
Optimizing an LTS-Simulation
Algorithm

FIT BUT Technical Report Series

Lukáš Hoĺık and Jǐŕı Šimáček

Technical Report No. FIT-TR-2009-03

Faculty of Information Technology, Brno University of Technology

Last modified: March 16, 2012

Optimizing an LTS-Simulation Algorithm

Lukáš Hoĺık1 and Jǐŕı Šimáček1,2

1 FIT BUT, Božetěchova 2, 61266 Brno, Czech Republic
2 VERIMAG, UJF, 2. av. de Vignate, 38610 Gières, France

email: {holik,isimacek}@fit.vutbr.cz, simacek@imag.fr

Abstract. When comparing the fastest algorithm for computing the
largest simulation preorder over Kripke structures with the one for la-
beled transition systems (LTS), there is a notable time and space com-
plexity blow-up proportional to the size of the alphabet of an LTS. In this
paper, we present optimizations that lower this blow-up and may turn
a large alphabet of an LTS to an advantage. Our experimental results
show significant speed-ups and memory savings. Moreover, the optimized
algorithm allows one to improve asymptotic complexity of procedures for
computing simulations over tree automata using recently proposed algo-
rithms based on computing simulation over certain special LTS.

1 Introduction

A practical limitation of automated methods dealing with LTSs—such as LTL
model checking, regular model checking, etc.—is often the size of generated LTSs.
One of the well established approaches to overcome this problem is the reduc-
tion of an LTS using a suitable equivalence relation according to which the
states of the LTS are collapsed. A good candidate for such a relation is sim-
ulation equivalence. To the best of our knowledge, the currently fastest LTS-
simulation algorithm (denoted as LRT—labeled RT) has been published in [1].
It is a straightforward modification of the fastest algorithm (denoted as RT,
standing for Ranzato-Tapparo) for computing simulation over Kripke structures
[7], which improves the algorithm from [6]. The time complexity of RT amounts
to O(|PSim ||δ|), space complexity to O(|PSim ||S|). In the case of LRT, we obtain
O(|PSim ||δ| + |Σ||PSim ||S|) for time and O(|Σ||PSim ||S|) for space. Here, S is
the set of states, δ is the transition relation, Σ is the alphabet and PSim is the
partition of S according to the simulation equivalence. The space complexity
blow-up of LRT is caused by indexing the data structures of RT by the symbols
of the alphabet.

In this paper, we propose an optimized version of LRT (denoted OLRT) that
lowers the above described blow-up. We exploit the fact that not all states of
an LTS have incoming and outgoing transitions labeled by all symbols of an
alphabet, which allows us to reduce the memory footprint of the data structures
used during the computation. Our experiments show that the optimizations we
propose lead to significant savings of space as well as of time in many practical
cases. Moreover, we have achieved a promising reduction of the asymptotic com-
plexity of algorithms for computing tree-automata simulations from [1] using
OLRT.

1

2 Preliminaries

Given a binary relation ρ over a set X, we use ρ(x) to denote the set {y | (x, y) ∈
ρ}. Then, for a set Y ⊆ X, ρ(Y) =

⋃

{ρ(y) | y ∈ Y }. A partition-relation pair
over X is a pair 〈P,Rel〉 where P ⊆ 2X is a partition of S (we call elements of P
blocks) and Rel ⊆ P ×P . A partition-relation pair 〈P,Rel〉 induces the relation
ρ =

⋃

(B,C)∈Rel B × C. We say that 〈P,Rel〉 is the coarsest partition-relation
pair inducing ρ if any two x, y ∈ S are in the same block of P if and only if
ρ(x) = ρ(y) and ρ−1(x) = ρ−1(y). Note that in the case when ρ is a preorder
and 〈P,Rel〉 is coarsest, then P is the set of equivalence classes of ρ ∩ ρ−1 and
Rel is a partial order.

A labeled transition system (LTS) is a tuple T = (S,Σ, {δa | a ∈ Σ}), where
S is a finite set of states, Σ is a finite set of labels, and for each a ∈ Σ, δa ⊆ S × S
is an a-labeled transition relation. We use δ to denote

⋃

a∈Σ δa. A simulation
over T is a binary relation ρ on S such that if (u, v) ∈ ρ, then for all a ∈ Σ and
u′ ∈ δa(u), there exists v′ ∈ δa(v) such that (u′, v′) ∈ ρ. It can be shown that
for a given LTS T and an initial preorder I ⊆ S × S, there is a unique maximal
simulation SimI on T that is a subset of I , and that SimI is a preorder (see [1]).

3 Optimizing the LTS-Simulation Algorithm

In this section, we describe the original version of the algorithm presented in [1],
which we denote as LRT, and the proposed optimizations.

The Original LRT Algorithm. The algorithm gradually refines a partition-rela-
tion pair 〈P,Rel〉, which is initialized as the coarsest partition-relation pair
inducing an initial preorder I . After its termination, 〈P,Rel〉 is the coarsest
partition-relation pair inducing SimI . The basic invariant of the algorithm is
that the relation induced by 〈P,Rel〉 is always a superset of SimI .

The while-loop refines the partition P and then prunes the relation Rel in
each iteration of the while-loop. The role of the Remove sets can be explained
as follows: During the initialization, every Removea(B) is filled by states v such
that δa(v) ∩

⋃

Rel(B) = ∅ (there is no a-transition leading from v “above” B
wrt. Rel). During the computation phase, v is added into Removea(B) after
δa(v)∩

⋃

Rel(B) becomes empty (because of pruning Rel on line 17). Emptiness
of δa(v)∩Rel(B) is tested on line 20 using counters Counta(v,B), which record
the cardinality of δa(v)∩Rel(B). From the definition of simulation, and because
the relation induced by 〈P,Rel〉 is always a superset of SimI , δa(v)∩

⋃

Rel(B) =
∅ implies that for all u ∈ δ−1

a (B), (u, v) 6∈ SimI (v cannot simulate any u ∈
δ−1
a (B)). To reflect this, the relation Rel is pruned each time Removea(B) is
processed. The code on lines 8–13 prepares the partition-relation pair and all
the data structures. First, Split(P,Removea(B)) divides every block B′ into
B′∩Removea(B) (which cannot simulate states from δ−1

a (B) as they have empty
intersection with δ−1

a (Rel(B))), and B′ \ Removea(B). More specifically, for a
set Remove ⊆ S, Split(P,Remove) returns a finer partition P ′ = {B \Remove |

