

n 04 71

ng 01 34

l 03 41

r 02 45

w 02 50

y 00 40

hh 01 44

iy 04 69

ih 04 47

eh 02 21

ey 02 48

ae 03 50

aa 02 42

aw 01 32

ay 03 65

ah 06 51

ao 01 31

oy 00 08

ow 02 41

uh 00 04

uw 01 42

er 02 50

ax 01 15

ix 01 10

pau 19 95

oth 04 21

norm. covariance merger

Figure 4.4: Soft, hard and normalized covariance matrix at the merger output (reference TRAPs–baseline
experiment).

26

band class0 class1 class2 class3 class4 class5 class6 class7 class8 class9

0 m w y n ng l r ao
oy

iy ey
ae aa
aw ay
ow uw
er

ih eh
ah uh

ax ix b d g
jh z v
oth

dx dh
hh

p t k
ch s sh
f th

pau

5 w iy
uw

ax ix l r ey
ow er

ae aa
aw ay
ao oy

dx ng
y hh

v dh
m n
oth

jh ch s
sh z f
th

pau ih eh
ah uh

b d g p
t k

10 r ae aa
aw ay
er

ih eh
ey ah

s z f sh y
hh

iy ao
oy ow
uw

uh ax
ix

dx jh
ch dh

b d g p
t k

pau th v m
n ng l
w oth

TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: bands: 10 broad classes per band, generated automatically from normalized covariance matrix.
merger: full set of 43 phonemes (including ’other’).
Nets: bands: 101–300–10, merger 15×10–300–43
Results:

Tcv0 Tcv5 Tcv10 Sfwd0 Sfwd5 Sfwd10 Mcv

55.17 56.70 52.17 38.61 44.65 42.29 48.22

Conclusions: A more thorough analysis was done for band results in this experiment – confusion matrices for
band #5 can be seen in Fig 4.5. The numbers accompanying the figures clearly tell that there are still huge
differences in the recognition accuracy per class and that the confusion matrices are far from diagonal.

For the final number, we obtained better number than for 7 classes (as expected), but the baseline accuracy
was not reached. Same comments apply for the number of parameters of the merger as for the previous
experiment – it would be more fair to increase the size of the hidden layer.

4.5 Automatically generated 10 broad classes, based on soft confu-
sion matrix: sconf classes bands 10 aut

Why: previous 2 experiments based the clustering on the normalized covariance matrix. This matrix is derived
without any knowledge about the correct labels, but just by looking at the correlation of net’s outputs. We
hypothesized, that generation of classes based on one of the confusion matrices would bring more coherent
classes and hence better final accuracies. The soft confusion matrices were used to generate 10 classes per band.
The generated clusters for bands 0, 5 and 10 are summarized in the following table:

band class0 class1 class2 class3 class4 class5 class6 class7 class8 class9

0 b d g
jh v

dh hh iy ih
ah uh
er

eh ey
ae aa
aw ay
ao oy
ow uw

m n
ng

l r w y dx ax ix p t k
ch s sh
z f th

pau
oth

5 b d g p
t k

v dh jh ch s
sh f th

z m n
ng hh

y iy
uw

ax ix l r w
ih eh
ey ah
uh er

ae aa
aw ay
ao oy
ow

dx pau
oth

10 jh ch ax ix dx sh iy
ow uw

ih ey
ah ao
oy uh

s z f l
w y hh

th v
dh m
n ng

pau
oth

r eh ae
aa aw
ay er

b d g p
t k

TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: bands: 10 broad classes per band, generated automatically from soft covariance matrix. merger: full
set of 43 phonemes (including ’other’).
Nets: bands: 101–300–10, merger 15×10–300–43
Results:

27

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

class0 class1 class2 class3 class4 class5 class6 class7 class8 class9

class0 06 22

class1 02 41

class2 11 34

class3 11 38

class4 02 03

class5 13 19

class6 11 49

class7 19 81

class8 12 26

class9 14 60

soft conf5

0

0.2

0.4

0.6

0.8

class0 class1 class2 class3 class4 class5 class6 class7 class8 class9

class0 06 22

class1 02 41

class2 11 34

class3 11 38

class4 02 03

class5 13 19

class6 11 49

class7 19 81

class8 12 26

class9 14 60

hard conf5

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

class0 class1 class2 class3 class4 class5 class6 class7 class8 class9

class0 06 22

class1 02 41

class2 11 34

class3 11 38

class4 02 03

class5 13 19

class6 11 49

class7 19 81

class8 12 26

class9 14 60

norm. covariance)5

Figure 4.5: Soft, hard and normalized covariance matrix of band #5 (reference TRAPs–10 automatically gen-
erated classes).

28

Tcv0 Tcv5 Tcv10 Sfwd0 Sfwd5 Sfwd10 Mcv

56.48 58.86 53.36 41.77 51.86 45.05 48.35

Conclusions: Improvement in bands which is unfortunately not translated to a big improvement at the output
of the merger: just a fraction of % compared to the results with the normalized covariance matrix. The classes
however look more “reasonable” than those generated using the normalized covariance matrices. Therefore, the
selection of classes based on soft confusion matrix appears to be a good choice. All the comments of previous
two experiments apply also here.

4.6 Baseline with discarded ’other’ label: base no oth

Why: quite ugly confusion patterns of the ’other’ class (Fig 4.3) lead us to investigate, what the ’other’ label
really was. A discussion with Lukáš made it clear, that this label should not be considered one class but rather
discarded (see section 4.1.1 describing the phoneme set of reference experiments). The ’other’ label was here
discarded both for bands and the merger training and CV, making the phoneme set size 42.
TRAPS: 101-point, TRAP-based mean and variance normalization.
Classes: 42 phonemes without ’other’ both for band-classifiers and the merger.
Nets: bands: 101–300–42, merger 15×42–300–42
Results:

Tcv0 Tcv5 Tcv10 Sfwd0 Sfwd5 Sfwd10 Mcv

26.38 31.05 27.83 23.95 28.13 24.90 52.66

Conclusions: we have seen a systematic >1% improvement in bands, and more than 2.5% improvement at
the output of merger. We should therefore discard the ’other’ label from the experiments. A more general
conclusion is that one should be very careful about the phoneme set used, check and re-check. . .

4.7 2-Band TRAPs – adjacent bands 2 band 51 300 300

Why: Pratibha reported positive results with generating the bands for 2 bands. Theoretically, this approach is
supported by the studies of co-modulation masking. We wanted to test 2-band TRAPs on the reference setup.

To ensure comparable number of net parameters with the previous experiments, we have made the TRAPs
shorter- just 51-frames instead of original 101. This brings the size of a 2-band TRAP to 102, which is almost
the same as 101. In this experiment, the 2 bands were adjacent, e.g. 0-1, 1-2, . . . 13-14. The total number of
couples was 14.
TRAPS: 51-point, 2-band, TRAP-based mean and variance normalization, separately in each channel.
Classes: 43 phonemes including ’other’ both for band-classifiers and the merger. Unfortunately, this experiment
was done prior to the discovery that the ’other’ label was hurting.
Nets: bands: 102–300–43, merger 14×43–300–43
Results:

Tcv0-1 Tcv5-6 Tcv10-11 Sfwd0-1 Sfwd5-6 Sfwd10-11 Mcv

29.01 34.01 31.47 24.89 29.57 26.35 50.74

Conclusions: we see a nice improvement from isolated bands to couples of bands. At the output of the merger,
the improvement is however not spectacular: just 0.7%.

