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Diskrete Fourier transform (DFT)

We have just one problem with DFS that needs to be solved. Infinite length of signal and

finite length of computed spectrum. DFT transforms a sequence of length N to other

sequence of length N – we will see that it is a transform of one period of the input signal

to one period in DFS. The procedure is the following:

1. periodize a sequence x[n] of length N : x̃[n] = x[ mod N (n)].

2. find DFS coefficients: X̃[k] =

N−1
∑

n=0

x[n]e−j 2π
N kn. Note, only one period of periodic

signal x[ mod N (n)] is taken, therefore, we can work just with original sequence x[n].

Step 1. is taken to fulfill requirements for DFS computing.

3. resulting sequence is windowed again to the length N :

X[k] = RN [k]

N−1
∑

n=0

x[n]e−j 2π
N kn
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Usually we find this formula with no windowing function as computing only through one

period is assumed, X[k] for k = [0, N − 1]:

X[k] =

N−1
∑

n=0

x[n]e−j 2π
N kn

X[k] is a projection/image of DFT, denoted as x[n]
DFT
−→ X[k]. Inverse DFT for samples

n = [0, N − 1] is obtained in the same manner ( periodization of DFT spectrum, inverse

DFS application, windowing of the resulting periodic signal) :

x[n] =
1

N

N−1
∑

k=0

X[k]e+j 2π
N kn,

we denote X[k]
DFT−1

−→ x[n]
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Frequency axis in DFT

N samples of DFT are placed from 0 approaching sampling frequency:

• sampling frequency is N .

• we have N samples placed from 0 to N − 1.

• thus for samples X[k] holds:

– normalized frequency
k

N
to

N − 1

N
.

– normalized circle frequency 2π
k

N
to 2π

N − 1

N

– regular frequency
k

N
Fs to

N − 1

N
Fs

– circle frequency
k

N
2πFs to

N − 1

N
2πFs
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Example 1: N = 16, shifted square signal of length 8, Fs =44100 Hz.
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Example 2: One period of a harmonic signal, N = 16, Fs =44100 Hz, ω1 = 2π
16

rad
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Properties of DFT

Image of a real sequence

similarly to FS:

X[k] = X⋆[N − k]

• X[0] would be complex conjugate to X[N ], but X[N ] does not exist. Recall that

according to DFS definition, X[0] is a sum of discrete samples, that is a direct

component.

• If N is even, then:

X

[

N

2

]

= X⋆

[

N −
N

2

]

= X⋆

[

N

2

]

.

is complex conjugate to itself, thus it must be real.

Ilustration: see previous examples.
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Linearity

x1[n]
DFT
−→ X1[k]

x2[n]
DFT
−→ X2[k]

ax1[n] + bx2[n]
DFT
−→ aX1[k] + bX2[k]

Image of a circulary shifted sequence

x[n]
DFT
−→ X[k]

RNx[ mod N (n − m)]
DFT
−→ X[k]e−j 2π

N mk
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Image of circular convolution

x1[n]
DFT
−→ X1[k]

x2[n]
DFT
−→ X2[k]

x1[n] N©x2[n]
DFT
−→ X1[k]X2[k]

Similarly as for regular FT convolution of two signals corresponded to multiplication of

their spectra in frequency, the DFT image of a circular convolution is a product of DFT

coefficients of the convoluted signals.
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Fast Fourier transform FFT

Computing of DFT according to:

X[k] =
N−1
∑

n=0

x[n]e−j 2π
N kn

requires 2N2 operations (multiplication or addition) with complex numbers. Cooley and

Tukey invented an efficient algorithm for DFT and its inverse with N = 2k, where k is an

integer: Fast Fourier transform – FFT. The number of operations becomes only

N log2 N . FFT recursively breaks the transform into two N/2 transforms processing a pair

of samples producing a pair of coefficients in each step.

Example: pro N = 1024, 2N2 = 2 MOPS, N log2 N = 10 kOPS

FFT produces the same output as DFT !
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Computating FS and FT (with continuous time) using DFT

We are interested how to compute a spectral representation (coefficients of FS or FT) just

using DFT.

first let us summarize what we compute using DFT:

• the signal is sampled, thus spectrum is periodic (eventhough we compute only one

period of spectrum with N samples (1, 2π, Fs, 2πFs, according to the type of

frequency).

• signal is periodic (by N samples) (eventhough we consider only one period for

computating of DFT), spectrum is thus sampled (discrete). The step in spectrum is
1

N , 2π
N , Fs

N , 2πFs

N according to the type of frequency.