2

LRT Algorithm

Input: an LTS T = (S,Σ, {δa | a ∈ Σ}), partition-relation pair 〈PI ,Rel I 〉
Output: partition-relation pair 〈P,Rel〉

/* initialization */

〈P,Rel〉 ← 〈PI ,RelI〉 /* ← 〈PI∩Out ,Rel I∩Out〉 */1

forall B ∈ P and a ∈ Σ do /* a ∈ in(B) */2

forall v ∈ S do Counta(v,B) = |δa(v) ∩
⋃

Rel(B)| ; /* v ∈ δ−1

a (S) */3

Removea(B)← S \ δ−1

a (
⋃

Rel(B)) /* ← δ−1

a (S)\δ−1

a (
⋃

Rel(B)) */4

/* computation */

while exists B ∈ P and a ∈ Σ such that Removea(B) 6= ∅ do5

Remove ← Removea(B);6

Removea(B)← ∅;7

〈Pprev,Relprev〉 ← 〈P,Rel〉;8

P ← Split(P,Remove);9

Rel ← {(C,D) ∈ P × P | (Cprev, Dprev) ∈ Relprev};10

forall C ∈ P and b ∈ Σ do /* b ∈ in(C) */11

Removeb(C)← Removeb(Cprev);12

forall v ∈ S do Countb(v, C)← Countb(v, Cprev) ; /* v ∈ δ−1

b
(S) */13

forall C ∈ P such that C ∩ δ−1

a (B) 6= ∅ do14

forall D ∈ P such that D ⊆ Remove do15

if (C,D) ∈ Rel then16

Rel ← Rel \ {(C,D)};17

forall b ∈ Σ and v ∈ δ−1

b
(D) do /* b ∈ in(D) ∩ in(C) */18

Countb(v, C)← Countb(v, C)− 1;19

if Countb(v, C) = 0 then Removeb(C)← Removeb(C)∪{v}20

B ∈ P} ∪ {B ∩ Remove | B ∈ P}. After refining P by the Split operation,
the newly created blocks of P inherit the data structures (counters Count and
Remove sets) from their “parents” (for a block B ∈ P , its parent is the block
Bprev ∈ Pprev such that B ⊆ Bprev). Rel is then updated on line 17 by removing
the pairs (C,D) such that C ∩ δ−1

a (B) 6= ∅ and D ⊆ Removea(B). The change
of Rel causes that for some states u ∈ S and symbols b ∈ Σ, δa(u) ∩

⋃

Rel(C)
becomes empty. To propagate the change of the relation along the transition
relation, u will be moved into Removeb(C) on line 20, which will cause new
changes of the relation in the following iterations of the while-loop. If there is
no nonempty Remove set, then 〈P,Rel〉 is the coarsest partition-relation pair
inducing SimI and the algorithm terminates. Correctness of LRT is stated by
Theorem 1.

Theorem 1 ([1]). With an LTS T = (S,Σ, {δa | a ∈ Σ}) and the coarsest
partition-relation pair 〈PI ,Rel I 〉 inducing a preorder I ⊆ S × S on the input,
LRT terminates with the coarsest partition-relation pair 〈P,Rel〉 inducing SimI .

Optimizations of LRT. The optimization we are now going to propose reduces
the number of counters and the number and the size of Remove sets. The changes
required by OLRT are indicated on the right hand sides of the concerned lines.

3

We will need the following notation. For a state v ∈ S, in(v) = {a ∈ Σ |
δ−1
a (v) 6= ∅} is the set of input symbols and out(v) = {a ∈ Σ | δa(v) 6= ∅}
is the set of output symbols of v. The output preorder is the relation Out =
⋂

a∈Σ δ−1
a (S)× δ−1

a (S) (this is, (u, v) ∈ Out if and only if out(u) ⊆ out(v)).
To make our optimization possible, we have to initialize 〈P,Rel〉 by the finer

partition-relation pair 〈PI∩Out ,Rel I∩Out〉 (instead of 〈PI ,Rel I 〉), which is the
coarsest partition-relation pair inducing the relation I ∩ Out . As both I and
Out are preorders, I ∩ Out is a preorder too. As SimI ⊆ I and SimI ⊆ Out
(any simulation on T is a subset of Out), SimI equals the maximal simulation
included in I ∩ Out . Thus, this step itself does not influence the output of the
algorithm.

Assuming that 〈P,Rel〉 is initialized to 〈PI∩Out ,Rel I∩Out〉, we can observe
that for any B ∈ P and a ∈ Σ chosen on line 5, the following holds:

• Claim 1. If a 6∈ in(B), then skipping this iteration of the while-loop does not
affect the output of the algorithm.

• Claim 2. It does not matter whether we assign Removea(B) or Removea(B)\
(S \ δ−1

a (S)) to Remove on line 6.

The proof of the claims is based on the assumption that the LRT algorithm
is correct (Theorem 1). See Appendix A for more details.

As justified above, we can optimize LRT as follows. Sets Removea(B) are
computed only if a ∈ in(B) and in that case we only add states q ∈ δ−1

a (S)
to Removea(B). As a result, we can reduce the number of required counters by
maintaining Counta(v,B) if and only if a ∈ in(B) and a ∈ out(v).

We will describe the reduced complexity of the optimized while-loop (the
most time demanding part of the algorithm). The analysis of lines 14–16 is based
on the observation that for any two B′, D′ ∈ PSimI

and any a ∈ Σ, it can happen
at most once that a and some B with B′ ⊆ B are chosen on line 14 and at the
same time D′ ⊆ Removea(B). In one single iteration of the while-loop, blocks C
are listed by traversing all δ−1(v), v ∈ B (the Ds can be enumerated during the
Split operation). Within the whole computation, for any B′ ∈ PSimI

, transitions
leading to B′ are traversed on line 14 at most PSimI

times, so the complexity of
lines 14–16 of LRT is O(

∑

a∈Σ

∑

D∈PSim

∑

v∈S |δ−1
a (v)|) = O(|PSimI

||δ|). In the
case of OLRT, the number and the content of remove sets is restricted—for a
nonempty set Removea(B), it holds that a ∈ in(B) and Removea(B) ⊆ δ−1

a (S).
Hence, for a fixed a, a-transition leading to a block B′ ∈ PSimI

can be traversed
only |{D′ ∈ PSimI

| a ∈ out(D′)}| times and the complexity of lines 14–16
decreases to O(

∑

D∈PSimI

∑

a∈out(D) |δa|).

