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F. Grebeńıček ∗ M. Lisztwan ∗ M. Richter ∗ P. Zemč́ık ∗∗
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Abstract: The paper deals with the problem of determining the instantaneous velocity
of vehicles from a series of one-camera images. The model of vehicle trajectory is
described, and the relationship between the image and real coordinates is expressed.
Relationships are derived to obtain the necessary a priori information on the height
above the road. Accuracy analysis for the designed processing method is performed.
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1. INTRODUCTION

For measuring a vehicle velocity, we can use a
series (time sequence) of CCD camera. In order to
calculate the velocity, we need to know a distinct
point on the vehicle images (usually derived from
the car plate), to identify it in all images of the se-
ries, and subsequently transform its position from
image coordinates (area N2) to real coordinates
(area R3). As this transformation is not generally
straightforward a certain a priori information is
required. We can use (Lisztwan 2001):

• the constant value of the coordinate z. For
example, in passenger vehicles the height of
the car plate above the surface of the road
can be regarded as constant. A certain er-
ror must be taken into account – the height

can vary in dependence on vehicle loading.
Moreover, in cross-country vehicles, lorries or
buses the positions of the car plate consider-
ably differ.

• a known difference between the height of two
points (∆z) – vertical information. Also in
this case the car plate is a good example as
its dimensions are standardized.

• a known distance between two points lying
in a plane parallel to the plane of the road
(m = |[x1, y1, z], [x2, y2, z]|) – horizontal in-
formation. The known width of the car plate
can be used similarly as in the preceding
case. But a higher relative accuracy will be
attained (the width of the car plate is greater
that its height).
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Fig. 1. Location and orientation of coordinate
systems

• Combination of the horizontal and verti-
cal information. If both the horizontal and
the vertical distance between two arbitrary
points within a visible space are known, their
height above the road can be determined
(coordinate z).

2. IMAGING MODEL

For the purpose of measuring the position or speed
of a vehicle, a modified model of general trans-
formation of coordinates is applied. The number
of imaging parameters (and therefore the number
of degrees of freedom) is limited to those really
necessary for model application – that is its ability
to represent reality.

2.1 Space-camera tranformation

The anti-clockwise orthonormal coordinate sys-
tem in the real space is applied for easier asso-
ciation of coordinates x, y in the real space to
coordinates u,w in the image. The origin P of the
coordinate system is situated at the intersection
point of the camera optical axis σ and the plane
ρ of the road. Axes x and y also lie at the plane
of the road. Axis y lies on the projection of the
camera optical axis into the plane of the road.
Transformation of the real-space coordinates to
image coordinates takes place in three phases: (1)
rotation round axis x, (2) central projection, and
(3) rotation round the camera optical axis σ.

2.1.1. Rotation of coordinate axes round axis x
To enable application to the model of the central
projection physically realized by the camera lens,
the coordinate system must rotate round axis x in
such a way that the direction of axis z be identical
with the camera optical axis σ, as it is shown in
Fig. 1. It can be derived for the coordinates:
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√
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2.1.2. Central projection The camera lens pro-
jects the objects in the area of interest onto the
active area of the CCD chip in the image. This can
be modeled by central projection, on the assump-
tion that various errors in the optical system are
neglected. The following equation applies to the
model in Fig. 2:[

u′

w′

]
=

[
x′

y′

]
×
[

d

`− z′

]
(3)

By substituting from (1) we get:

u′ = d
x`

`2 − yg − zh
(4)

w′ = d
yh− zg

`2 − yg − zh
(5)

2.1.3. Rotation round the camera optical axis
Coordinates u′, w′ could be used as the final values
of image coordinates u, v on the assumption that
u axis is parallel to the road plane ρ. However,
this is not possible in reality. On the contrary, the
camera is aimed in such a way that the horizontal
edge of the car plate is scanned parallel with axis
u. That is why rotation of coordinate axes round
the camera optical axis σ is introduced in the
model (Fig. 3):[

u
w

]
=

[
cosϕ sinϕ
− sinϕ cosϕ

]
×
[
u′

w′

]
(6)



Application of (6) to equations (4) and (5) results
in the final imaging model (x, y, z)→ (u,w):

u=
d(x` cosϕ+ (yh− zg) sinϕ)

`2 − yg − zh
(7)

w=
d(x` sinϕ− (yh− zg) cosϕ)

`2 − yg − zh
(8)

2.2 Camera-space transformation

In velocity measurement, the object must be lo-
cated (coordinates x, y, z) using the known co-
ordinates u, v. We get two equations with three
unknowns – a certain a priori information on the
real scene is required. The coordinate z appears
to be most useful. Then the remaining coordinates
x, y can be determined through reverse transfor-
mation:

x= u′`
h− z

hd+ w′g
(9)

y =
w′`2 + z(gd− w′h)

hd+ w′g
(10)

