Discrete Time Systems

Valentina Hubeika, Jan Černocký

DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz

LTI systems

In this course, we work only with linear and time-invariant systems. We talked about them in the lexture "Systems" where we said that the system's output to an arbitrary input x[n] is computed as a convolution of the input signal and the system's impulse response h[n]:

$$y[n] = h[n] \star x[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k].$$

For causal systems (that do not consider future samples) it reduces to:

$$h[n] \star x[n] = \sum_{k=-\infty}^{n} x[k]h[n-k] = \sum_{k=0}^{\infty} h[k]x[n-k]$$

This lecture deals with discrete systems, their behaviour in frequency and implementation.

Fundamental blocks of systems

System is represented by a box with inputs x[n] and outputs y[n], where n is a pointer to the sample (discrete time).

Fundamental blocks are:

$$\times [n]$$
 $\times [n-1]$ $\times [n]$ $\times [n]$

- Delay holds a sample by one sampling period. When programming, it is a cell where the sample is placed at step n and returned at step n+1. Denotation z^{-1} will be explained later.
- multiplication multiplies a sample by a coefficient.
- addition ...

A system from a previous lecture:

can be built up as:

and we can simply verify that it corresponds to the above impulse response. We can compute its response to:

$$x[n] = \begin{cases} 2 & \text{for } n = -1 \\ -1 & \text{for } n = 0 \\ 1 & \text{for } n = -1 \\ 0 & \text{otherwise} \end{cases}$$

Frequency Characteristic of a System

The task of an LTI systems we are interested in is to modify a spectrum of an input signal. Similar as we did in previous lectures, to study its behaviour we submit a complex exponential to the system input:

$$x[n] = e^{j\omega_1 n},$$

with normalized angular frequency ω_1 :

$$y[n] = h[n] \star x[n] = \sum_{k=0}^{\infty} h[k]x[n-k] = \sum_{k=0}^{\infty} h[k]e^{j\omega_1(n-k)} = e^{j\omega_1 n} \sum_{k=0}^{\infty} h[k]e^{-j\omega_1 k},$$

We see that the output signal is the input signal multiplied by a function of its angular frequency and the impulse response:

$$H(e^{j\omega_1}) = \sum_{k=0}^{\infty} h[k]e^{-j\omega_1 k}$$

We can write:

$$y[n] = x[n]H(e^{j\omega_1})$$

again, only the "width" and the initial phase of the input complex exponential is changed.

We call $H(e^{j\omega_1})$ a **transfer** and define it for an arbitrary (normalized !) frequency. We then get a **(complex)** frequency characteristic function:

$$H(e^{j\omega}) = \sum_{k=0}^{\infty} h[k]e^{-j\omega k}$$

NOTE, that the frequency characteristic is a **DTFT-projection** of impulse response:

$$h[n] \stackrel{DTFT}{\longrightarrow} H(e^{j\omega})$$

The properties are:

- periodicity of spectrum (also impulse response is a discrete signal!) we should have correctly denoted $H(e^{j\omega})$ as $\tilde{H}(e^{j\omega})$:
 - in normalized angular frequencies: 2π rad
 - in regular angular frequencies: $2\pi F_s$ rad/s
 - in normalized frequencies: 1
 - in regular frequencies: F_s Hz
- symmetry:

$$H(e^{j\omega}) = H^{\star}(e^{-j\omega})$$

Example: frequency characteristic for impulse response 3 2 1. $F_s = 8000$ Hz.

System's response to a harmonic signal

$$x[n] = C_1 \cos(\omega_1 n + \phi_1) = \frac{C_1}{2} e^{j\phi_1} e^{j\omega_1 n} + \frac{C_1}{2} e^{-j\phi_1} e^{-j\omega_1 n}$$

Components are multiplied by the complex characteristic values $H(e^{j\omega_1})$ and $H(e^{-j\omega_1})$ that are complex conjugate, thus:

$$y[n] = H(e^{j\omega_1}) \frac{C_1}{2} e^{j\phi_1} e^{j\omega_1 n} + H^*(e^{j\omega_1}) \frac{C_1}{2} e^{-j\phi_1} e^{-j\omega_1 n} =$$

$$= C_1 |H(e^{j\omega_1})| \cos(\omega_1 n + \phi_1 + \arg H(e^{j\omega_1}))$$

Non-recursive and recursive systems

In the previous example we saw a filter that processes the actual and delayed samples of an input signal. It's impulse response is **finite** - **finite impulse response** - **FIR** - non-recursive filters.