The analysis of lines 17–20 is based on the fact that once (C,D) appears on
line 17, no (C ′, D′) with C ′ ⊆ C,D′ ⊆ D can appear there again. For a fixed
(C,D), the time spent on lines 17–20 is in O(

∑

v∈B |δ−1(v)|) and only those
blocks C,D can meet on line 17 such that C × D ⊆ I . Thus, the overall time
spent by LRT on lines 17–20 is in O(

∑

B∈PSimI

∑

v∈I (B) |δ
−1(v)|). In OLRT,

blocks C,D can meet on line 17 only if C ×D ⊆ I ∩Out , and the complexity of
lines 17–20 in OLRT decreases to O(

∑

B∈PSimI

∑

v∈(I∩Out)(B) |δ
−1(v)|).

4

Additionally, OLRT refines 〈PI ,Rel I 〉 to 〈PI∩Out ,Rel I∩Out〉 on line 1. This
can be done by successive splitting according to the sets δ−1

a (S), a ∈ Σ and after
each split, breaking the relation between blocks included in δ−1

a (S) and the ones
outside. This procedure takes time O(|Σ||PI∩Out |

2).

OLRT also has to maintain the information about the input sets of blocks
for each symbol of the alphabet, for which we need a Σ-indexed array for each
block (the arrays are updated within the Split operation without introducing
a new time complexity factor). Apart from these and some other smaller dif-
ferences (see Appendix B), the implementation and the complexity analysis
of OLRT are analogous to the implementation and the analysis of LRT [1].
The overall time complexity of OLRT is O

(

|Σ||PI∩Out |
2 + |Σ||S| + |PSimI

|2 +
∑

B∈PSimI

(
∑

a∈in(B) |δ
−1
a (S)| +

∑

a∈out(B) |δa| +
∑

v∈(I∩Out)(B) |δ
−1(v)|)

)

. The

space complexity of OLRT is determined by the number of counters, the contents
of the Remove sets, the size of the matrix encoding of Rel , and some additional
data structures that need |Σ||S| space. Overall, it gives O(|PSimI

|2 + |Σ||S| +
∑

B∈PSimI

∑

a∈in(B) |δ
−1
a (S)|).

Observe that the improvement of the complexity of LRT is most significant
for systems with large alphabets and a high diversity of sets of input and output
symbols of states. Let us note here that certain regular diversity of sets of input
and output symbols is an inherent property of LTSs that arise when we compute
simulations over tree automata (see the next section).

4 Tree Automata Simulations

In [1], authors propose methods for computing tree automata simulations via
translating problems of computing simulations over tree-automata to problems of
computing simulations over certain LTSs. In this section, we show how replacing
LRT by OLRT within these translation-based procedures decreases the overall
complexity of computing tree-automata simulations.

A (finite, bottom-up) tree automaton (TA) is a quadruple A = (Q,Σ,∆, F)
where Q is a finite set of states, F ⊆ Q is a set of final states, Σ is a ranked
alphabet with a ranking function r : Σ → N, and ∆ ⊆ Q∗ × Σ × Q is a set
of transition rules such that if (q1 . . . qn, f, q) ∈ ∆, then r(f) = n. Finally, we
denote by rm the smallest n ∈ N such that n ≥ m for each m ∈ N such that
there is some (q1 . . . qm, f, q) ∈ ∆. For the space reasons, we omit the definition
of the semantics of TA (we will not need it), and we only refer to [5, 1].

For the rest of this section, we fix a TA A = (Q,Σ,∆, F). A downward
simulation D is a binary relation on Q such that if (q, r) ∈ D, then for all
(q1 . . . qn, f, q) ∈ ∆, there exists (r1 . . . rn, f, r) ∈ ∆ such that (qi, ri) ∈ D for
each i : 1 ≤ i ≤ n. Given a downward simulation D which is a preorder called an
inducing simulation, an upward simulation U induced by D is a binary relation
on Q such that if (q, r) ∈ U , then (i) for all (q1 . . . qn, f, q

′) ∈ ∆ with qi = q, 1 ≤
i ≤ n, there exists (r1 . . . rn, f, r

′) ∈ ∆ with ri = r, (q′, r′) ∈ U , and (qj , rj) ∈ D
for each j : 1 ≤ j 6= i ≤ n; (ii) q ∈ F =⇒ r ∈ F . From now on, let D denote

5

the maximal downward simulation on A and U the maximal upward simulation
on A induced by D .

To define the translations from downward and upward simulation problems,
we need the following notions. Given a transition t = (q1 . . . qn, f, q) ∈ ∆, q1 . . . qn
is its left-hand side and t(i) ∈ (Q∪{�})∗×Σ×Q is an environment—the tuple
which arises from t by replacing state qi, 1 ≤ i ≤ n, at the ith position of the
left-hand side of t by the so called hole � 6∈ Q. We use Lhs of to denote the set
of all left-hand sides of A and Env to denote the set of all environments of A.