4.8 2-Band TRAPs – band skipping 2 band 1 skip 51 300 300

Why: we should remember that the input features for TRAPs are log energies at the Bark filter-bank. The
frequency characteristics for adjacent bands overlap, so that the 2 band outputs are necessarily correlated.
Therefore, we conducted an experiment with couples of bands with the skipping of one band. The couples are:
0-2, 1-3, . . . 12-14, and their total number is 13.
TRAPS: 51-point, 2-band, 1-band skip, TRAP-based mean and variance normalization, separately in each
channel.
Classes: 43 phonemes including ’other’ both for band-classifiers and the merger. Unfortunately, this experiment
was done prior to the discovery that the ’other’ label was hurting.

29

Nets: bands: 102–300–43, merger 13×43–300–43
Results:

Tcv0-2 Tcv5-7 Tcv10-12 Sfwd0-2 Sfwd5-7 Sfwd10-12 Mcv

31.63 35.01 33.16 25.38 30.10 27.53 51.14

Conclusions: again an improvement in bands and again a slight improvement at the output of the merger.

4.9 2-Band TRAPs – a bit of brute force:
2 band 1 skip 101 500 1000 no oth

Why: This a “last-cry” experiment breaking the logical suite which would be:

1. removing the ’other’ label for 2-band TRAPs, letting the configuration intact.

2. lengthening the TRAPs to their original length (101 points).

3. increasing the number of parameters of one of the nets (band-classifier or merger), then both.

Due to the limited time, we did all the changes together, the hidden layer size for band-classifiers was increased
to 500 neurons, that for the merger to 1000 neurons. This had two bad consequences:

1. we had to train both band-classifiers and the merger on Linux, SPERT board cache memory was exhausted.

2. the merger training time was very long (almost 3 days).

TRAPS: 101-point, 2-band, 1-band skip, TRAP-based mean and variance normalization, separately in each
channel.
Classes: 42 phonemes without ’other’ both for band-classifiers and the merger.
Nets: bands: 202–500–42, merger 13×42–1000–42
Results:

Tcv0-2 Tcv5-7 Tcv10-12 Sfwd0-2 Sfwd5-7 Sfwd10-12 Mcv

31.50 35.95 34.41 26.89 31.45 29.20 54.04

Conclusions: neat improvement in bands, and what is the best, a 4% improvement at the output of the
merger. As it was mentioned at the beginning of this section, the question “Which of the changes is responsible
for most of the improvement” is open.

4.10 Reference TRAPs – Conclusions

TRAP experiments were conducted on a set of databases providing, in our opinion, more reliable realistic
assessment of their performance than Stories–Numbers–Digits. It was found, that on a database with phonemes
occurring in varying context, the phoneme recognition accuracy at the output of the merger is rather around
50% than 80% (SND experiments).

Experiments with automatically generated broad phonetic classes showed that the overall phoneme recogni-
tion accuracy is inferior to baseline results. The following issues are open:

• as mentioned, limitation of number of classes in bands implies the limitation of merger parameters. For
a fair comparison, the size of hidden layer should be increased to match the number of parameters of the
baseline.

• there are many ways to generate the classes: manual creation, and automated creation uniform for all
bands should be tested.

• we need not necessarily have the same number of classes per band. Instead of a “hard” number, a variable
number based on a distance measure (or mutual information, or whatever appropriate) could be used.

• finally, a merger could be trained not to recognize phonemes but also broad phonetic classes. Those
probabilities (after post-processing) could serve as input to an HMM recognizer.

30

2-band traps have shown a huge potential in performance. While testing 51-point TRAPs, we should re-
member that the normalization of input features was TRAP-based - the estimation of mean and variance was
therefore on 2× less data than for the baseline. This calls for a normalization using a different window, or whole
sentence.

In SND experiments, sentence-based normalization provided good results (the mean and variance are more
reliably estimated). This approach was not tested with the reference setup, those experiments should be
completed.

31

Chapter 5

TRAPS on SPINE

SPINE (Speech in Noisy Environments) is an evaluation run by the Naval Research Laboratory. The task a
medium-sized vocabulary recognition on several military environments. The training and evaluation data from
2000 were used to assess performances of our features. These data come as stereo-recordings, but we disposed
of data pre-segmented at CMU into speech and silence regions. The recognizer used – SPHINX – came also
from CMU.

5.1 The data

The training data consists of 140 conversation (each has 2 channels) completed with 18 directories with DRT
(Diagnostic Rhyme Test) words with added noises. There are 15847 in the training set.

The evaluation data consists of 120 conversations (each with 2 channels). 12 first conversations were
selected as the short evaluation set, including 1353 files. Most of the results reported here were obtained on
this short set. There are 13265 files in the evaluation set.

“Improving” the data: we have found, that on side of conversations from ARMY scenarios (the noise one)
contained files very unsuitable for any temporal processing (including TRAPS): a total silence (signal values
oscillating around zero), followed by a sharp transition to noise and speech, and the same in inverse at the end
of file. Visualization has shown very sharp edges in temporal trajectories coming from bands, that were hurting
the performance of temporal LDA and TRAP methods. Those files were listed (Sachin), the complete-silence
parts detected (Petr) and finally, new signal files were generated (Honza). 1879 files were corrected in the
training set and 1437 in the evaluation one. Experiments were done also on the original data, this report covers
both data-sets.

While working with the improved data, we have also defined a new strategy to select the context for first
50 and last 50 frames in each utterance. Before, the 50 first and 50 last frames of each file were always flipped
to create the necessary context. Here, we have taken the 50 left extra frames from the previous file of the same
side of conversation, and similarly for the right extra 50 frames. “Improving” of the data together with this
processing alleviated a lot of unpleasant artifacts at the edges of files.

The amounts of data in original and “improved” training and evaluation data are summarized in the following
table:

set orig-frames orig-hours improved-frames improved-hours

train 3067237 8.52 3017499 8.38
eval 2540578 7.06 2497009 6.94

5.2 Labels and training sets

The labels were produced last year at ICSI [2], unfortunately, out of 15847 training files, 804 were not labeled
(they were actually left out as an evaluation set, but the labels were never produced). For the training of the
nets, the files in the training set were randomized.

The training set was further divided into the following parts:

32

set # files comment

train a 7500 served for the training of merger
train b 8347 the labeled portion of train b (7543 files)

served for band-classifier training

The label files were available as strings of labels per frame. When shortening (“improving”) the army files,
care was taken to re-synchronize the labels.

5.3 Phoneme sets

The labels from come ICSI come with the set of 56 phonemes:
b d g p t k dx bcl dcl gcl pcl tcl kcl jh ch s sh z zh f th v dh m em n nx ng en l el r w y hh hv iy ih eh ey ae aa
aw ay ah ao oy ow uh uw er axr ax ix h# q

There are however only 41 context-independent phonemes the SPHINX system uses:
+NOISE+ SIL AA AE AO AW AX AY B CH D DH E EH ER EY F G HH I II JH K L M N O OO OW P R
S SH T TH U V W Y Z ng

Effort was done to map the 56 phonemes to something more similar to SPHINX phoneme set. Two mappings
were made, one from 56 ICSI classes to 38 (SPHINX set without O, E, and +NOISE+), and then further
limitation to 34 classes. Table 5.1 presents the two mappings.