In **recursive** filters, we take into account also delayed samples of the output (feed-back), e.g.:

Such a filter has the following impulse response:

$$h[n] = \begin{cases} 0 & \text{for } n < 0 \\ 1 - a (-a)^2 (-a)^3 \dots & \text{for } n = 0, 1, 2, 3, \dots \end{cases}$$

or:

$$h[n] = \begin{cases} 0 & \text{pro } n < 0 \\ (-a)^n & \text{pro } n \ge 0 \end{cases}$$

The impulse response is **infinite** - **infinite** impulse response - IIR. The example filter is pure recursive.

General recursive system

output can be written by a difference equation:

$$y[n] = \sum_{k=0}^{Q} b_k x[n-k] - \sum_{k=1}^{P} a_k y[n-k],$$
(1)

where x[n-k] are actual and delayed samples of the input and y[n-k] are delayed

samples of the output (note coeff. at sums).

types of filters again:

• **FIR** – non-recursive: only $b_0 \dots b_Q$ are non-zero. The impulse response is given directly by the coefficients of the filter:

$$h[n] = \begin{cases} 0 & \text{for } n < 0 \text{ and for } n > Q \\ b_n & \text{for } 0 \le n \le Q \end{cases}$$

- IIR pure recursive: only $b_0, a_1 \dots a_P$ are non-zero values.
- IIR generally recursive: a_i and b_i are non-zero values.

z-TRANSFORM

similarly as Laplace transform in continuous domain, it helps us to describe discrete signals and systems using complex variable z. z-transform is defined as:

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n},$$

where z is a complex variable. We denote:

$$x[n] \xrightarrow{\mathcal{Z}} X(z)$$

and the inverse transform:

$$X(z) \xrightarrow{\mathcal{Z}^{-1}} x[n]$$

(we will not use the inverse trqansform)

We are not interested in computing the z-transform but rather in the following 3 properties:

1. Linearity:

$$x_1[n] \longrightarrow X_1(z)$$
 $x_2[n] \longrightarrow X_2(z)$ $ax_1[n] + bx_2[n] \longrightarrow aX_1(z) + bX_2(z)$

2. Delay of a signal:

$$x[n] \longrightarrow X(z)$$

$$x[n-k] \longrightarrow \sum_{n=-\infty}^{\infty} x[n-k]z^{-n} = \sum_{n=-\infty}^{\infty} x[n]z^{-n-k} = z^{-k} \sum_{n=-\infty}^{\infty} x[n]z^{-n} = z^{-k}X(z)$$

The most relevant is a 1 sample delay:

$$x[n-1] \longrightarrow z^{-1}X(z)$$

This is why we represent it as

3. **Relationship to DTFT**: Fourier transform with discrete time computes a spectrum of a signal with discrete time:

$$\tilde{X}(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

it resembles ZT, if from the whole complex plane z we use only $e^{j\omega}$:

$$\tilde{X}(e^{j\omega}) = X(z)|_{z=e^{j\omega}},$$

where ω is a normalized angular frequency. It can be understood that DTFT is ZT on the uit circle. One period of the unit circle is 2π , which is an additional proof that DTFT is periodic...

Transfer function of a recursive system

For a system

we define a transfer function as:

$$H(z) = \frac{Y(z)}{X(z)}$$

Transfer function of a system is obtained by z-transforming the difference equation. ZT is linear and for a delayed signal x[n-k] we write $X(z)z^{-k}$:

$$y[n] = \sum_{k=0}^{Q} b_k x[n-k] - \sum_{k=1}^{P} a_k y[n-k] \longrightarrow Y(z) = \sum_{k=0}^{Q} b_k X(z) z^{-k} - \sum_{k=1}^{P} a_k Y(z) z^{-k}$$

After a re-arrangement of components:

$$Y(z) + \sum_{k=1}^{P} a_k Y(z) z^{-k} = \sum_{k=0}^{Q} b_k X(z) z^{-k}$$

and we get the transfer function:

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{Q} b_k z^{-k}}{1 + \sum_{k=1}^{P} a_k z^{-k}} = \frac{B(z)}{A(z)},$$

where A(z) and B(z) are two polynomials. The coefficient a_0 has to be equal to 1 eventhough it does not accure physically in the filter. It is a matimatical trick to denote that the filter has an output.