We translate the downward simulation problem on A to the simulation prob-
lem on the LTS A• = (Q•, Σ•, {δ•a | a ∈ Σ•}) where Q• = {q• | q ∈ Q}∪{l• | l ∈
Lhs}, Σ• = Σ∪{1, . . . , rm}}, and for each (q1 . . . qn, f, q) ∈ ∆, (q•, q1 . . . q

•
n) ∈ δ•f

and (q1 . . . q
•
n, q

•
i) ∈ δ•i for each i : 1 ≤ i ≤ n. The initial relation is simply

I • = Q• × Q•. The upward simulation problem is then translated into a sim-
ulation problem on LTS A⊙ = (Q⊙, Σ⊙, {δ⊙a | a ∈ Σ⊙}), where Q⊙ = {q⊙ |
q ∈ Q} ∪ {e⊙ | e ∈ Env}, Σ⊙ = Σ•, and for each t = (q1 . . . qn, f, q) ∈ ∆,
for each 1 ≤ i ≤ n, (q⊙i , t(i)

⊙) ∈ δ⊙i and (t(i)⊙, q⊙) ∈ δ⊙a . The initial rela-
tion I⊙ ⊆ Q⊙ × Q⊙ contains all the pairs (q⊙, r⊙) such that q, r ∈ Q and
r ∈ F =⇒ q ∈ F , and ((q1 . . . qn, f, q)(i)

⊙, (r1 . . . rn, f, r)(i)
⊙) such that

(qj , rj) ∈ D for all j : 1 ≤ i 6= j ≤ n. Let Sim• be the maximal simulation
on A• included in I • and let Sim⊙ be the maximal simulation on A⊙ included
in I⊙. The following theorem shows correctness of the translations.

Theorem 2 ([1]). For all q, r ∈ Q, we have (q•, r•) ∈ Sim• if and only if
(q, r) ∈ D and (q⊙, r⊙) ∈ Sim⊙ if and only if (q, r) ∈ U .

The states of the LTSs (A• as well as A⊙) can be classified into several
classes according to the sets of input/output symbols. Particularly, Q• can be
classified into the classes {q• | q ∈ Q} and for each n : 1 ≤ n ≤ rm, {q1 . . . q

•
n |

q1 . . . qn ∈ Lhs}, and Q⊙ can be classified into {q⊙ | q ∈ Q} and for each
a ∈ Σ and i : 1 ≤ i ≤ r(a), {t(i)⊙ | t = (q1 . . . qn, a, q) ∈ ∆}. This turns
to a significant advantage when computing simulations on A• or on A⊙ using
OLRT instead of LRT. Moreover, we now propose another small optimization,
which is a specialized procedure for computing 〈PI∩OutRel I∩Out〉 for the both
of A⊙, A•. It is based on the simple observation that we need only a constant
time (not a time proportional to the size of the alphabet) to determine whether
two left-hand sides or two environments are related by the particular Out (more
specifically, (e⊙1 , e

⊙
2) ∈ Out if and only if the inner symbols of e1 and e2 are the

same, and (q1 . . . q
•
n, r1 . . . r

•
m) ∈ Out if and only if n ≤ m).

Complexity of the Optimized Algorithm. Due to the space limitations, we only
point out the main differences between LRT [1] and OLRT. For implementation
details and full complexity analysis of OLRT, see Appendix B.

To be able to express the complexity of running OLRT on A• and A⊙, we
extend D to the set Lhs such that ((q1 . . . qn), (r1 . . . rn)) ∈ D if and only if
(qi, ri) ∈ D for each i : 1 ≤ i ≤ n, and we extend U to the set Env such that
((q1 . . . qn, f, q)(i), (r1 . . . rn, f, r)(i)) ∈ U ⇐⇒ m = n∧ i = j ∧ (q, r) ∈ U ∧ (∀k ∈

6

{1, ..., n}. k 6= i =⇒ (qk, rk) ∈ D). For a preorder ρ over a set X, we use X/ρ
to denote the partition of X according to the equivalence ρ ∩ ρ−1.

The procedures for computing Sim• and Sim⊙ consist of (i) translating A
to the particular LTS (A• or A⊙) and computing the partition-relation pair
inducing the initial preorder (I • or I⊙), and (ii) running a simulation algorithm
(LRT or OLRT) on it. Here, we analyze the impact of replacing LRT by OLRT
on the complexity of step (ii), which is the step with dominating complexity (as
shown in [1] and also by our experiments; step (ii) is much more computationally
demanding than step (i)).

As we show in Appendix B, OLRT takes on A• and I • space O(SpaceD)
where SpaceD=(rm+|Σ|)|Lhs∪Q|+|Lhs∪Q/D |2+|Σ||Lhs/D ||Q|+rm|Q/D ||Lhs |
and time O(SpaceD+|Σ||Q/D |2+rm|Lhs/D ||Lhs |+|Q/D ||∆|+|Lhs/D ||∆|). On
A⊙ and I⊙, OLRT runs in time O(SpaceU) where SpaceU = (rm + |Σ|)|Env|+
|Env/U |2 + |Env/U ||Q|+ |Q/U ||Env| and time

O(SpaceU + |Σ||Q/U |2 + |Env/U ||Env|+ |Env/U ||δ|).

We compare the above results with [1], where LRT is used. LRT on A• and
I • takes space O(SpaceoldD) where SpaceoldD = (|Σ| + rm)|Q ∪ Lhs||Q ∪ Lhs/D |,
and time O(SpaceoldD + |∆||Q ∪ Lhs/D |). In the case of A⊙ and I⊙, we obtain
space O(SpaceoldU) where SpaceoldU = |Σ||Env||Env/U | and time O(SpaceoldU +
rm|∆||Env/U |).

The biggest difference is in the space complexity (decreasing the factors
SpaceoldD and SpaceoldU). However, the time complexity is better too, and our
experiments show a significant improvement in space as well as in time.

5 Experiments

We implemented the original and the improved version of the algorithm in a
uniform way in OCaml and experimentally compared their performance.

LTS LRT OLRT

source |S| |Σ| |δ| time space time space

random 256 16 416 0.12 9.6 0.02 1.9
random 4096 16 3280 13.82 714.2 2.02 78.2
random 16384 16 26208 o.o.m. 268.85 4514.9

random 4096 32 6560 62.09 1844.2 4.36 121.4
random 4096 64 13120 158.38 3763.2 6.59 211.2

pc 1251 43 49076 7.52 418.1 2.63 119.0
rw 4694 11 20452 81.28 3471.8 19.25 989.3
lr 6160 35 90808 390.91 12640.8 45.69 1533.6

Table 1. LTS simulation results

The simulation algorithms were benchmarked using LTSs obtained from the
runs of the abstract regular model checking (ARMC) (see [3, 4]) on several classic

7

examples—producer-consumer (pc), readers-writers (rw), and list reversal (lr)—
and using a set of tree automata obtained from the run of the abstract regular
tree model checking (ARTMC) (see [2]) on several operations, such as list re-
versal, red-black tree balancing, etc. We also used several randomly generated
LTSs and tree automata.