Statistics computed in the train a portion of the training set (improved data) in Table 5.2 show, that some
phonemes are heavily under-represented in the ICSI 56 set, and some have even zero occurrences. This is
improved for the small set with 34 phonemes, where we at least enough training examples for all classes.

5.4 Experiments on original data

those experiments were conducted prior to correcting the ’bad’ army files.
Only selected experiments are described in this report, see file:

file:/u/honza/OGI/SPINE/results_html/spine2000.html

for the description and results of all (sometimes quite crazy) experiments. The numbers in names of section
correspond to experiment numbers in this table.

5.4.1 The MFCC baseline: htk mfcc13 0 d a z – 1-5

Why: The very first experiment was done using MFCC features computed by HTK (the HCopy tool). There
were 13 MFCC coefficients including c0 (not the log energy). Delta and acceleration coefficients were computed
using default window sizes (context of 2 frames o both sides). The mean was subtracted from the waveform on
utterance basis. Original 16 kHz data were used with no down-sampling. The Mel-filterbank had 24 channels.
Utterance-based cepstral mean subtraction (CMS) was done.
Results: are reported in terms of word error rate (WER) for the complete (rarely) and small (always) evaluation
sets, for context-independent (CI) and context-dependent fully tied (CD) models of Sphinx. The most important
number is the WER with the final CD models for the small evaluation set.

CI 12utt CI full CD 12utt CD full
76.1 77.5 37.9 42.9

The result 37.9 on the short set served as comparison number for all following experiments.

5.4.2 TRAPs from Stories and Numbers traps merger on numbers 1b 101 nn 300 300

– 10

Why: first experiment with TRAPs on spine, all nets were taken from SND experiment qmk_no_hamming_sent_norm
(see section 3.6.
TRAPS: 101-point, sentence-based mean and variance normalization.
Classes: 29 phonemes both for band-classifiers and the merger (same set as for Stories and Numbers).
Nets: bands: 101–300–29, trained on Stories, 15×29–300–29, trained on Numbers.
Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

33

ICSI 56 → reduced 38 reduced 38 → small 34

b B SIL SIL
d D AA AA
g G AE EH
p P AO AO
t T AW AW
k K AX EH
dx D AY AY
bcl B B B
dcl D CH CH
gcl G D D
pcl P DH DH
tcl T EH EH
kcl K ER ER
jh JH EY EY
ch CH F F
s S G G
sh SH HH HH
z Z I I
zh SH II I
f F JH JH
th TH K K
v V L L
dh DH M M
m M N N
em M OO U
n N OW OW
nx N P P
ng ng R R
en N S S
l L SH SH
el L T T
r R TH TH
w W U U
y Y V V
hh HH W W
hv HH Y Y
iy II Z Z
ih I ng ng
eh EH
ey EY
ae AE
aa AA
aw AW
ay AY
ah AX
ao AO
oy AO
ow OW
uh U
uw OO
er ER
axr ER
ax AX
ix I
h# SIL
q SIL

Table 5.1: Phoneme mapping for SPINE.34

ICSI 56 small 34

label index count perc% label index count perc%

b 0 4180 0.29 SIL 0 511016 35.6

d 1 8493 0.59 AA 1 34745 2.42

g 2 9276 0.64 AO 2 22098 1.53

p 3 4057 0.28 AW 3 13272 0.92

t 4 15584 1.08 AY 4 24355 1.69

k 5 22328 1.55 B 5 9788 0.68

dx 6 3891 0.27 CH 6 5938 0.41

bcl 7 5608 0.39 D 7 29147 2.03

dcl 8 16763 1.16 DH 8 6414 0.44

gcl 9 9381 0.65 EH 9 101017 7.03

pcl 10 15144 1.05 ER 10 27798 1.93

tcl 11 41865 2.91 EY 11 41184 2.86

kcl 12 23121 1.61 F 12 19908 1.38

jh 13 7024 0.48 G 13 18657 1.29

ch 14 5938 0.41 HH 14 13907 0.96

s 15 55121 3.84 I 15 87384 6.08

sh 16 6360 0.44 JH 16 7024 0.48

z 17 16762 1.16 K 17 45449 3.16

zh 18 0 0 L 18 21446 1.49

f 19 19908 1.38 M 19 29843 2.07

th 20 10114 0.7 N 20 45413 3.16

v 21 4120 0.28 OW 21 47799 3.33

dh 22 6414 0.44 P 22 19201 1.33

m 23 29792 2.07 R 23 26125 1.82

em 24 51 0 S 24 55121 3.84

n 25 45304 3.15 SH 25 6360 0.44

nx 26 0 0 T 26 57449 4

ng 27 16240 1.13 TH 27 10114 0.7

en 28 109 0 U 28 29611 2.06

l 29 18265 1.27 V 29 4120 0.28

el 30 3181 0.22 W 30 21342 1.48

r 31 26125 1.82 Y 31 9329 0.64

w 32 21342 1.48 Z 32 16762 1.16

y 33 9228 0.64 ng 33 16240 1.13

hh 34 13813 0.96

hv 35 94 0

iy 36 43979 3.06

ih 37 35630 2.48

eh 38 18015 1.25

ey 39 41184 2.86

ae 40 33105 2.3

aa 41 34745 2.42

aw 42 13272 0.92

ay 43 24355 1.69

ah 44 28912 2.01

ao 45 22004 1.53

oy 46 195 0.01

ow 47 47799 3.33

uh 48 1176 0.08

uw 49 28435 1.98

er 50 17772 1.23

axr 51 10026 0.69

ax 52 20985 1.46

ix 53 7775 0.54

h# 54 511016 35.6

q 55 0 0

total 56 1435376 34 1435376

Table 5.2: Phoneme coverage in SPINE: original ICSI 56 phonemes and re-mapped small set of 34 phonemes.

35

CI 12utt CI full CD 12utt CD full
75.5 - 55.1 61.3

Conclusions: quite very bad, almost 17% hit from the MFCC baseline.

5.4.3 Merger trained on SPINE
traps merger on spine 1b 101 nn 300 300 – 9

Why: we tried to “approach” the TRAPs to the target task here by re-training the merger on ICSI labels for
SPINE. The band-classifiers were still from Stories (qmk_no_hamming_sent_norm section 3.6).

TRAPS: 101-point, sentence-based mean and variance normalization.

Classes: 29 phonemes both for band-classifiers. 56 ICSI phonemes for the merger.

Nets: bands: 101–300–29, trained on Stories, 15×29–300–56, trained on train a set of SPINE using ICSI label
files.

Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

CI 12utt CI full CD 12utt CD full
65.0 - 53.7 59.9

Conclusions: 2% improvement against the experiment with merger trained on numbers. Still very far from
MFCC (37.9).

5.4.4 Merger trained on SPINE - small set of 34 labels
traps merger on 34 spine 1b 101 nn 300 300 – 11

Why: the analysis has shown that some of the ICSI labels are not present at all and some are under-represented.
Here, we trained the merger using the smaller phoneme set, where all the phonemes have reasonable number of
occurrences. The band-classifiers were still from Stories (qmk_no_hamming_sent_norm section 3.6).