• signal is windowed – the spectrum of the window occurs also in DFT image,

x(t)w(t) −→ X(jω) ⋆ W (jω).
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Computation of coefficients FS using DFT

To remind, for a continuous-time signal with period T1, FS coefficients are:

ck =
1

T1

∫

T1

x(t)e−jkω1tdt,

If such signal is sampled with sampling period T , and T1 then contains N samples, we can

aproximate the integral using:

ck ≈
1

NT

N−1
∑

n=0

x(nT )e−jk 2π
NT nT T =

T

NT

N−1
∑

n=0

x(nT )e−jk 2π
N n =

1

N

N−1
∑

n=0

x[n]e−jkn 2π
N .

This definition resembles the DFT formula with the only difference that we have to divide

the ck by the number of samples N :

ck =
X[k]

N
.
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The equation can be used only when the following restrictions are satisfied:

1. we can compute only coefficients ck for k < N
2

(second half is mirrored to the first

one).

2. sampling theorem must be satisfied: last non-zero coefficient of “analog signal” is for

kmax <
N

2
,

otherwise aliasing ocures. We must to realize that N now corresponds to the sampling

frequency, so the above equation is equivalent to:

ωmax <
Ωs

2
.

3. N samples must fit into exactly one period of the signal. When more periods – m, we

need to make a small modification:

ck =
S[mk]

N
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Example 1: signal with continuous time x(t) = 10 cos(125πt + π/4) sampled at 1 kHz.

Compute coefficients of FS using DFT. Period T1 = 2π
125π = 0.016. Number of samples for

computation is
T1

T = 0.016/0.001 = 16. Theoretic values of the coefficients are c1 = 5ejπ/4, c−1 = 5e−jπ/4
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Example 2: signal with continuous time x(t) = 10 cos(150πt) sampled at 1 kHz. Compute

coefficients of FS using DFT. We don’t know the pe-

riod of the signal, we can choose N = 16. Theoretic values of coefficients are c1 = 5, c−1 = 5
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Example 3: signal with continuous time: periodic sequence of square impulses with

D = 1, ϑ = 32 ms, T1 = 64 ms, sampled at 1 kHz. Compute coefficients of FS using DFT.

Theoretic values of coefficients are ck = Dϑ
T1

sinc(ϑ
2
kω1).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.5

1

0 10 20 30 40 50 60
0

10

20

30

0 10 20 30 40 50 60

−2

0

2

20



Computation of spectral function using DFT

again let’s remind

X(jω) =

∫ +∞

−∞

x(t)e−jωtdt

We will able to compute only FT of signal which is restricted from 0 to T1:

• if its is not, we cannot do anything.

• if it is, but elsewhere – for example from tstart to tstart + T1 – we will move it to

[0, T1], but we will remember it – finally, just small fix of phase will be needed.

If such signal is sampled with sampling period T , we get N samples. Integral can be

aproximated, but only for some frequencies - that are multiples of N th portion of the

sampling frequency Ωs = 2π
T : k Ωs

N . Then:

X(jk
Ωs

N
) ≈

N−1
∑

n=0

x(nT )e−jk Ωs
N nT T = T

N−1
∑

n=0

x(nT )e−jk
2π/T

N nT = T

N−1
∑

n=0

x[n]e−jkn 2π
N .
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We again see the definition of DFT in the derived equation so for circular frequencies k Ωs

N

we can write:

X(jk
Ωs

N
) = TX[k]

Again some restrictions:

• valid only for k < N
2

.

• sampling theorem must be satisfied: the maximum frequency ωmax in the signal

spectrum must be

ωmax <
Ωs

2

otherwise aliasing occurs. When we have a signal with ωmax = ∞ (square, ... ) we

should use Ωs the highest possible so aliasing does not hurt.
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• We compute values for some certain frequencies, but we are interested in all values of

the spectral function. We must interpolate, or use zero-padding – getting more

samples in the spectrum.

• the phase need to be fixed if the signal’s period was pushed to fit the interval [0, T1]:

X(jk
Ωs

N
) −→ X(jk

Ωs

N
)e−jk Ωs

N tstart
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Example: square impuls s D = 1, ϑ = 32 ms, sampled at 1 kHz. Theoretic spectral

function is X(jω) = Dϑsinc(ϑ
2
ω).
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spectral function computed for N = 64
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zero padded and spectral function computed for N = 512
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good frequency axis (ω), scaling (multiplied by T ) and corrected phase:
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