TA LTS LRT OLRT

source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 184 18 570 0.06 6.2 0.02 1.4
random 32 16 2 935 655 18 2165 0.87 74.4 0.21 14.4
random 64 16 2 3725 2502 18 8568 26.63 1417.9 3.50 195.4

random 32 32 2 1164 719 34 2511 2.67 166.6 0.23 16.8
random 32 64 2 2026 925 66 3780 12.17 623.5 0.56 25.4

ARTMC1 47 132 2 837 241 134 1223 0.84 70.6 0.05 6.2

ARTMC variable2 517.98 116.2 80.84 22.1

Table 2. Downward simulation results

We performed the experiments on AMD Opteron 8389 2.90 GHz PC with
128 GiB of memory (however we set the memory limit to approximately 20 GiB
for each process). The system was running Linux and OCaml 3.10.2.

The performance of the algorithms is compared in Table 1 (general LTSs),
Table 2 (LTSs generated while computing the downward simulation), and Table
3 (LTSs generated while computing the upward simulation), which contain the
running times ([s]) and the amount of memory ([MiB]) required to finish the
computation.

TA LTS LRT OLRT

source |Q| |Σ| rm |∆| |S| |Σ| |δ| time space time space

random 16 16 2 245 472 17 952 1.03 96.5 0.09 4.8
random 32 16 2 935 1791 17 3700 18.73 1253.8 1.37 54.7
random 64 16 2 3725 7126 17 14824 405.89 14173.9 22.83 752.6

random 32 32 2 1164 2204 33 4548 64.10 3786.7 2.36 193.4
random 32 64 2 2026 3787 65 7874 o.o.m. 6.72 245.8

ARTMC1 47 132 2 837 1095 133 3344 66.46 4183.2 0.69 68.2

ARTMC variable2 12669.94 4412.6 400.62 106.6

Table 3. Upward simulation results

As seen from the results of our experiments, our optimized implementation
performs substantially better than the original. On average, it improves the run-
ning time and space requirements by about one order of magnitude. As expected,

1 One of the automata selected from the ARTMC set.
2 A set containing 10 305 tree automata of variable size (up to 50 states and up to
1000 transitions per automaton). The results show the total amount of time required
for the computation and the peak size of allocated memory.

8

we can see the biggest improvements especially in the cases, where we tested the
impact of the growing size of the alphabet.

6 Conclusion

We proposed an optimized algorithm for computing simulations over LTSs, which
improves the asymptotic complexity in both space and time of the best algorithm
(LRT) known to date (see [1]) and which also performs significantly better in
practice. We also show how employing OLRT instead of LRT reduces the com-
plexity of the procedures for computing tree-automata simulations from [1]. As
our future work, we want to develop further optimizations, which would allow
to handle even bigger LTSs and tree automata. One of the possibilities is to
replace existing data structures by a symbolic representation, for example, by
using BDDs.

Acknowledgements. The work was supported by the Czech Science Founda-
tion (projects 102/07/0322, 102/09/H042, 201/09/P531), the Barrande project
MEB 020840, and the Czech institutional project MSM 0021630528.

References

1. P.A. Abdulla, A. Bouajjani, L. Hoĺık, L. Kaati, and T. Vojnar. Computing Simu-
lations over Tree Automata: Efficient Techniques for Reducing Tree Automata. In
Proc. of TACAS’08, LNCS 4963. Springer, 2008.

2. A. Bouajjani, P. Habermehl, L. Hoĺık, T. Touili, and T. Vojnar. Antichain-Based
Universality and Inclusion Testing over Nondeterministic Finite Tree Automata. In
Proc. of CIAA’08, LNCS 5148. Springer, 2008.

3. A. Bouajjani, P. Habermehl, P. Moro, and T. Vojnar. Verifying Programs with
Dynamic 1-Selector-Linked Structures in Regular Model Checking. In Proc. of

TACAS’05, LNCS 3440. Springer, 2005.
4. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract Regular Model Checking. In

Proc. of CAV’04, LNCS 3114. Springer, 2004.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi. Tree Automata Techniques and Applications.
http://www.grappa.univ-lille3.fr/tata, 2007. release October, 12th 2007.

6. M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on
finite and infinite graphs. In Proc. of FOCS’95. IEEE Computer Society, 1995.

7. F. Ranzato and F. Tapparo. A New Efficient Simulation Equivalence Algorithm. In
Proc. of LICS’07, 2007.

9

A Proof of Claims 1 and 2

Proof. (Claim 1). In an iteration of the while-loop processing Removea(B) with
a 6∈ in(B), as there is no C ∈ P with δa(C) ∩ Rel(B) 6= ∅, the for-loop on line
16 stops immediately. No pair (C,D) will be removed from Rel on line 17, no
counter will be decremented, and no state will be added into a Remove set.
The only thing that can happen is that Split(P,Remove) refines P . However,
in this case, this refinement of P would be done anyway in other iterations of
the while-loop when processing sets Removeb(C) with b ∈ in(C). To see this,
note that correctness of the algorithm does not depend on the order in which
nonempty Remove sets are processed. Therefore, we can postpone processing all
the nonempty Removea(B) sets with a 6∈ in(B) to the end of the computation.
Recall that processing no of these Remove sets can cause that an empty Remove
set becomes nonempty. Thus, the algorithm terminates after processing the last
of the postponed Removea(B) sets. If processing some of these Removea(B)
with a 6∈ in(B) refines P , P will contain blocks C,D such that both (C,D) and
(D,C) are in Rel (recall that when processing Removea(B), no pair of blocks
can be removed from Rel on line 17). This means that the final 〈P,Rel〉 will
not be coarsest, which is a contradiction with Theorem 1. Thus, processing the
postponed Removea(B) sets can influence nor Rel neither P , and therefore they
do not have to be processed at all.