The values u′, w′ can be obtained through tran-
formation reverse to transformation (6):[

u′

w′

]
=

[
cosϕ − sinϕ
sinϕ cosϕ

]
×
[
u
w

]
(11)

The final equations for x and y can be adapted as
follows:

x=
`(h− z)(u cosϕ− w sinϕ)
hd+ (u sinϕ+ w cosϕ)g

(12)

y =
(`2 − hz)(u sinϕ+ w cosϕ) + zgd

hd+ (u sinϕ+ w cosϕ)g
(13)

3. UNKNOWN HEIGHT ELIMINATION

3.1 Vertical information

The difference ∆z of the height of two points lying
on one straight line vertical to the plane of the
road (in other words: x-th and y-th coordinates of
the points are identical). Let the distance between
these points be 2n. Then it holds:

z1 = z − n (14)

z2 = z + n (15)

Two equations are available for calculation:

(1) x1 = x2. Substituting after (9), (14) and (15)
and after adaptation we get:

z = h− nhd(u′2 + u′1) + g(u′2w
′
1 + u′1w

′
2)

hd(u′2 − u′1) + g(u′2w
′
1 − u′1w′2)

(16)
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Fig. 4. Horizontal information

(2) y1 = y2. Substituting after (10), (14) and
(15) and after adaptation we get:

z = h− n
(

1 +

+2
h2dw′1 − g2dw′2 − hgd2 + w′1w

′
2hg

d`2(w′2 − w′1)

)
(17)

It should be noted that values u′i, w
′
i transformed

from values must be substituted, according to
(11).

3.2 Horizontal information

If the distance m between two points lying in
one plane parallel to the plane of the road (Fig.
4) is known, their height above the road can be
determined from the image in which they are
contained. The basic equation is the relationship
expressing the distance between the two points:

(x1 − x2)2 + (y1 − y2)2 = m2 (18)

By substituting

a1 = u′1
`h

hd+ w′1g
− u′2

`h

hd+ w′2g
, (19)

a2 =w′1
`2

hd+ w′1g
− w′2

`2

hd+ w′2g
(20)

equation (18) then has the form:(
a1 −

a1

h
z
)2

+
(
a2 −

a2

h
z
)2

= m2 (21)

The result then has the form:

z = h

(
1− m√

a2
1 + a2

2

)
(22)

Calculating substitutions a1, a2, values u′i, w
′
i tra-

nsformed from values ui, wi according to (11)
must be substituted.
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Fig. 5. Horizontal and vertical information

3.3 Horizontal and vertical information

If the horizontal and vertical distances (i.e. m and
2n) between two arbitrary points in the visible
space are known, their height above the road can
be determined from the image in which they can
be identified. The derivation procedure is similar
to those in the previous cases. Let us use equation
(18) for the distance between two points. After
substitution:

a1 =−u′1
`

hd+ w′1g
(23)

a2 =−u′2
`

hd+ w′2g
(24)

b1 =−w′1
`

h

`

hd+ w′1g
(25)

b2 =−w′2
`

h

`

hd+ w′2g
(26)

using equation (9) and relationships (14) and (15),
we get

x1 − x2 =−h(a1 − a2) + z(a1 − a2)−
−n(a1 + a2) (27)

Similarly, using equation (10) and relationships
(14) and (15), we get

y1 − y2 =−h(b1 − b2) + z(b1 − b2)−
−n(b1 + b2) (28)

The result is in the form:

z = h+
n(a2

2 − a2
1 + b22 − b21)
c

−

−
√
m2c− 4n2(a1b2 + a2b1)2

c
(29)

where c = (a2−a1)2 +(b2−b1)2. The relationship
holds for m > 0, n ≥ 0. Attentive reader will note
that for n = 0 we get a form similar to equation
(22) – it is not identical as substitutions a1, a2

are defined in a slightly different way. As in the

previous cases, the transformed values u′i, w
′
i must

be used for substitution.

4. VELOCITY CALCULATION

Instantaneous velocity is defined as a derivation
of the covered trajectory according to time:

v =
∂s

∂t
(30)

In reality, instantaneous velocity can be deter-
mined as:

v = lim
∆t→0

∆s
∆t

(31)

for sufficiently small ∆t.

The process of instantaneous velocity measure-
ment consists in measuring the distance covered
by the vehicle in the interval between two images.
The absolute position of the vehicle in space must
be located in both images. For this reason one
particular point on the vehicle must be reliably
identified in both images with the greatest pos-
sible accuracy. The most convenient seem to be
the corner points of the car plate. The car plate
is an object that can be identified with relative
accuracy, and whose dimensions and approximate
height above the road are standardized.

