Image Processing

Valentina Hubeika, Jan Černocký
DCGM FIT BUT Brno, \{ihubeika,cernocky\}@fit.vutbr.cz

Image signals

- grayscale picture is a projection of space to a plane, $3 \mathrm{D} \Rightarrow 2 \mathrm{D}$.
- video is a projection of 4D space (3 coordinates + time) to 3D (only 2 coordinates plus time).
- according to some, color is onother dimension - for a color video we work with a reduction from 5D (color, time, 3D space) to 4D (color, time, 2D projection).

Dimension reduction - this lecture is dealing with a still picture in gray-scale.
"Analog image" is a continuous picture $z(x, y)$ of space coordinates x (horizontal) and y (vertical) for $x, y \in[-\infty,+\infty]$ - normally it is called a 2D signal.

For processing we have to take the following steps:

- sample in both dimesions. Variable x is replaced by a horisontal counter of samples l. Variable y is replaced by a vertical counter of samples k. Sample $x[k, l]$ (fundamental area of an image) is called a pixel (picture element).
- limit the size of the picture: only L samples horizontally (L columns), and K samples verticaly (K raws). Point density is usually represented by dpi (dots per inch).
- sample quantization: we dispose of a limited number of quantization levels. In black-n-white pictures samples are usually represeneted by 8 bits (256 quantization levels).

Example: Lena: original and quantized, 4 quantization levels.

Spectral analysis of a 2D signal

A 2D signal can be represented by a matrix :

$$
x[k, l]=\left[\begin{array}{cccc}
x[0,0] & x[0,1] & \cdots & x[0, L-1] \\
x[1,0] & x[1,1] & \cdots & x[1, L-1] \\
\vdots & & & \vdots \\
x[K-1,0] & x[K-1,1] & \cdots & x[K-1, L-1]
\end{array}\right]
$$

For a 2D signal, we define a 2D Fourier transform:

$$
X(f, g)=\sum_{k=0}^{K-1} \sum_{l=0}^{L-1} x[k, l] e^{-j 2 \pi(f k+g l)}
$$

where f and g are image frequencies. In case of an analog 2D signal, image frequencies are of a unit m^{-1} (note that $\mathrm{Hz}=\mathrm{s}^{-1}$). Images we work with are sampled thus f and g are normalized image frequencies. The introduced equation corresponds to DTFT (Discrete Time Fourier Transform), where f and g can be of an arbitrary value.

Practically we use two dimensional discrete Fourier transform (2D-DFT):

$$
X[m, n]=\sum_{k=0}^{K-1} \sum_{l=0}^{L-1} x[k, l] e^{-j 2 \pi\left(\frac{m k}{M}+\frac{n l}{N}\right)}
$$

Compute only for discrete frequences:

$$
f=m \Delta f \quad g=n \Delta g
$$

where

$$
\Delta f=\frac{1}{M} \quad \Delta g=\frac{1}{N}
$$

M, N are integer numbers, most often we use $M=K, N=L$.
2D-DFT can be computed separately for each dimension:

$$
X[m, n]=\sum_{k=0}^{K-1} \sum_{l=0}^{L-1} x[k, l] e^{-j 2 \pi\left(\frac{m k}{M}+\frac{n l}{N}\right)}=\sum_{k=0}^{K-1} e^{-j 2 \pi \frac{m k}{M}} \sum_{l=0}^{L-1} x[k, l] e^{-j 2 \pi \frac{n l}{L}},
$$

thus we can compute 2D-DFT as a sequence of two 1D-DFT - first over rows and then over colums (or vice versa).

Inverse two-dimensional discrete Fourier transform (2D-IDFT):

$$
x[k, l]=\frac{1}{M N} \sum_{m=0}^{K-1} \sum_{n=0}^{L-1} X[m, n] e^{+j 2 \pi\left(\frac{m k}{M}+\frac{n l}{L}\right)} .
$$

Due properties similar to DFT, matrix $X[m, n]$ is symmetic, thus its enough to look at the first quadrant with indeces $m=0 \ldots \frac{M}{2}-1, n=0 \ldots \frac{N}{2}-1$. 2D-DFT is complex but in the examples we will be looking only at the modules.

> Image frequency - examples
$K=L=M=N=256$.

Black only: $x[k, l]=0, \quad X[m, n]=0$

White only: $x[k, l]=1, \quad X[0,0]=65536$

Horisontal cosine: $f=\frac{1}{L}: x[k, l]=\frac{1}{2}+\frac{1}{2} \cos 2 \pi f l, \quad X[0,0]=32768, \quad X[0,1]=16384$,

Once more: $f=\frac{2}{L}: x[k, l]=\frac{1}{2}+\frac{1}{2} \cos 2 \pi f l, \quad X[0,0]=32768, \quad X[0,2]=16384$,

Vertical cosine: $g=\frac{1}{K}: x[k, l]=\frac{1}{2}+\frac{1}{2} \cos 2 \pi g k, \quad X[0,0]=32768, \quad X[1,0]=16384$,

Once more: $g=\frac{4}{K}: x[k, l]=\frac{1}{2}+\frac{1}{2} \cos 2 \pi g k, \quad X[0,0]=32768, \quad X[4,0]=16384$,

Vertical rectangle: what function defines horisontal frequencies?

Square

Real signal - Lena

Discrete Cosine Transform (DCT)

- analogy to DFT, real and even
- given sourse data 8×8, the transform projects it into a linear combination of the bases defined as shown in the graphic (with each step - left to right, top to bottom - there is an increase in frequency by $1 / 2$)

Application of DFT - JPEG

(Joint Picture Encoding Group):

- DCT is aplied on "squares" of 8×8 pixel.
- sensibility correction according to the human vision (not all information that is contained in a picture a human eye can see, reduction of redundant information).
- Huffman coding (lossless)
- compromise between quality and the size.
- colors: standard RGB model or some alternative models - see courses of doc. Zemčík.
- compression rate reach up to 1:20.
- drawback: image can contain visible "square" structure (8x8-pixel blocks)

Linear filtering

for 2D signals is usually done by means of FIR filters that are defined by the impulse response:

$$
h[i, j] \quad \text { for } \quad-\frac{I}{2} \leq i \leq \frac{I}{2}, \quad-\frac{J}{2} \leq j \leq \frac{J}{2}
$$

The filters are most often defined by a matrix "mascs" - with size $(I+1) \times(J+1)$.
Filtering is done as following: "place" the matrix over the image to each point, corresponding values multiply together and then summed up resulting to the output point:

$$
y[k, l]=x[k, l] \star h[k, l]=\sum_{i=-\frac{I}{2}}^{\frac{I}{2}} \sum_{j=-\frac{J}{2}}^{\frac{J}{2}} h[i, j] x[k-i, l-j]
$$

Example 1. - low-pass filter, $h[i, j]=\mathbf{I}_{10 \times 10}$. Lena image is modified by noise $\sigma=0.1$.

Example 2. - Sobel filters for detection of vertical and horisontal edges:
$h_{v}[i, j]=\left[\begin{array}{ccc}1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1\end{array}\right] \quad h_{h}[i, j]=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1\end{array}\right]$

two detectors together: $y[k, l]=\left|y_{v}[k, l]\right|+\left|y_{h}[k, l]\right|$