Frequency characteristics of a filter

we substitute z by $e^{j\omega}$ and calculate the tranfrom for ω in the interval we are interested in – mostly from 0 to π (half of the sampling frequency):

$$H(e^{j\omega}) = H(z)|_{z=e^{j\omega}} = \frac{\sum_{k=0}^{Q} b_k e^{-j\omega k}}{1 + \sum_{k=1}^{P} a_k e^{-j\omega k}}$$

The equation looks difficult but we can easily evaluate it in Matlab using function freqz(b,a,N), where vectors a and b contain polynoms' coefficients and N indicate the number of samples (from 0 to the half of the sampling frequency).

Nulls and poles of H(z) function and what with them...

Transfer function can be also defined as a product:

$$H(z) = \frac{B(z)}{A(z)} = \frac{b_0 + b_1 z^{-1} + \dots + b_Q z^{-Q}}{1 + a_1 z^{-1} + \dots + a_P z^{-P}} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-P} (z^P + a_1 z^{P-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-P} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-P} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + b_Q)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)} = \frac{z^{-Q} (b_0 z^Q + b_1 z^{Q-1} + \dots + a_P)}{z^{-Q} (z^P + a_1 z^{Q-1} + \dots + a_P)}$$

$$=b_0 \frac{z^{-Q}}{z^{-P}} \frac{\prod_{k=1}^{Q} (z - n_k)}{\prod_{k=1}^{P} (z - p_k)} = b_0 z^{P-Q} \frac{\prod_{k=1}^{Q} (z - n_k)}{\prod_{k=1}^{P} (z - p_k)}$$

- n_k are called **nulls**. These are the points in the plane z for which holds B(z)=0 and therefore H(z)=0.
- p_k are called **poles**. These are the points in the plane z for which A(z)=0 and therefore $H(z)=\infty$.

If $a_k, b_k \in \Re$, then poles p_k and nulls n_k are either real or complex conjugate. If the orders of numerator and denominator are different, then z^{P-Q} is responsible for

- (P-Q)-fold null in the origin, if P is greater than Q.
- (Q-P)-fold pole in the origin, if P is less than Q.

Stability

System is stable, if all poles lie within unity circle:

$$|p_k| < 1$$

Frequency characteristic from nulls and poles

Similarly as for continuous time sytems, we can estimate frequncy characteristic $H(e^{j\omega})$ from the nulls and poles of a system:

$$\prod_{k=1}^{Q} (z - n_k) \prod_{k=1}^{Q} (e^{j\omega} - n_k) \prod_{k=1}^{Q} (e^{j\omega} - n_k) \prod_{k=1}^{Q} (z - p_k), \qquad \prod_{k=1}^{Q} (e^{j\omega} - p_k),$$

For a given $e^{j\omega}$ each braces is a complex number that we can comprehend as a vector from the null or pole point to the point $e^{j\omega}$. To obtain a value of a complex characteristic for a given frequency ω we :

- multiply modules of all the numbers from the numerator and sum up arguments.
- divide mudules of all the numbers from the denominator and subtract arguments.

Term $e^{j\omega(P-Q)}$ is other than 1 only in case when the order of the polynoms differs – nulls or poles in the origin – the magnitude of the complex characteristics remains unmodified, the change occurs in the argument only.

Examples

Example 1. Non-recursive filter is defined by a difference equation:

$$y[n] = x[n] + 0.5x[n-1]$$

- 1. What is its impulse response?
- 2. Find parameters of the transfer function (coef a, b).?
- 3. Compute frequency characteristic?
- 4. Is the filter stable?
- 5. Find freq. charfacteristic from nulls and poles.