The velocity can be calculated according to the
formula

v =

√
∆x2 + ∆y2 + ∆z2

∆t
(32)

The coordinate z is taken into account. Even if
the height of the car plate should be constant, it
can be calculated for each image separately using
equations in chapter 3. Thus the deviations due to
the unevenness of the surface or to other effects
can be considered.

5. MEASUREMENT ACCURACY

To increase the measurement accuracy, passive
and active means can be used. Active means are
used to prevent errors or an increase in errors,
e.g. by using correctly focused and set cameras,
suitable illumination, and accurate calibration.
Passive means eliminate or reduce the impact of
the already existing errors.

5.1 Active means of accuracy increase

The most important and obvious aspect of correct
velocity measurement is calibration. Acquisition
of the most accurate parameters of the camera



system (i.e. h, g, d and ϕ parameters) decisively
affects the measurement as it introduces a sys-
tematic error.

Another aspect is a suitable aiming of the camera
as the measurement error varies in different parts
of the image. A rectangular image represents
a trapezoid area on the road. Obviously, the
same number of pixels is contained in a smaller
real area within the lower part than that in the
upper part. The measurement of the position is
therefore more accurate in the lower part. For
velocity measurement, however, we need to know
the difference between the positions. For greater
distances, the same absolute position error results
in a smaller relative distance error. The last image
of the processed sequence can contain the distinct
point nearest to the lower edge of the image. It
should be asked which is the highest position in
the image where a distinct point can be identified
so that the relative error of distance determination
would not exceed the required limit.

Let δS be the relative error of distance determi-
nation and ∆u or ∆w the absolute error of the
determination of the coordinate u or w. The rel-
ative error relates to the significant point [x0, y0]
in the second image. Then it holds:

δS =

√
Du +Dw√
Dxy

(33)

where

Du =

(
∆u

dx

du
(u,w)

)2

+

(
∆u

dy

du
(u,w)

)2

(34)

Dw =

(
∆w

dx

du
(u,w)

)2

+

(
∆w

dy

du
(u,w)

)2

(35)

Dxy = (x(u,w)− x0)2 + (y(u,w)− y0)2 (36)

Error estimation was performed for parameters
obtained at the experimental crossroads in Brno
on Božetěchova: h = 4.15 m, g = 22.5 m, d =
1660 px, ϕ = –0.02 rad. Point [u,w] = [0, 143]
was taken as a distinct point of the second image
which corresponds to values x0 = 0 m, y0 = 7.5 m.

It is evident from the graph in Fig. 6 that the op-
timum location for a distinct point identification
in the first image is in the concave area around
coordinate w = −80 where the error falls below
0.9 %. In Fig. 7 a slight decrease towards the
edges of the image (note the scale of the error)
can be seen. It can be said that the relative error
curve approximates a hyperbolic paraboloid with
the centre round the point u = 0, w = −80.
Nevertheless, the increase in error following the
shift of the distinct point in the first image to a
quarter of the height of the image is not too steep.
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Fig. 6. Relative error curve for u = 0
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Fig. 7. Relative error curve for w = −80

At a shorter distance between the images the error
is substantially greater.

Based on the analysis of the relative error be-
haviour, convenient locations can be found in the
image where the vehicle distinct points can be
identified.

5.2 Passive means of accuracy increase

The main passive means of accuracy increase is
the averaging of a number of measured values.

In a velocity measurement, more than two images
of a vehicle can be obtained. Velocity is calculated
for each pair of successive images, and then the
obtained values are averaged. A simple arithmetic
mean or a weighted average can be used. The
weight can be determined as the reciprocal value
of the sum of location errors at the beginning
and end of the respective interval. To enhance
the calculation, the weights can be calculated in
advance.

For vehicle location, more than one distinct point
can be used. The covered distance is determined
for each point separately, and then their average
is calculated. If the car plate is used for identifica-
tion of distinct points, the four corner points are
chosen.



6. CONCLUSION

A model of the movement of vehicles was de-
scribed in this paper. The relationship between
the image and real coordinates was expressed,
enabling reconstruction of the position of a dis-
tinct point and measurement of the velocity of an
object using one camera. The height of the point
must be a priori known. The height can be calcu-
lated from the known dimensions of the object.
For velocity measurement, the most convenient
proved to be the horizontal width of the car plate
– the so called horizontal information.

The relationship was derived for the measurement
error. It was shown by experiment that if the cal-
ibration parameters are correctly set, the relative
measurement error of about 1 % can be attained.
However, it holds only if the entire image is used
as a measurement area. If only one part of the
image is used, the error increases.
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