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DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz

1



LTI systems

In this course, we work only with linear and time-invariant systems. We talked about them

in the lexture “Systems” where we said that the system’s output to an arbitrary input x[n]

is computed as a convolution of the input signal and the system’s impulse response h[n]:

y[n] = h[n] ⋆ x[n] =

+∞
∑

k=−∞

x[k]h[n − k].

For causal systems (that do not consider future samples) it reduces to:

h[n] ⋆ x[n] =

n
∑

k=−∞

x[k]h[n − k] =

∞
∑

k=0

h[k]x[n − k]

This lecture deals with discrete systems, their behaviour in frequency and implementation.
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Fundamental blocks of systems

System is represented by a box with inputs x[n] and outputs y[n], where n is a pointer to

the sample (discrete time).

Fundamental blocks are:
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• Delay - holds a sample by one sampling period. When programming, it is a cell where

the sample is placed at step n and returned at step n + 1. Denotation z−1 will be

explained later.

• multiplication - multiplies a sample by a coefficient.

• addition - . . .

A system from a previous lecture:
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can be built up as:

and we can simply verify that it corresponds to the above impulse response. We can

compute its response to:

x[n] =



























2 for n = −1

−1 for n = 0

1 for n = −1

0 otherwise
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Frequency Characteristic of a System

The task of an LTI systems we are interested in is to modify a spectrum of an input signal.

Similar as we did in previous lectures, to study its behaviour we submit a complex

exponential to the system input:

x[n] = ejω1n,

with normalized angular frequency ω1:

y[n] = h[n] ⋆ x[n] =

∞
∑

k=0

h[k]x[n − k] =

∞
∑

k=0

h[k]ejω1(n−k) = ejω1n

∞
∑

k=0

h[k]e−jω1k,

We see that the output signal is the input signal multiplied by a function of its angular

frequency and the impulse response:

H(ejω1) =

∞
∑

k=0

h[k]e−jω1k

We can write:

y[n] = x[n]H(ejω1)

again, only the ”width” and the initial phase of the input complex exponential is changed.
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We call H(ejω1) a transfer and define it for an arbitrary (normalized !) frequency. We

then get a (complex) frequency characteristic function:

H(ejω) =

∞
∑

k=0

h[k]e−jωk

NOTE, that the frequency characteristic is a DTFT-projection of impulse response:

h[n]
DTFT
−→ H(ejω)
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The properties are:

• periodicity of spectrum (also impulse response is a discrete signal!) – we should have

correctly denoted H(ejω) as H̃(ejω):

– in normalized angular frequencies: 2π rad
– in regular angular frequencies: 2πFs rad/s
– in normalized frequencies: 1
– in regular frequencies: Fs Hz

• symmetry:

H(ejω) = H⋆(e−jω)

Example: frequency characteristic for impulse response 3 2 1. Fs = 8000 Hz.
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System’s response to a harmonic signal

x[n] = C1 cos(ω1n + φ1) =
C1

2
ejφ1ejω1n +

C1

2
e−jφ1e−jω1n

Componennts are multiplied by the complex characteristic values H(ejω1) and H(e−jω1)

that are complex conjugate, thus:

y[n] = H(ejω1)
C1

2
ejφ1ejω1n + H⋆(ejω1)

C1

2
e−jφ1e−jω1n =

= C1|H(ejω1)| cos(ω1n + φ1 + arg H(ejω1))
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Non-recursive and recursive systems

In the previous example we saw a filter that processes the actual and delayed samples of an

input signal. It’s impulse response is finite - finite impulse response – FIR -

non-recursive filters.

In recursive filters, we take into account also delayed samples of the output (feed-back),

e.g.:
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Such a filter has the following impulse response:

h[n] =







0 for n < 0

1 − a (−a)2 (−a)3 . . . for n = 0, 1, 2, 3, . . .

or:

h[n] =







0 pro n < 0

(−a)n pro n ≥ 0

The impulse response is infinite - infinite impulse response – IIR. The example filter is

pure recursive.
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General recursive system

z -1 z -1 z -1...

bQ-1

z -1 z -1 z -1Σ

...

-a

-a

1

2

bQ

...

bQ-2

-a Pb0

-ab1 P-1

...

y(n)

x(n)

The

output can be written by a difference equation:

y[n] =

Q
∑

k=0

bkx[n − k] −

P
∑

k=1

aky[n − k], (1)

where x[n − k] are actual and delayed samples of the input and y[n − k] are delayed
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samples of the output (note coeff. at sums).

types of filters again:

• FIR – non-recursive: only b0 . . . bQ are non-zero. The impulse response is given directly

by the coefficients of the filter:

h[n] =







0 for n < 0 and for n > Q

bn for 0 ≤ n ≤ Q

• IIR – pure recursive: only b0, a1 . . . aP are non-zero values.