(Claim 2). Observe that v with a 6∈ out(v) (i.e., v ∈ S \ δ−1
a (S)) cannot be

added into Removea(B) on line 20, as this would mean that v has an a-transition
leading to D. Therefore, v can get into Removea(B) only during initialization on
line 4 together with all states from S \ δ−1

a (S). After Removea(B) is processed
(and emptied) for the first time, no state from S\δ−1

a (S) can appear there again.
Thus, Removea(B) contains states from S \ δ−1

a (S) only when it is processed
for the first time and then it contains all of them. It can be shown that for any
partition Q of a set X and any Y ⊆ X, if Split(Q,Y) = Q, then also for any Z ⊆
X with Y ⊆ Z, Split(Q,Z) = Split(Q,Z \ Y). As P refines PI∩Out , Split(P, S \
δ−1
a (S)) = P . Therefore, as S \ δ−1

a (S) ⊆ Removea(B), Split(P,Removea(B)) =
Split(P,Removea(B) \ (S \ δ−1

a (S))). We have shown that removing S \ δ−1
a (S)

from Remove does not influence the result of the Split operation in this iteration
of the while-loop (note that this implies that all blocks from the new partition
are included in or have empty intersection with S \ δ−1

a (S)). It remains to show
that it also does not influence updating Rel on line 17. Removing S \ δ−1

a (S)
from Remove could only cause that the blocks D such that D ⊆ S \ δ−1

a (S) that
were chosen on line 15 with the original value of Remove will not be chosen with
the restricted Remove. Thus, some of the pairs (C,D) removed from Rel with
the original version of Remove could stay in Rel with the restricted version of
Remove. However, such a pair (C,D) cannot exist because with the original value
of Remove, if (C,D) is removed from Rel , then a ∈ out(C) (as δ(C) ∩ B 6= ∅)
and therefore also a ∈ out(D) (as Rel was initialized to Rel I∩Out on line 1 and
(C,D) ∈ Rel). Thus, D ∩ (S \ δ−1

a (S)) = ∅, which means that (C,D) is removed
from Rel even with the restricted Remove. Therefore, it does not matter whether
S \ δ−1

a (S) is a subset of or it has an empty intersection with Remove. ⊓⊔

10

B Implementation and Complexity of OLRT

Data Structures. The input LTS is represented as a list of records about its
states. The record about each state v ∈ S contains a list of nonempty δ−1

a (v)
sets1, each of them encoded as a list of its members. The partition P is encoded
as a doubly-linked list (DLL) of blocks. Each block is represented as a DLL of
(pointers to) states of the block. Each block B contains for each a ∈ Σ a list
of (pointers on) states from Removea(B). Each time when any set Removea(B)
becomes nonempty, block B is moved to the beginning of the list of blocks.
Choosing the block B on line 5 then means just scanning the head of the list of
blocks.

Each block B ∈ P and each state v ∈ S contains an Σ-indexed array contain-
ing a record B.a and v.a, respectively. The record B.a stores the information
whether a ∈ in(B) (we need the test on a ∈ in(B) to take a constant time),
If a ∈ in(B), then B.a also contains a reference to the set Removea(B), rep-
resented as a list of states (with a constant time addition), and a reference to
an array of counters B.a.Count containing the counter Counta(v,B) for each
v ∈ δ−1

a (S). Note that for two different symbols a, b ∈ Σ and some v ∈ S,
the counter Counta(v,B) has different index in the array B.a.Count than the
counter Countb(v,B) in B.b.Count (as the sets δ−1

a (S) and δ−1
b (S) are different).

Therefore, for each v ∈ S and a ∈ Σ, v.a contains an index va under which for
each B ∈ P , the counter Counta(v,B) can be found in the array B.a.Count .
Using the Σ-indexed arrays attached to symbols and blocks, every counter can
be found/updated in a constant time. For every v ∈ S, a ∈ Σ, v.a also stores a
pointer to the list containing δ−1

a (v) or null if δ−1
a (v) is empty. This allows the

constant time testing whether a ∈ in(v) and the constant time searching for the
δ−1
a (v) list.

Implementation Details and Complexity. The Split(P,X) operation can be im-
plemented as follows: Iterate through all v ∈ X. If v ∈ B ∈ P , add v into a block
Bchild (if Bchild does not exist yet, create it and add it into P) and remove v
from B. If B becomes empty, discard it. This can be done in O(X) time.

Computation of 〈PI∩Out ,Rel I∩Out〉 on line 1 can be done in time at most
|Σ||PI∩Out |

2 (starting with 〈PI ,Rel I 〉, and for each a ∈ Σ, splitting P accord-
ing to δ−1

a (S) and removing the relation between blocks containing states from
δ−1
a (S) and those containing states from S \ δ−1

a (S)). The initialization of the
Σ-indexed arrays attached to states and blocks can be done in O(|Σ||S| + |δ|)
time.

The Count counters are initialized by (1) allocating above described arrays
of counters (attached to blocks), setting all the counters to 0, and then (2)
for all B ∈ P , for all u ∈ (I ∩ Out)(B), and for all a ∈ in(u), and for all v ∈
δ−1
a (u), incrementing Counta(v,B). This takesO(

∑

B∈PI∩Out

∑

a∈in(B) |δ
−1
a (S)|+

1 We use a list rather than an array having an entry for each a ∈ Σ in order to avoid
a need to iterate over alphabet symbols for which there is no transition.

11

∑

B∈PI∩Out

∑

v∈(I∩Out)(B) |δ
−1(v)|) time. The Remove sets are initialized by it-

erating through all the counters and if Counta(v,B) = 0, then adding (append-
ing) v to Removea(B). This takes time proportional to the number of counters,
which is O(

∑

B∈PI∩Out

∑

a∈in(B) |δ
−1
a (S)|). Thus, the overall time complexity of

the initialization is O(|Σ||PI∩Out |
2 + |Σ||S| + |

∑

B∈PI∩Out

∑

a∈in(B) |δ
−1
a (S)| +

∑

B∈PI∩Out

∑

v∈(I∩Out)(B) |δ
−1(v)|).