TRAPS: 101-point, sentence-based mean and variance normalization.

Classes: 29 phonemes both for band-classifiers. 34 phonemes (small set) mapped from 56 ICSI phonemes for
the merger.
Nets: bands: 101–300–29, trained on Stories, 15×29–300–34, trained on train a set of SPINE using re-mapped
ICSI label files.

Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).

Results:

CI 12utt CI full CD 12utt CD full
62.4 - 47.9 52.1

Conclusions: huge improvement over the first TRAP experiment on SPINE, showing again, how phoneme set
is important. Unfortunately still quite far from the MFCC baseline.

5.4.5 Everything trained on SPINE - small set of 34 labels
traps all on 34 spine 1b 101 nn 300 300 – 12

Why: a natural step was to train also the band-classifiers on SPINE data. The labeled portion of train b set
was used for this.

TRAPS: 101-point, sentence-based mean and variance normalization.

Classes: 34 phonemes (small set) mapped from 56 ICSI phonemes both for band-classifiers and the merger.

Nets: bands: 101–300–34, trained on labeled portion of train b set of SPINE using re-mapped ICSI label files.
Merger 15×34–300–34, trained on train a set of SPINE using re-mapped ICSI label files.

Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

CI 12utt CI full CD 12utt CD full
62.0 - 49.7 55.0

36

Conclusions: surprisingly, we have seen a hit from the previous result. Band-classifiers taken on another
database (Stories) perform better than band-classifiers trained on the target data. We should however remember
that the original army files (containing the sharp ’complete silence’–noise transitions) were used here. One can
suppose that a net trained using those ’sharp-edged’ data would perform worse than that trained on data
without those edges.

5.5 Experiments on “improved” data

As mentioned before, the army files were corrected and used in further experiments.

5.5.1 MFCC baseline idata htk mfcc13 0 d a z – 19

Why: first test with improved data using classical MFCC features. Same MFCC computation as in experiment
htk mfcc13 0 d a z, section 5.4.1.
Results:

CI 12utt CI full CD 12utt CD full
72.4 - 36.7

Conclusions: improvement of more than 1% over the previous baseline (37.9) confirming, that the improvement
of army files aids also a feature extraction not based on temporal trajectories at all. 36.7 is a new baseline
number for experiments on the improved data.

5.5.2 TRAPs from Stories and Numbers traps idata baseline -- 20

Why: to test the same approach as in the TRAP baseline for original data: take nets from Stories and Numbers
and just forward-pass the SPINE data through them to get the features. With the improved data however, we
used uniquely TRAP-based mean and variance normalization. The nets were taken from the baseline experiment
on SND, see section 3.3.
TRAPS: 101-point, TRAP-based mean and variance normalization. Nice handling of left 50 and right 50
frames of each file: taken from the previous and next file(s) from the same side of the conversation1.
Classes: 29 phonemes both for band-classifiers and the merger (same set as for Stories and Numbers).
Nets: bands: 101–300–29, trained on Stories, 15×29–300–29, trained on Numbers.
Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

CI 12utt CI full CD 12utt CD full
78.4 - 54.7

Conclusions: we have seen a small, but noticeable improvement from 55.1% of the previous TRAP-baseline
on the original data. Verified, that the correction of army files helps also the TRAPs.

5.5.3 Nets from Reference experiments traps idata tnn mnn – 21

Why: section 3.12 summarizes the objections we had to nets trained on Stories and Numbers. Here, the nets
trained on the Reference setup (band-classifiers on TIMIT and merger on Stories) were to be tested. The net
weights were linked from the reference baseline experiment base, described in section 4.2.
TRAPS: 101-point, TRAP-based mean and variance normalization. Nice handling of left 50 and right 50
frames of each file.
Classes: 43 phonemes of the reference setup (including the questionable ’other’ label) both for band-classifiers
and the merger.
Nets: bands: 101–300–43, trained on tnn-timit, 15×43–300–43, trained on mnn-stories.
Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

1if the previous file did not enough data for 50 frames, it was extended by the next previous file, and so forth. Same for the
next file. Previous file to the first file in the conversation was the last one. Next file for the last file in the conversation was the
first one (similar to a circular buffer.

37

CI 12utt CI full CD 12utt CD full
70.8 - 50.0

Conclusions: big improvement from previous results showing that the nets trained on the reference setup are
better than those from Stories and Numbers for a task, where phonemes occur in different context (which is
indeed the case of SPINE). we have seen a small, but noticeable

5.5.4 Band-nets from Reference experiments, merger on SPINE
traps idata tnn merger on 34 spine – 25

Why: as before, retraining the merger on the target task should aid the recognition performance. The merger
was trained on the train a set using already the small phoneme set containing 34 phonemes. Band-classifier
nets were still from the reference baseline experiment base, described in section 4.2.

TRAPS: 101-point, TRAP-based mean and variance normalization. Nice handling of left 50 and right 50
frames of each file.

Classes: 43 phonemes of the reference setup (including the questionable ’other’ label) for band-classifiers. 34
phonemes (mapped from 56 ICSI phonemes) for SPINE.

Nets: bands: 101–300–43, trained on tnn-timit, 15×43–300–34, trained on train a set of SPINE.

Post-processing: log and PCA. The PCA matrix was computed on SPINE (train a set).
Results:

CI 12utt CI full CD 12utt CD full
60.0 - 45.8

Conclusions: another spectacular improvement. Confirmed that band-classifiers trained on the reference
setup and retraining of the merger on the target task provides reasonable performance. At this point, we
have done some study of the distribution of output features; the next section describes our experiments on the
post-processing of merger output.

5.6 How to post-process merger output

this section addresses the post-processing of merger output which was quite neglected in the previous work (just
log of merger output (remember the merger has an output softmax-nonlinearity) followed by a PCA). It was
inspired by Sunil’s works on the post-processing of feature-net and by the article of Dan Ellis [1] on a similar
topic.

We know that the HMM recognizer “likes the data Gaussian and de-correlated”. We have therefore addressed
the Gaussianization of the data, and some aspects of the PCA.

From classical features, we also know that the adding of velocity and acceleration parameters aid, as well as
mean and variance normalization. We have therefore tested those approaches together with PCA.

The output probabilities of the merger from traps idata tnn merger on 34 spine (previous section) were
used in all those experiments.

5.6.1 Processing of merger outputs

In all the previous experiment there was a soft-max non-linearity in the output layer of the merger. When we
visualize the histograms for output probabilities, we see a very peaky distributions: bimodal with peak at 0 and
1 for the silence (most represented class) and unimodal for the other classes. See figure 5.1.

After the log (actually minus log, fig 5.2), the distributions become more Gaussian, but with an artifact at
0, corresponding to the original peak at 1.

When we look at log function (left panel of fig 5.3), we see that the expanding “tail” processes well the parts
around zero, but fails to shape the region around 1. Therefore, we looked for a function having “tails” at both
zero and one and found hyperbolic arcus-tangens atanh(2x − 1) to be a suitable candidate – see right panel of
fig 5.3. Resulting histograms shown in figure 5.2 are nicer than for the log.