Solution

- 1. h[n] = 1, 0.5 for n = 0, 1, and zero elsewhere.
- 2. $Y(z) = X(z) + 0.5X(z)z^{-1}$ $Y(z) = X(z)[1 + 0.5z^{-1}]$ $H(z) = 1 + 0.5z^{-1} = \frac{1 + 0.5z^{-1}}{1}$, thus $b_0 = 1$, $b_1 = 0.5$, $a_0 = 1$.

3. We could use substitution $z=e^{j\omega}$, but we rather call a Matlab function:

```
H=freqz([1 0.5],[1],256); om=(0:255)/256 * pi;
subplot(211); plot(om,abs(H)); grid
subplot(212); plot(om,angle(H)); grid
```


 \Rightarrow The filter is a low pass filter:

4. nulls and poles: $H(z)=\frac{1+0.5z^{-1}}{1}=\frac{z(1+0.5z^{-1})}{z}=\frac{z+0.5}{z}$ Numerator is zero for z=-0.5, thus, filter

has 1 null point $n_1=-0.5$. Denominator becomes zero for z=0, thus one pole: $p_1=0$

 \Rightarrow the filter is stable.

5. frequency characteristics from nulls and poles:

$$H(z) = \frac{z - (-0.5)}{z - 0}$$
 $H(e^{j\omega}) = \frac{e^{j\omega} - (-0.5)}{e^{j\omega} - 0}$ 28

Example 2. Recursive filter is defined by a difference equation:

$$y[n] = x[n] - 0.5y[n-1]$$

1. infinite impulse response:

- 2. $Y(z) = X(z) 0.5Y(z)z^{-1}$ $Y(z)[1 + 0.5z^{-1}] = X(z)$ $H(z) = \frac{1}{1 + 0.5z^{-1}}$, thus $b_0 = 1$, $a_0 = 1$, $a_1 = 0.5$.
- 3. H=freqz([1],[1 0.5],256); om=(0:255)/256 * pi;
 subplot(211); plot(om,abs(H)); grid
 subplot(212); plot(om,angle(H)); grid

 \Rightarrow High pass filter

4. null and poles: $H(z)=\frac{1}{1+0.5z^{-1}}=\frac{z}{z(1+0.5z^{-1})}=\frac{z}{z+0.5}$ Numerator is zero for z=0, one zero: $n_1=0$. Denominator is zero for z=-0.5, one pole: $p_1=-0.5$

 \Rightarrow filter is stable.

5. frequency characteristic:
$$H(z) = \frac{z-0}{z-(-0.5)}$$
 $H(e^{j\omega}) = \frac{e^{j\omega}-0}{e^{j\omega}-(-0.5)}$

Excercise 3. Real filter: In matlab we have found the parameters of a low-pass filter:

- sampling freq 16000 Hz.
- end of pass band 3000 Hz.
- begin of stop band 3500 Hz.
- max. attenuation in pass band 3 dB
- min. attenuation in stop band 40 dB.

How did we do it?

```
Fs = 16000; Wp = 3000/8000; Ws = 3500/8000;
Rp = 3; Rs = 40;
[N, Wn] = ellipord(Wp, Ws, Rp, Rs)
[B,A] = ellip(N,Rp,Rs,Wn)
```

We obtained a filter with order 5. The coefficients in the numerator are:

$$b_0 = 0.0378$$
, $b_1 = 0.0235$, $b_2 = 0.0592$, $b_3 = 0.0592$, $b_4 = 0.0235$, $b_5 = 0.0378$

The denominator coefficients are:

$$a_0 = 1$$
, $a_1 = -2.5271$, $a_2 = 3.8031$, $a_3 = -3.3632$, $a_4 = 1.8395$, $a_5 = -0.5112$.

Frequency characteristics, poles and nulls:

```
figure(1); freqz (B,A,256,16000);
figure(2); zplane(roots(B), roots(A));
```


- \Rightarrow The filter is just stable but due to possible numerical error it can become unstable.
- ⇒ If a pole is close to the unit circle, it determines the maximum of the filter
- ⇒ If a null is close to the unit circle, it determines the minimum of the filter