The complexity analysis of lines 11–13 is based on the fact that it can happen
at most |PI∩Out | − |PSimI

| times that a block B is split on line 9. Moreover, the
presented code can be optimized by not having the lines 11–13 as a separate loop
(this was chosen just for clarity of the presentation), but the inheritance of Rel ,
Remove, and the counters can be done within the Split function, and only for
those blocks that were really split (not for all the blocks every time). Whenever
a block B is split into B1 and B2, we have to do the following: (1) allocate the
Σ-indexed arrays containing the record B1.a, B2.a for each a ∈ Σ, (the arrays of
B can be reused for one of the new blocks); (2) for each a ∈ in(B), compute the
sets in(B)1 and in(B)2 and update the records B1.a and B2.a (saying whether
a ∈ in(B1, B,2)). This takes time O(

∑

v∈B |δ−1(v)|) for one block B, which
gives time O(

∑

B∈PSimI

∑

v∈(I∩Out∩I−1∩Out−1)(B) |δ
−1(v)|+ |Σ|) overall; (3) for

each Bi, i ∈ {1, 2} and each a ∈ in(Bi), copy the Removea(B) and the array
of the counters B.a.Count and save them to the Bi.a record. The overall time
needed for this copying is equal to the overall space taken by all Remove sets
and all counters, which is O(

∑

B∈PSimI

∑

a∈in(B) |δ
−1
a (S)|); (4) add a row and a

column to the Rel matrix and copy the entries from those of the parent B. This
operation takes O(|PSimI

|) time for one added block as the size of the rows and
columns of the Rel -matrix is bounded by |PSimI

|. Thus, for all newly generated
blocks, we achieve the overall time complexity of O(|PSimI

|2).
The key observation, which the time complexity analysis of line 9 and lines

14–16 is based on, is the following: For any two states u, v ∈ S and any symbol
a ∈ Σ, it can happen at most once that v is present in Removea(B) for some
block B with u ∈ B when Removea(B) is processed in the main while-loop (B
and a is chosen on line 4). This also means that for every B ∈ PSimI

and a ∈ Σ,
the sum of cardinalities of all Removea(B

′) sets with B ⊆ B′ (in the moment
when a and B′ were chosen on line 4) is below |δ−1

a (S)|. Indeed, notice that
when v is being added into Removea(B) (either on line 4 or on line 20), then
δa(v)∩Rel(B) is empty. If v is added into Removea(B) in some iteration of the
while-loop, then δa(v)∩Rel(B) was nonempty until (B,D) was removed from Rel
on line 17 (in the same iteration). Once δa(v)∩Rel(B) is empty, δa(v)∩Rel(B′)
can never get nonempty for any block B′ ⊆ B as Rel never grows, and thus v
can never be added into some Removea(B

′) for B′ ⊆ B on line 20.
The above observation also implies that for a fixed block B ∈ PSimI

and
a ∈ Σ, the sum of all cardinalities of the Removea(B

′) sets, where B ⊆ B′

according to which a Split is being done, is below |δ−1
a (S)|. Therefore, the overall

time taken by splitting on line 9 is in O(
∑

B∈PSimI

∑

a∈in(B) |δ
−1
a (S)|).

Lines 16 and 17 are O(1)-time (Rel is a boolean matrix). Before we enter
the for-loop on line 14, we compute a list RemoveLista(B) = {D ∈ P | D ⊆

12

Remove}. This is an O(|Remove|) operation and by almost the same argument
as in the case of the overall time complexity of Split on line 9, we get also exactly
the same overall time complexity for computing all the RemoveLista(B) lists.
On line 14, the blocks C are listed by traversing all δ−1(v), v ∈ B. From the
above follows that for any two B′, D′ ∈ PSimI

and any a ∈ Σ, it can happen at
most once that a and some B with B′ ⊆ B are chosen on line 4 and at the same
time D′ ⊆ Removea(B). Moreover, it holds that a ∈ in(B) and Removea(B) ⊆
δ−1
a (S). Thus, for a fixed a, the a-transition leading to a block B′ ∈ PSimI

can
be traversed on line 14 only |{D′ ∈ PSimI

| a ∈ out(D′)}| times and thus the
time complexity of lines 14–16 amounts to O(

∑

D∈PSimI

∑

a∈out(D) |δa|).

The analysis of lines 17–20 is based on the fact that if some (C,D) appears
once on line 17, than no (C ′, D′) with C ′ ⊆ C,D′ ⊆ D can appear there again
(as (C,D) is removed from Rel and Rel never grows). Moreover, (C,D) can
appear on line 17 only if C ×D ⊆ I ∩Out . For a fixed (C,D), the time spent in
lines 17–20 is in O(

∑

v∈B |δ−1(v)|) and therefore the overall complexity of lines
17–20 amounts to O(

∑

B∈PSimI

∑

v∈(I∩Out)(B) |δ
−1(v)|).

From the above follows that the time complexity of OLRT is covered by the
following six factors:

1. O(|Σ||PI∩Out |
2)

2. O(|Σ||S|)
3. O(|PSimI

|2)
4. O(

∑

B∈PSimI

∑

a∈in(B) |δ
−1
a (S)|)

5. O(
∑

B∈PSimI

∑

a∈out(B) |δa|)

6. O(
∑

B∈PSimI

∑

v∈(I∩Out)(B) |δ
−1(v)|)).

In the sum, this gives:

O

(

|Σ||PI∩Out |
2 + |Σ||S|+ |PSimI

|2+

∑

B∈PSimI

(

∑

a∈in(B) |δ
−1
a (S)|+

∑

a∈out(B) |δa|+
∑

v∈(I∩Out)(B) |δ
−1(v)|

)

)

.

The space complexity of OLRT is determined by the number of counters,
the contents of the Remove sets, the size of the matrix encoding of Rel , and the
Σ-indexed arrays attached to blocks and states. This is covered by the above
factors 2,3 and 4, which gives:

O
(

|PSimI
|2 + |Σ||S|+

∑

B∈PSimI

∑

a∈in(B)

|δ−1
a (S)|

)

.

C Complexity of Computing Simulations on Tree

Automata Using OLRT

Here we derive the complexity of computing simulations by OLRT on the LTS-
translations of tree-automata simulations problems. We recap some of the defi-
nitions from Section 4.