• IIR – generally recursive: ai and bi are non-zero values.

15



z-TRANSFORM

similarly as Laplace transform in continuous domain, it helps us to describe discrete signals

and systems using complex variable z. z-transform is defined as:

X(z) =

∞
∑

n=−∞

x[n]z−n,

where z is a complex variable. We denote:

x[n]
Z
−→ X(z)

and the inverse transform:

X(z)
Z

−1

−→ x[n]

(we will not use the inverse trqansform)
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We are not interested in computing the z-transform but rather in the following 3 properties:

1. Linearity:

x1[n] −→ X1(z)

x2[n] −→ X2(z)

ax1[n] + bx2[n] −→ aX1(z) + bX2(z)

2. Delay of a signal:

x[n] −→ X(z)

x[n− k] −→

∞
∑

n=−∞

x[n− k]z−n =

∞
∑

n=−∞

x[n]z−n−k = z−k

∞
∑

n=−∞

x[n]z−n = z−kX(z)

The most relevant is a 1 sample delay:

x[n − 1] −→ z−1X(z)

This is why we represent it as

z -1
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3. Relationship to DTFT: Fourier transform with discrete time computes a spectrum of

a signal with discrete time:

X̃(ejω) =

∞
∑

n=−∞

x[n]e−jωn

it resembles ZT, if from the whole complex plane z we use only ejω:

X̃(ejω) = X(z)|z=ejω ,

where ω is a normalized angular frequency. It can be understood that DTFT is ZT on

the uit circle. One period of the unit circle is 2π, which is an additional proof that

DTFT is periodic...
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Transfer function of a recursive system

For a system

we define a transfer function as:

H(z) =
Y (z)

X(z)

Transfer function of a system is obtained by z-transforming the difference equation. ZT is

linear and for a delayed signal x[n − k] we write X(z)z−k:

y[n] =

Q
∑

k=0

bkx[n − k] −

P
∑

k=1

aky[n − k] −→ Y (z) =

Q
∑

k=0

bkX(z)z−k −

P
∑

k=1

akY (z)z−k
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After a re-arrangement of components:

Y (z) +
P

∑

k=1

akY (z)z−k =

Q
∑

k=0

bkX(z)z−k

and we get the transfer function:

H(z) =
Y (z)

X(z)
=

Q
∑

k=0

bkz−k

1 +
P

∑

k=1

akz−k

=
B(z)

A(z)
,

where A(z) and B(z) are two polynomials. The coefficient a0 has to be equal to 1

eventhough it does not accure physically in the filter. It is a matimatical trick to denote

that the filter has an output.
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Frequency characteristics of a filter

we substitute z by ejω and calculate the tranfrom for ω in the interval we are interested in

– mostly from 0 to π (half of the sampling frequency):

H(ejω) = H(z)|z=ejω =

Q
∑

k=0

bke−jωk

1 +

P
∑

k=1

ake−jωk

The equation looks difficult but we can easily evaluate it in Matlab using function

freqz(b,a,N), where vectors a and b contain polynoms’ coefficients and N indicate the

number of samples (from 0 to the half of the sampling frequency).
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Nulls and poles of H(z) function and what with them. . .

Transfer function can be also defined as a product:

H(z) =
B(z)

A(z)
=

b0 + b1z
−1 + . . . + bQz−Q

1 + a1z
−1 + . . . + aP z−P

=
z−Q(b0z

Q + b1z
Q−1 + . . . + bQ)

z−P (zP + a1z
P−1 + . . . + aP )

=

= b0
z−Q

z−P

Q
∏

k=1

(z − nk)

P
∏

k=1

(z − pk)

= b0z
P−Q

Q
∏

k=1

(z − nk)

P
∏

k=1

(z − pk),

• nk are called nulls. These are the points in the plane z for which holds B(z) = 0 and

therefore H(z) = 0.

• pk are called poles. These are the points in the plane z for which A(z) = 0 and

therefore H(z) = ∞.
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If ak, bk ∈ ℜ, then poles pk and nulls nk are either real or complex conjugate. If the orders

of numerator and denominator are different, then zP−Q is responsible for

• (P − Q)-fold null in the origin, if P is greater than Q.

• (Q − P )-fold pole in the origin, if P is less than Q.