Looking at histograms and judging if they are nice or not nice is funny, but the recognition accuracies are
more important. We have therefore run a recognition experiment for all of those features. The outputs were
processed by a simple PCA to de-correlate. .

38

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8
x 10

4 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16
x 10

4 2

Figure 5.1: Histograms for softmax output of the merger: ’sil’ and ’aa’ outputs

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6
x 10

4 train
a

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

train
a

Figure 5.2: Histograms for log of softmax output of the merger: ’sil’ and ’aa’ outputs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5.3: Log and atanh functions to post-process the merger softmax outputs

39

−10 −8 −6 −4 −2 0 2 4 6 8
0

1000

2000

3000

4000

5000

6000

train
a

−14 −12 −10 −8 −6 −4 −2 0 2 4
0

500

1000

1500

2000

2500

3000

3500

4000

4500

train
a

Figure 5.4: Histograms for atanh of softmax output of the merger: ’sil’ and ’aa’ outputs

−10 −5 0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000
1

−20 −15 −10 −5 0 5 10 15
0

1000

2000

3000

4000

5000

6000

7000

8000
2

Figure 5.5: Histograms for linear output of the merger: ’sil’ and ’aa’ outputs

description PCA experiment CI 12utt CD 12utt
raw outputs, no log NO traps itmo34s no log 89.1 crash

YES not done - -
log NO traps itmo34s raw 76.1 54.8

YES traps idata tnn merger on 34 spine 60.0 45.8
atanh NO traps itmo34s atanh 74.6 53.0

YES traps itmo34s atanh pca 59.8 44.7

The results show, that the atanh produces not only nicer histograms, but also better WER.

The last method tried was to remove the softmax from the output layer of the net and use just the linear
outputs. The histograms can be see in fig 5.5 and the recognition performances are summarized below:

description PCA experiment CI 12utt CD 12utt
linear outputs NO traps itmo34s fwdlin 68.0 49.6

YES traps itmo34s fwdlin pca 59.2 44.5

The results are the best so far seen. The removing of softmax was used in the following experiments. However,
the result is not far from hyperbolic arcus-tangens, so that for approaches relying on probabilities (Sunil), atanh
is the choice.

40

5.6.2 Further tricks on merger outputs

After the study of non-linearity processing, we were interested by additional post-processing of merger outputs.
The following steps were tested:

1. adding delta and acceleration parameters. Those were computed on the 9-frame context.

2. PCA. We have experimented also with normalized PCA, where the rotation matrix is computed not from
the original, but from the normalized covariance matrix. Its elements are given:

ρij =
cij√
ciicjj

(5.1)

where cii and cjj are the variances of features. The denominator of equation above is actually the product
of standard deviations. The normalized PCA can physically be done in 2 ways:

(a) the data are globally variance normalized, and an ordinary PCA is computed.

(b) the PCA rotation matrix is computed from normalized covariance matrix, when applying this matrix,
the data are first divided by standard deviations.

The dimensionality of the output data was always kept at 34, even if delta and acceleration parameters
were used. PCA directions corresponding to 34 greatest eigen-values were selected.

3. sentence-based mean and variance normalization of the final features.

Below we summarize the results of those experiments, which, we agree, are not well theoretically founded, but
rather justified by “people do it with MFCC’s so why shouldn’t it work here. . . ”. The base for all this processing
were the linear outputs of the net (without softmax in the output layer).

Delta and acceleration coefficients added

experiment PCA CI 12utt CD 12utt
traps itmo34s fwdlin d dd none 80.5 57.9
raps itmo34s fwdlin d dd pca34 normalized 63.8 42.8
traps itmo34s fwdlin d dd dyn pca standard 63.3 43.5

We can conclude, that the normalized PCA brings better results than the standard one. This is probably due to
the fact, that as all the features are globally variance normalized, their dynamic ranges are no more important,
the PCA can concentrate only on the de-correlation of features.

Sentence-based mean and variance normalization

We have experimented with the mean and variance normalization before and after the PCA (which retained
only 34 directions):

experiment description CI 12utt CD 12utt
traps itmo34s fwdlin d dd pca34 mn PCA followed by mean norm. 68.4 42.7
traps itmo34s fwdlin d dd pca34 mvn PCA followed by mean and var. norm. 68.3 43.7
traps itmo34s fwdlin d dd mn pca34 mean norm. followed by PCA 65.7 42.9

The best results are obtained by mean normalization only, followed by the PCA. Other experiments should be
conducted with retaining more PCA directions, unfortunately, we could not do them in the time given.

5.7 Brute force on SPINE

As the last cry we have done and experiment summarizing all the good things we have seen before, and going
beyond by the increasing of hidden layers of all nets. This experiment features long (101-point) 2-band traps
with one band skip, with band-classifiers trained on TIMIT containing 500 hidden neurons (before 300), with
a merger trained on train a part of SPINE with 500 neurons in the hidden layer (we wanted to train a hidden
layer with 1000 neurons, but the training would last forever. . .). Most powerful post-processing was deployed,
too.

41

TRAPS: 101-point, 2-band, 1-band skip, TRAP-based mean and variance normalization, separately in each
channel.
Classes: 42 phonemes from Reference experiments, without ’other’ for band-classifiers. 34 phonemes (mapped
from 56 ICSI phonemes) for SPINE.
Nets: bands: 202–500–42, trained on tnn-timit, 13×42–500–34, trained on train a set of SPINE.
Post-processing: removed softmax and PCA (traps i2b mo34s fwdlin pca) and deltas and accelerations,
normalized PCA and sentence-based mean normalization (traps i2b mo34s fwdlin d dd pca34 mn). The PCA
matrix was computed on SPINE (train a set).
Results:

CI 12utt CI full CD 12utt CD full
traps i2b mo34s fwdlin pca 63.0 - 43.8 -
traps i2b mo34s fwdlin d dd pca34 mn 63.0 - 41.2 -

Conclusions: as expected, we have seen the best numbers here. Here we have stopped the experiments and
are praying that the ROVERing on SPINE, Chaojun’s system, and good Gods of speech recognition would be
favorable (and forgivable) to us.

5.8 TRAPs on SPINE: Conclusions

• In the last experiments on SPINE, only TRAP-based mean and variance normalization were used. In
the SND experiments, we have seen some improvement when going from TRAP based to sentence-based
normalization. This should be tested on SPINE. We can go even beyond: we know, that one speaker is
always at one side of a conversation, so that the normalization could be conversation and channel based.
That would provide us with more reliable estimates of means and variances.

• the training of band-classifiers on SPINE was abandoned, as they did not perform so good as those trained
on other database. This approach was unfortunately no more tested in the “improved” data, which should
make the band-classifier training more consistent. Recent results of Pratibha show, that especially for
2-band TRAPs, this should be a very promising way.

• SPHINX recognizer was found to give worse performance that the system of Yonghong Yan and Chaojun
Liu. Lukáš is working on bringing the TRAPs to work with this system.

42

Chapter 6

Grand conclusions

• Although outperforming MFCC’s on the small vocabulary task with context-independent phonemes,
TRAPs seem to have hard time to reach the performance of “classical” features on LVCSR task using
context-dependent tied models. The recent experiments however show promising approaching of TRAP
performance to the MFCC (41.2 versus 36.7% WER on SPINE).

