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Diskrete Fourier transform (DFT) I

We have just one problem with DFS that needs to be solved. Infinite length of signal and
finite length of computed spectrum. DFT transforms a sequence of length N to other
sequence of length NV — we will see that it is a transform of one period of the input signal
to one period in DFS. The procedure is the following:

1. periodize a sequence x|n| of length N : Z|n] = z[ mod n(n)].

N-1
2. find DFS coefficients: X [k] = Z x[n]e‘j%k”. Note, only one period of periodic
n=0

signal [ mod x(n)] is taken, therefore, we can work just with original sequence z[n].
Step 1. is taken to fulfill requirements for DFS computing.

3. resulting sequence is windowed again to the length V:



Usually we find this formula with no windowing function as computing only through one
period is assumed, X k| for k = [0, N — 1]:

X k] is a projection/image of DFT, denoted as z|n| oy X k]. Inverse DFT for samples

n = [0, N — 1] is obtained in the same manner ( periodization of DFT spectrum, inverse

DFS application, windowing of the resulting periodic signal) :

we denote X [k] DrT x[n]



Frequency axis in DFTI

N samples of DFT are placed from 0 approaching sampling frequency:

e sampling frequency is V.
e we have N samples placed from 0 to N — 1.
e thus for samples X [k] holds:

. k N —1
— normalized frequency N to

N
: . k N —1
— normalized circle frequency 27— to 27
N N
k N -1

— regular frequency —F to F
N
k N1
N

— circle frequency NQWFS to
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Example 1: N = 16, shifted square signal of length 8, Fy =44100 Hz.
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Example 2: One period of a harmonic signal, N = 16, I, =44100 Hz, w; = % rad
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Properties of DFT I
Image of a real sequence'

X[k] = X*[N — k]

similarly to FS:

e X|[0] would be complex conjugate to X|[N], but X|N] does not exist. Recall that

according to DFS definition, X[0] is a sum of discrete samples, that is a direct
component.

e |f IV is even, then:

2 2 2

is complex conjugate to itself, thus it must be real.

<[3]-w -4 3]

llustration: see previous examples.



Linearity I

z1[n] 22 X [k]

zoln] 2 Xo[k]

az1[n] + bra[n] 25 aX1[k] + bXo[k]

Image of a circulary shifted sequence'

x[n] Ay X [k]

Ryx| mod y(n—m)] ik X[k]e_j%mk
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Image of circular convolution I

z1[n] 2 X [k]

zo[n] 2 Xo[k]

z1[n)@x2[n] 22 X1 [k] Xo[k]

Similarly as for regular FT convolution of two signals corresponded to multiplication of
their spectra in frequency, the DFT image of a circular convolution is a product of DFT
coefficients of the convoluted signals.
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Fast Fourier transform FFT '

Computing of DFT according to:

requires 2N operations (multiplication or addition) with complex numbers. Cooley and
Tukey invented an efficient algorithm for DFT and its inverse with N = 2%, where & is an
integer: Fast Fourier transform — FFT. The number of operations becomes only

N logy, N. FFT recursively breaks the transform into two N/2 transforms processing a pair
of samples producing a pair of coefficients in each step.

Example: pro N = 1024, 2N? = 2 MOPS, Nlog, N = 10 kOPS

FFT produces the same output as DFT !
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Computating FS and FT (with continuous time) using DFTI

We are interested how to compute a spectral representation (coefficients of FS or FT) just
using DFT.

first let us summarize what we compute using DFT:

e the signal is sampled, thus spectrum is periodic (eventhough we compute only one

period of spectrum with NV samples (1, 27, Fs, 27 F, according to the type of
frequency).

e signal is periodic (by N samples) (eventhough we consider only one period for

computating of DFT), spectrum is thus sampled (discrete). The step in spectrum is

%, %\7,? 7\, 27}53 according to the type of frequency.

e signal is windowed — the spectrum of the window occurs also in DFT image,
r(t)w(t) — X(jw) * W(jw).
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Computation of coefficients FS using DFTI

To remind, for a continuous-time signal with period 17, FS coefficients are:

1 .
Cp = — z(t)e IRt e,
b= (t)
If such signal is sampled with sampling period I, and 17 then contains N samples, we can

aproximate the integral using:

N—-1 N1
L 1 o
0% g 3o AT = L s = LS st

This definition resembles the DFT formula with the only difference that we have to divide
the ¢ by the number of samples NV:

Xk

Ck:T.

16



The equation can be used only when the following restrictions are satisfied:

1. we can compute only coefficients ¢, for k < % (second half is mirrored to the first

one).

2. sampling theorem must be satisfied: last non-zero coefficient of “analog signal” is for

N
kma:ﬂ < a )
2

otherwise aliasing ocures. We must to realize that NV now corresponds to the sampling
frequency, so the above equation is equivalent to:

(25
Wmazr < ——.

2

3. N samples must fit into exactly one period of the signal. When more periods — m, we
need to make a small modification:

S|mk]

“ETN
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Example 1: signal with continuous time z(t) = 10 cos(125nt + 7/4) sampled at 1 kHz.

Compute coefficients of FS using DFT. Period 1T = % = 0.016. Number of samples for

computation is

11 =0.016/0.001 = 16. Theoretic values of the coefficients are ¢; = 5e/™/*4, c_; = 5e=I™/4
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Example 2: signal with continuous time x(t) = 10 cos(1507t) sampled at 1 kHz. Compute
coefficients of FS using DFT. We don't know the pe-
riod of the signal, we can choose N = 16. Theoretic values of coefficientsarec; = 5,¢c_1 =5
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Example 3: signal with continuous time: periodic sequence of square impulses with

D =1,9=32ms, T1 = 64 ms, sampled at 1 kHz. Compute coefficients of FS using DFT.

Theoretic values of coefficients are ¢ = ?—fsinc(gkwl).
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Computation of spectral function using DFTI

+00
X (juw) = / 2 (t)e=I¥tdt

— OO0

again let's remind

We will able to compute only FT of signal which is restricted from 0 to 75:

e if its is not, we cannot do anything.

o if it is, but elsewhere — for example from %10+ t0 tstare + 11 — we will move it to
0, T1], but we will remember it — finally, just small fix of phase will be needed.

If such signal is sampled with sampling period 1", we get N samples. Integral can be

aproximated, but only for some frequencies - that are multiples of Nth portion of the

sampling frequency ()3 = 2%: k?\, Then:

N-1 N-1 N-1
Q

X(jkﬁs) =S Z x(nT)e_jk%”TT =T Z a;(nT)e_jk%z\éT”T =T Z x[n]e_jkn%ﬁ.

n=0 n=0 n=0
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We again see the definition of DFT in the derived equation so for circular frequencies k%

we can write:

X (k) = TX[H

Again some restrictions:

e valid only for k < %

e sampling theorem must be satisfied: the maximum frequency w4, In the signal

spectrum must be
{25

wmax <

2

otherwise aliasing occurs. When we have a signal with wy,,, = 0o (square, ... ) we
should use (25 the highest possible so aliasing does not hurt.
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e \We compute values for some certain frequencies, but we are interested in all values of

the spectral function. We must interpolate, or use zero-padding — getting more
samples in the spectrum.

e the phase need to be fixed if the signal’s period was pushed to fit the interval [0, T7]:

s
N

. Q
)e—JkWStstart
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Example: square impuls s D =1, ¥ = 32 ms, sampled at 1 kHz. Theoretic spectral

Lw).

Dsinc(

function is X (jw)
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spectral function computed for N = 64
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zero padded and spectral function computed for N = 512
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good frequency axis (w), scaling (multiplied by T') and corrected phase:
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