Stability

System is stable, if all poles lie within unity circle:

|pk| < 1
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Frequency characteristic from nulls and poles

Similarly as for continuous time sytems, we can estimate frequncy characteristic H(ejω)

from the nulls and poles of a system:

H(ejω) = b0z
−(Q−P )

Q
∏

k=1

(z − nk)

P
∏

k=1

(z − pk),

|z=ejω = b0e
jω(P−Q)

Q
∏

k=1

(ejω − nk)

P
∏

k=1

(ejω − pk),

For a given ejω each braces is a complex number that we can comprehend as a vector from

the null or pole point to the point ejω. To obtain a value of a complex characteristic for a

given frequency ω we :

• multiply modules of all the numbers from the numerator and sum up arguments.

• divide mudules of all the numbers from the denominator and subtract arguments.

Term ejω(P−Q) is other than 1 only in case when the order of the polynoms differs – nulls

or poles in the origin – the magnitude of the complex characteristics remains unmodified,

the change occurs in the argument only.
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Examples

Example 1. Non-recursive filter is defined by a difference equation:

y[n] = x[n] + 0.5x[n − 1]

1. What is its impulse response?

2. Find parameters of the transfer function (coef a, b).?

3. Compute frequency characteristic?

4. Is the filter stable?

5. Find freq. charfacteristic from nulls and poles.

Solution

1. h[n] = 1, 0.5 for n = 0, 1, and zero elsewhere.

2. Y (z) = X(z) + 0.5X(z)z−1 Y (z) = X(z)[1 + 0.5z−1]

H(z) = 1 + 0.5z−1 = 1+0.5z−1

1 , thus b0 = 1, b1 = 0.5, a0 = 1.
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3. We could use substitution z = ejω, but we rather call a Matlab function:

H=freqz([1 0.5],[1],256); om=(0:255)/256 * pi;

subplot(211); plot(om,abs(H)); grid

subplot(212); plot(om,angle(H)); grid

0 0.5 1 1.5 2 2.5 3 3.5
0.5

1

1.5

0 0.5 1 1.5 2 2.5 3 3.5
−0.6
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0
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⇒The filter is a low pass filter:

4. nulls and poles: H(z) = 1+0.5z−1

1 = z(1+0.5z−1)
z

= z+0.5
z

Numerator is zero for

z = −0.5, thus, filter

has 1 null point n1 = −0.5. Denominator becomes zero for z = 0, thus one pole: p1 = 0
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⇒the filter is stable.

5. frequency characteristics from nulls and poles:

H(z) = z−(−0.5)
z−0 H(ejω) = ejω

−(−0.5)
ejω−0
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Example 2. Recursive filter is defined by a difference equation:

y[n] = x[n] − 0.5y[n − 1]

1. infinite impulse response:

0 5 10 15 20 25 30
−0.5

0

0.5

1

2. Y (z) = X(z) − 0.5Y (z)z−1 Y (z)[1 + 0.5z−1] = X(z) H(z) = 1
1+0.5z−1 ,

thus b0 = 1, a0 = 1, a1 = 0.5.

3. H=freqz([1],[1 0.5],256); om=(0:255)/256 * pi;

subplot(211); plot(om,abs(H)); grid

subplot(212); plot(om,angle(H)); grid
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⇒High pass filter

4. null and poles: H(z) = 1
1+0.5z−1 = z

z(1+0.5z−1) = z
z+0.5 Numerator is

zero for z = 0, one zero: n1 = 0. Denominator is zero for z = −0.5, one pole: p1 = −0.5
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⇒filter is stable.

5. frequency characteristic: H(z) = z−0
z−(−0.5) H(ejω) = ejω

−0
ejω−(−0.5)
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Excercise 3. Real filter: In matlab we have found the parameters of a low-pass filter:

• sampling freq 16000 Hz.

• end of pass band 3000 Hz.

• begin of stop band 3500 Hz.

• max. attenuation in pass band 3 dB

• min. attenuation in stop band 40 dB.

How did we do it?

Fs = 16000; Wp = 3000/8000; Ws = 3500/8000;

Rp = 3; Rs = 40;

[N, Wn] = ellipord(Wp, Ws, Rp, Rs)

[B,A] = ellip(N,Rp,Rs,Wn)
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We obtained a filter with order 5. The coefficients in the numerator are:

b0 = 0.0378, b1 = 0.0235, b2 = 0.0592, b3 = 0.0592, b4 = 0.0235, b5 = 0.0378

The denominator coefficients are:

a0 = 1, a1 = −2.5271, a2 = 3.8031, a3 = −3.3632, a4 = 1.8395, a5 = −0.5112.

Frequency characteristics, poles and nulls:

figure(1); freqz (B,A,256,16000);

figure(2); zplane(roots(B), roots(A));
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⇒ The filter is just stable but due to possible numerical error it can become unstable.

⇒ If a pole is close to the unit circle, it determines the maximum of the filter

⇒ If a null is close to the unit circle, it determines the minimum of the filter
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