13

We translate the downward simulation problem on A to the simulation prob-
lem on the LTS A• = (Q•, Σ•, {δ•a | a ∈ Σ•}) where Q• = {q• | q ∈ Q}∪{l• | l ∈
Lhs}, Σ• = Σ ∪ {1, . . . ,max{r(a) | a ∈ Σ}}, and for each (q1 . . . qn, f, q) ∈ ∆,
(q•, q1 . . . q

•
n) ∈ δ•f and (q1 . . . q

•
n, q

•
i) ∈ δ•i for each i : 1 ≤ i ≤ n. The initial rela-

tion The initial relation is simply I • = Q•×Q•. The upward simulation problem
is then translated into a simulation problem on LTS A⊙ = (Q⊙, Σ⊙, {δ⊙a | a ∈
Σ⊙}), where Q⊙ = {q⊙ | q ∈ Q} ∪ {e⊙ | e ∈ Env}, Σ⊙ = Σ•, and for each
t = (q1 . . . qn, f, q) ∈ ∆, for each 1 ≤ i ≤ n, (q⊙i , t(i)

⊙) ∈ δ⊙i and (t(i)⊙, q⊙) ∈ δ⊙a .
The initial relation I⊙ ⊆ Q⊙ × Q⊙ contains all the pairs (q⊙, r⊙) such that
q, r ∈ Q and r ∈ F =⇒ q ∈ F , and ((q1 . . . qn, f, q)(i)

⊙, (r1 . . . rn, f, r)(i)
⊙)

such that (qj , rj) ∈ D for all j : 1 ≤ i 6= j ≤ n. We are interested in computing
Sim•—the maximal simulation on A• included in I • and Sim⊙—the maximal
simulation on A⊙ included in I⊙.

We will instantiate the six OLRT time complexity factors for A• and A⊙.
The first time complexity factor comes out from computing 〈PI∩Out ,Rel I∩Out〉.
For A• and A⊙, this factor can be decreased exploiting special properties of the
transition systems. Bellow, we assume that |Q| ≤ |∆| and |Q| ≤ |Env|.

In the case of A•, 〈PI∩Out ,Rel I∩Out〉 can be computed separately for the
states Q•

1 = {q• | q ∈ Q} and Q•
2 = {l• | l ∈ Lhs}. For the first set, for

each a ∈ Σ, we perform Split(P, δ−1
a (Q•

2)) and remove from the relation all the
pairs of blocks included in Q•

1 \ δ
−1
a (Q•

2)× δ−1
a (Q•

2). Then, we partition Q•
2 into

blocks Bn = {l• | l = q1 . . . qn ∈ Lhs} for each n ≤ rm and remove all relation
on these blocks Bn, 1 ≤ n ≤ rm apart from the diagonal. Finally, we remove
all relations between blocks included in Q•

1 and those in Q•
2. Note that Q•

2 is
initially partitioned into rm blocks (one block for left-hand sides of each possible
length up to rm). Overall, the procedure takes time in O(|Σ||Q/D |2 + r2

m
).

In the case of A⊙, 〈PI∩Out ,Rel I∩Out〉 is computed separately for the states
Q⊙

1 = {q⊙ | q ∈ Q} and Q⊙
2 = {e⊙ | e ∈ Env}. For the first set, for each i : 1 ≤

i ≤ rm, we perform Split(P, δ−1
i (Q⊙

2)) and remove from the relation all pairs of
blocks included in Q⊙

1 \ δ−1
i (Q⊙

2)× δ−1
i (Q⊙

2). Then, for each a ∈ Σ, we perform
Split(Q⊙

2 , δ
−1
a (Q⊙

1)) and remove from the relation all pairs of blocks included in
Q⊙

2 \ δ−1
a (Q⊙

1) × δ−1
a (Q⊙

1). Finally, we remove all the relations between blocks
from Q⊙

1 and Q⊙
2 . Overall, the procedure takes time O(|Σ||Q/U |2 + |Env/U |2).

We now derive the complexity of computing simulation on A• by OLRT.
The above time complexity factors of OLRT are covered by the following factors
(the first factor is the complexity of the specialized procedure for computing
〈PI∩Out ,Rel I∩Out〉):

1. O(|Σ||Q/D |2 + r2
m
)

2. O((rm + |Σ|)|Lhs ∪Q|)
3. O(|Lhs ∪Q/D |2)
4. O(|Σ||Lhs/D ||Q|+ rm|Q/D ||Lhs |)
5. O(rm|Lhs/D ||Lhs |+ |Q/D ||∆|)
6. O(|Lhs/D ||∆|+ rm|Q/D ||Lhs |)

The space complexity is the sum of the factors 2–4. This gives O(SpaceD), where
SpaceD = (rm + |Σ|)|Lhs ∪Q|+ |Lhs ∪Q/D |2 + |Σ||Lhs/D ||Q|+ rm|Q/D ||Lhs |.

14

The time complexity can then be simplified to

O(SpaceD + |Σ||Q/D |2 + rm|Lhs/D ||Lhs |+ |Q/D ||∆|+ |Lhs/D ||∆|).

In the case of A⊙, the space complexity of running OLRT on Sim⊙ and
〈PI⊙ ,RelI⊙〉 is O(SpaceU), where SpaceU = (rm + |Σ|)|Env| + |Env/U |2 +
|Env/U ||Q|+ |Q/U ||Env|. The space complexity is again the sum of the factors
2–4 of the six time complexity factors that we instantiate bellow. The first factor
is the complexity of the specialized procedure for computing 〈PI∩Out ,Rel I∩Out〉.
We assume that Q ≤ Env, and thus also that Q/U ≤ Env/U :

1. O(|Σ||Q/U |2 + |Env/U |2)
2. O((rm + |Σ|)|Env|)
3. O(|Env/U |2)
4. O(|Env/U ||Q|+ |Q/U ||Env|)
5. O(|Env/U ||Env|+ |Q/U ||Env|)
6. O(|Env/U ||δ|+ |Q/U ||Env|).

Finally, the time complexity of OLRT can be written as

O(SpaceU + |Σ||Q/U |2 + |Env/U ||Env|+ |Env/U ||δ|).

15