• The availability and quality labels seems to play crucial rôle in the TRAP work. In sections 5.4.3 and
5.4.4, we have seen a dramatic improvement from 53.7 to 47.9% just by re-mapping the ICSI 56 phoneme
set to a smaller one containing 34 phonemes. We are however still far from optimum, as we tune the
TRAPs to context-independent phonemes (often not the same, as the recognizer is using) while the
LVCSR systems use CI-models just for the initialization. It is however difficult to train any nets aiming
at the discrimination of classes finer than CI-phonemes due to their big numbers (e.g. 2600 tied states in
SPHINX).

• We have done experiments at the output of the merger, but similar care should be taken while processing

the band-classifier outputs for the input to the merger. Currently, a log of softmax output is taken. We
have tested (experiment not documented in the report, but only in the HTML table), that log performs
better than taking just the raw output. It would be worth to investigate if a hyperbolic arcus-tangens or
removing the softmax do not bring similar improvement as at the output of the merger.

• We use the neural nets as a black box, without changing their architecture (which is determined by
Quicknet), number of hidden layers (Quicknet supports just 1), learning strategies, etc etc. There is
certainly a potential of improvement here.

• PCA applied at the output of all the processing is the simplest and probably also the worst way to de-
correlate the features for HMM recognizer. LDA and newly MLLT are certainly of interest. As it was
already mentioned, the mean normalization could be done on conversation and channel basis for SPINE,
where this information is available.

43

Chapter 7

The cook-book

This chapter gives some instructions for the people wanting to make use of my scripts, C-programs, etc. Com-
ments are welcome.

7.1 Directory structure

I always keep a separate directory for scripts, programs, README’s and additional (not too voluminous) info,
and for the data. I got used to it in Brno, where we do not have enough capacity to backup the data disks. If
you backup the scripts, you can always re-generate the data, even if you loose them. . .

• SND experiments script directory: /u/honza/OGI/TRAPS. The experiment subdirs DO NOT begin by
’traps’ (this is a bit confusing. . .). The directory with recognition scripts for the Digit database is
/u/honza/OGI/RECO/exps. Data directory is /net/pilsner/u0/honza/TRAPS. In the data directory, sub-
dirs on_stories, on_numbers, and on_digits denote the database run. Experiment subdir names are
coherent with those in the script directory.

• Reference TRAPs script directory is /u/honza/OGI/REF_TRAPS. Data directory is
/net/cernahora/u0/honza/REF_TRAPS. In the data directory, subdirs src, tnn and mnn stand for source
files (log energies, labels, etc), band-classifier training and merger training.

• SPINE is more tricky. The TRAP generation script directory is also /u/honza/OGI/TRAPS. Subdirs
for SPINE experiment DO BEGIN with ’traps’. The directory containing SPHINX-related stuff is
/u/honza/OGI/SPINE. The data directory is /net/pilsner/u0/honza/SPINE/SPHINX/Experiments with
some links from /net/cernahora.

In the data directories the following structure can be found:

• PFILES - as the name says, for storing PFILES.

• FFRapout - phoneme (or broad classes) posterior files, ICSI ff.rap-format.

• Log - logs of the net training and forward passes.

• Norms - files to normalize features before NN training or forward pass. Computed prior to training.

• Weights - result of NN training.

• additional directories if needed.

After an experiment is finished and you are sure you will not need any pfiles or ff-rapfiles anymore, everything
in PFILES and FFRapout can be deleted. It is however wise to keep logs, norms and weights (they do not take
too much disk-space).

In SND experiments, you will find those additional directories under on_digits:

• train,test - carrying HTK-features for the HMM recognizer.

• models,models.* - HMM parameters for the initialization and context-free Baum-Welch re-estimation
(HInit, HRest).

• hemodels.* - HMM parameters and context Baum-Welch re-estimation (HERest).

44

The recognition results directory is kept in some temporary directory (/tmp/something) and only the result
of scoring is stored here (files score-*). After an experiment is finished, all the features and models can be
deleted, as it is quite quick to re-produce them (less than 1 hour). Only the score file should be kept.

In SPINE experiments, these following subdirs appear in data directories:

• Feat - features for SPHINX in CMU format.

• model_parameters

• model_architecture

• bwaccumdir

• trees

• logdir - the log files of SPHINX are VERY BIG. It is wise to delete them once the experiment is finished.

• Results - recognition results and results of scoring. Keep this directory.

• c_scripts - scripts for running SPHINX. Keep this directory.

7.2 Environment variables

A bit of relief . . . nothing needs to be set to run my scripts. Some paths need to be set in order to run software
on SPERT boards. Look into /u/honza/.cshrc.

7.3 README’s

Are the FIRST thing you should look at when you want to re-produce an experiment. As my memory does
not work very well (and never ever did), I use to put everything I find useful into README’s (some call it
grapho-mania):

• introductions to experiments, summarizing the information, file locations, scripts, etc. someone other did
and I used.

• a few lines of motivation for each experiment.

• names of directories for each experiment (very important!).

• everything you need to run the experiment, mostly in the form: nice +20 script.csh >& /tmp/script.log &

Those lines can just be copied to a terminal window by copy-paste and the script is fired.

• results and comments.

The README’s are sometimes quite messy1, so use of a key-word search is recommended when you want to
find something. The ’grep’ command is also quite handy.

Location of the main README’s (there are more of them, just look at the names or use grep if you think
they may contain something interesting):

• for SND experiments: /u/honza/OGI/TRAPS/README_TRAPS

• for reference TRAPs: /u/honza/OGI/REF_TRAPS/README_REF_TRAPS

• for TRAPs on SPINE: /u/honza/OGI/TRAPS/README_SPINE_TRAPS describes the feature generation. For
running SPHINX recognizer (including the results), look at /u/honza/OGI/SPINE/README_SPINE.

As the running of experiments is documented in README’s, it is not covered in this report.

7.4 Notes on compiling C-programs

• In programs I have written, I use some functions to ease me the life (file opening, allocation, some
variable printing). There exist surely professional libraries to do all that, but I am quite happy with my
little functions. Whenever you see #include "common.h" in the source-code, you should copy or link files
common.[ho] from /u/honza/C_PROGS to the program directory or compile /u/honza/C_PROGS/common.c.

1and worse . . . they may contain very explicit vulgar words if something did not work. . .

45

• if there is a Makefile in the dir, the safest way to compile is make target_executable. It will not mess-up
the other programs in the directory.

• if there is no Makefile, mostly the compiler command is given in a comment somewhere at the beginning
of the source. If not, use your common sense, I am not using any fancy stuff in C :-)

7.5 Notes on scripts

If you want to design an experiment, those are the criteria to take to select the right directory to copy the
scripts from and modify:

1. select the experiment which is closer to your one. The least changes you make, the less probability of
introducing new bugs.

2. in case there are several directories with similar experiments, choose the most recent one. Hopefully the
scripts will be cleaned from rubbish and even more hopefully they will be optimized to save disk space,
run faster, be more funny, etc.

7.6 Trapper

is a program to generate TRAP’s. It is located in /u/honza/OGI/TRAPS/C/trapper. This section is actually a
copy of the README you can find there. Trapper allows for much faster and more flexible creation of pfiles
with TRAPs, than in the original work of Pratibha and Sangita. It is placed in a pipeline between pfile print
and pfile create. See TESTING for many examples of trapper’s use.

7.6.1 Input:

-i filename or ’-’
pfile with features per band and somehow flipped or extended beginning and end of each sentence. Usually
we flip first 50 and last 50 frames (for 101-point traps) or take those 50 frames from the previous and next
file. ’-’ for std input (default).

-b 0 for ascii, 1 (default) for binary native input.
As it is difficult to read directly pfile (c++), will use BINARY output from pfile print (big endian - this
is in the doc ! verified it uses native input !). Our program will get only the features for bands we want
+ sentence and frame numbers + labels. Will give also option to work w/ ascii input, as the old progs.

-s filename
optional sentence and frame number patching file (needed for training on SPERT which does not like too
long sentences.). Ascii. one pair of sentence and frames nos. per line. if nothing, no patching.

-I filename
optional input label patching file - patching directly the input labels, not after trap selection. Ascii. one
label per line. if nothing, no patching.

-p filename
optional label patching file - trap level. ascii. One label per line. Providing also a possibility to say that
we want to zero all labels (good just for fwd pass with a network alien to out labels, or when we do not
have any labels at all) - give filename of patching file ’0’ if you want that.

-d filename
optional down-sampling file which is handy when we want to balance the set for NN training. For each
label, a float down-sampling coefficient must be provided. The least represented class should have down-
sampling coefficient of 1.0. If you want to know, how is fractional down-sampling done, look in the
code. This file can be also used for blacklisting certain labels (for example silence or noise - give a label
down-sampling factor 0 if you do not want it at all).

-M filename
Matrix filename if traps are to be post-processed by LDA or PCA. Default NULL (no post-multiplication).
Rows of the matrix have to contain base vectors. The number of bases to retain is controlled using the -y
switch. The matrix-file can contain more bases, but those ≥y are not used.

46

!!! The steps are done in the following order (they will rarely be used all together, but who
knows:

original label patching → limitation to valid labels → label patching → down-sampling → sentence and
frame number patching → matrix multiplication.

7.6.2 Configuration

-P number of bands
yes, trapper can generate multi-band traps. Default 1. If P>1, the normalization is always done indepen-
dently in each band, and the traps from bands are concatenated.

-V number of valid labels.
This is an OBLIGATORY parameter (actually the only one :-). All frames with label ≥ V will be used
as context, but traps will not be generated for them !

Example: phoneme set has 29 labels, ’sil’ is the last (28). If you want to generate traps also for silence,
put -V 29. If not, put -V 28 and silence frames will be used only as context. Similar effect can be obtained
by using a blacklisting file with 0.0 factor for the labels we do not want.

-x number of valid patch labels
If a trap-level label patch file is used (-p), you must specify the size of its label set by -x. Example: original
label set has 43 phonemes, we want to patch it to 10 broad phonetic classes. -V 43 -p patchfile -x 10

-h 0 for no Hamming, 1 for Hamming
optional Hamming windowing of all input bands. Hamm. windowing comes after all normalizations.
Default 1.

-m 0 for no mean norm, 1 for mean norm
optional mean normalization. Default 1.

-v 0 for no var norm, 1 for var norm
optional variance normalization. Var norm can not be done w/o mean norm. Default 1.

-S 0 for sentence-based norm off, 1 for sentence-based norm on.
Mean and var are computed over the whole sentence (only over the ’correct’) frames from LeftSkip +
LeftContext to end - RightSkip - RightContext. then ALL frames are normalized. Each band is always
treated separately. Default 0.

-T 0 for trap-based norm off, 1 for trap-based norm on.
Mean and var are computed for each TRAP, then the norm is done on this trap. Each band is always
treated separately. Default 1.

!!! You can specify -S 1 -T 1, but it is the same as -S 0 -T 1. Just think about a local
normalization following a global one ...

-L left context
important parameter telling how many frames from the left context are we going to take into the trap.
Default 50.

-R right context
important parameter telling how many frames from the right context are we going to take into the trap.
Default 50. You see, that the default are 101-point symmetrical traps.

-l LeftSkip

-r RightSkip
optional manual selection of beginning and end point for each utterance. This is handy if we have generated
the input pfile with a context of 50 frames on the left and 50 on the right of each sentence, but want to
experiment with shorter traps. Default 0,0.

Example: the pfile was generated to be used with 101-point symmetrical traps, so that there are 50
extra vectors at the beg and 50 extra vectors at the end. Suppose you want to experiment with 71-pt
asymmetrical traps with left context of 40 and right context of 30. You should not use the first 10 vectors
and last 20 vectors of each sentence. Use the following parameters:
-L 40 -R 30 -l 10 -r 20

-y number of valid bases
Number of vectors you want to retain if PCA or LDA is applied. Obligatory if -M used.

47

7.6.3 Output

-o filename or ’-’
output file or stdout. Default ’-’.

-B 0 for ascii, 1 for binary Big Endian output.
Default 1. The bin. output has to be Big Endian, as pfile create wants it so.

7.6.4 Diagnostic output (stderr)

diagnosis and some stats.

7.7 Trapalyzer and related Matlab scripts

as the name suggests, it is intended for analyzing TRAPs. Located in /u/honza/OGI/TRAPS/C/trapalyzer.
Computes the means and vars of traps, and is able to output some sample traps so that we see, what do we
want to classify. It works on the text output of a different program for creation of traps (which is usually piped
into the pfile create). The current version can not work with binary input, so if used with trapper, you should
not forget the -B 0 switch. Trapalyzer can make itself the traps, as would do Quicknet with the window extent
switch.

7.7.1 Input

-i input text file (can be - for stdin (default))
The text file should contain data in the format accepted by pfile create, that is
sent_number frame_number ...trap... label

7.7.2 Configuration

-P size of input
length of input traps with explicit context, 1 when the context is should be created by trapalyzer. Default
101.

-L left context
0 if explicit context, ¿0 if context is to be created. Default 0.

-R right context
0 if explicit context, ¿0 if context is to be created. Default 0.

-V number of valid labels
traps with labels ≥ this number will be discarded. Default 29.

-n number of examples.
The program allows to select a couple of examples of TRAPs and store them in a text file. Good for
visualization. If 0, no examples are written. Default 10.

-k step in taking examples
each k-th example taken. Default 1.

7.7.3 Output

-e prefix of filename with examples number of label will be appended. In examples, the direction of P is
written first, then the context. One example per line. Default /tmp/traps/ex

-m filename where means and stds will be written.
In means and stds, the direction of P is written first, then the context. Default /tmp/traps/mv. The file
will contain:

– global mean trap

– mean traps per class

– global std trap

– std traps per class.

48

-s filename where stats will be written
number of traps per label and percentage. Default ’-’ (stdout).

7.7.4 Visualization of trapalyzer output

In the program directory, the Matlab script see_traps_1_pic.m would plot the mean traps, std-traps and
frequency responses of traps to three plots. It can also visualize some examples. A better version of this script
is in /u/honza/OGI/REF_TRAPS/tools/see_traps_1_pic_43.m. To those scripts, it is necessary to provide a
file with the phoneme set, so that the script knows which labels to put on the top of plots.

7.8 FFrapalyzer and related Matlab scripts

FFrapalyzer is intended to analyze posterior probability files (ff.rap). It resides in
/u/honza/OGI/TRAPS/C/ffrapalyzer. Originally, the analysis of ffrap-files was done in Matlab, but the reading
of ffrap-files is too slow there. FFrapalyzer produces matrices and stats in text-form, which can be then visualized
by some Matlab scripts.

FFrapalyuzer needs the posterior probability vectors and “true” labels and it provides the following infor-
mation (theoretically explained in section 2.3.2):

• hard confusion matrix.

• soft confusion matrix.

• output variance matrix per reference class.

• covariance matrix of outputs.

• statistics of coverage of classes, and statistics of correctly recognized vectors (which can be compared to
Quicknet forward pass log-files – the global accuracy should be the same as shown in the log-file).

7.8.1 Input

-i input rap file.

-l input label file
text, one label per line.

7.8.2 Configuration

-n size of label set in the label file
can be different from the rap-file for non-square confusion matrices.

7.8.3 Outputs

-H filename for hard confusion matrix.

-S filename for soft confusion matrix.

-V filename for variance matrix.

-C filename for covariance matrix
as explained in the theoretical part, does not look at the reference labels.

-s filename where stats will be written.

7.8.4 Running ffrapalyzer and visualization of its output

FFrapalyzer was used mainly to analyze data in reference experiments. Many of the script directories under
/u/honza/OGI/REF_TRAPS contain:

• conf_matrices_mnn_bands.csh script for computing the matrices for all bands. Outputs are stored to
/net/cernahora/u0/honza/REF_TRAPS/mnn/experiment/Confusion.

• show_conf_matrices_mnn_bands.m visualizes the matrices.

49

• conf_matrice_mnn_merger.csh computes the matrices for the merger output.

• show_conf_matrice_merger.m visualizes the matrices.

It should be fairly simple to modify those scripts to your needs.

7.9 Label file tools

7.9.1 Label mapping

Often it is necessary to map a label set onto a different one using a map file, for example while working with
broad phonetic categories. Our label files are streams of numeric labels. My format of the map-file is:

source_label_number target_label_number

% comments ...

src_label src_number target_label target_number

...

(an example can be found in /u/honza/OGI/TRAPS/phone/reducedset29_to_4_classes.janmap). The script
to apply this mapping is /u/honza/OGI/SPINE/phone/map_can_do_multiple.pl, which can even do a splitting
of one label into two new ones (in case we want to map for example ’ay’ to ’aa’ and ’y’).

7.9.2 Label file analysis

script /u/honza/OGI/REF_TRAPS/tools/label_anal.pl does an analysis of labels in a label file. First param-
eter of this script must be a phoneme list in the format:

number label

...

(look for example to /u/honza/OGI/TRAPS/phone/reducedset29.phset for an example). There should be no
extra spaces in the phoneme list. The other inputs to the file are the label file(s) that should be analyzed. The
script would work with standard input, as well.

7.10 SPINE

7.10.1 Feature generation

The basis for feature generation for SPINE is the ffrap-file with posteriors from the merger. In the basic setup,
there is just a PCA computed on a part of SPINE training set, which is then applied to decorrelate the entire
data. In the final experiments on SPINE, different methods of post-processing were tested. The actual procedure
differs from experiment to experiment and is always described in /u/honza/OGI/TRAPS/README_SPINE_TRAPS.
A lot of post-processing was done in Matlab, and there handy Matlab-functions were created:

• in /u/honza/matlab:

– read_sphinx.m for reading a sphinx feature file into a matrix.

– write_sphinx.m to do the inverse.

– load_many_sphinx.m to load many Sphinx files according to a list. Good for computing the his-
tograms of the data. There are no special functions to compute the histograms, just peek in
/u/honza/OGI/TRAPS/README_SPINE_TRAPS how to get them.

– sphinx2cov.m to get a covariance matrix out of a list of Sphinx files. Good if you intend to play
with PCA on different types of features and you have the base features in Sphinx files.

• lots of small Matlab-scripts in /u/honza/TRAPS/traps_itmo34s_fwdlin*, for example to apply the PCA,
to perform sentence-based mean and variance normalization, etc, etc.

The resulting features are in the Feat sub-directory of the data directory. Sub-directories for different
training sessions should be created first using the command
mkdir ‘cat /u/honza/OGI/SPINE/jan_lists/spine2000.dirs‘

50

7.10.2 Running the recognizer

Binaries for SPHINX are in /net/pilsner/u0/honza/SPINE/SPHINX/{s3decode,s3trainer}. To run Sphinx
recognizer on the generated data, you need to copy the directory c_scripts from one of my data directories in
/net/pilsner/u0/honza/SPINE/SPHINX/Experiments (traps_itmo34s_fwdlin would be probably the best)
and do the following changes:

• set correct data path and feature vector size in variables.def, decode/silent-decode-ci-12utt.csh
and decode/silent-decode-cd-12utt.csh.

• run the training: runall.csh and look what happens, especially in directory logdir.

• once context-independent models are ready (directory logdir/02.cd_untied created, you can run CI-
decoding: decode/silent-decode-cd-12utt.csh.

• once the whole training is over (CD models created), run decode/silent-decode-ci-12utt.csh.

Bot decoding scripts work on the short evaluation set (12 conversations only). Be aware, that SPHINX hangs
up sometimes, leaving the process run with 99% CPU usage. Check periodically, if the log-files grow.

7.10.3 Scoring

Results from the CI and CD decoding would be in the directory Results, files recog.SPHINX3.cd_continuous_12utt.txt
and recog.SPHINX3.ci_continuous_12utt.txt. To score, go to
/net/pilsner/u0/honza/SPINE/SCORING/scoring_linux and fire score_short.csh with the full path to the
txt file as parameters. You will see lots of huge result files created in the Results directory. I personally prefer
to look at the end of *.lur files to get the word error rate (first percentage in the line beginning with “Set
Sum/Avg”).

51

Bibliography

[1] D.P.W Ellis and M.J. Reyes Gomez. Investigations into tandem acoustic modeling for the Aurora task. In
Proc. Eurospeech 2001, Aalborg, Denmark, September 2001.

[2] D.W.P. Ellis, R. Singh, and S. Sivadas. Tandem acoustic modeling in large-vocabulary recognition. In
Proceedings of ICASSP’01, Salt Lake City, Utah, USA, May 2001.

[3] H. Hermansky, D.P.W Ellis, and S. Sharma. Tandem connectionist feature extraction for conventional HMM
systems. In Proc. ICASSP 2000, Turkey, 2000.

[4] H. Hermansky, S. Sharma, and P. Jain. Data-derived nonlinear mapping for feature extraction in HMM. In
Proc. Workshop on automatic speech recognition and understanding, Keystone, December 1999.

[5] S. Sharma, D. Ellis, S. Kajarekar, P. Jain, and H. Hermansky. Features extraction using non-linear trans-
formation for robust speech recognition on the Aurora database. In Proc. ICASSP 2000, Turkey, 2000.

[6] S.R. Sharma. Multi-stream approach to robust speech recognition. PhD thesis, Oregon Graduate Institute of
Science and Technology, October 1999.

[7] S. Young, J. Jansen, J. Odell, D. Ollason, and P. Woodland. The HTK book. Entropics Cambridge Research
Lab., Cambridge, UK, 1996.

52

