Fourier transform (FT)

Valentina Hubeika, Jan Černocký

DCGM FIT BUT Brno, {ihubeika,cernocky}@fit.vutbr.cz

- Fourier transform
- Properties of spectral function
- Spectral function of important signals
- Hints on spectra
- Energy and Parseval theorem.

Reasons for developement of FT:

- We want to do frequency analysis of signals other than periodic
- Nonperiodic signals will be also expressed as a sum of harmonic signals (system responce is nicely calculated for input $e^{j\omega t}$, etc). It will be a little more difficult to imagine as we will obtain an infinite number of components that are infinitely small.

From FS to FT

Coefficients of FS:

$$c_k = \frac{1}{T_1} \int_{-\frac{T_1}{2}}^{+\frac{T_1}{2}} x(t)e^{-jk\omega_1 t} dt.$$

Now, we will be "stretching" the period to infinity

$$T_1 \to \infty, \quad \omega_1 = \frac{2\pi}{T_1} \to d\omega, \quad k\omega_1 \to \omega$$

$$c_k \to dc, \quad \frac{1}{T_1} \to \frac{d\omega}{2\pi},$$

Derive a new equation for the coefficients' calculation:

$$dc = \frac{d\omega}{2\pi} \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt.$$

 $2\pi \frac{dc}{d\omega}$ is an infinitely small coefficient increment on an infinitely small increment of angular frequency multiplied by 2π . Rather we will introduce term: **Spectral function** $X(j\omega)$.

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt,$$

Function $X(j\omega)$ will be called **Fourier projection/image** or simply **image** of signal x(t). Spectral function $X(j\omega)$ can also be called **spectrum**. Fourier transform is sometimes denoted as $\mathcal{F}: x(t) \stackrel{\mathcal{F}}{\to} X(j\omega)$.

Fundamental properties of spectral function

If projection exists, then:

$$X(j\omega) = X^{\star}(-j\omega)$$

which follows from,

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t)\cos(\omega t)dt - j\int_{-\infty}^{+\infty} x(t)\sin(\omega t)dt.$$

Other properties are special cases. Even signal has only real spectrum:

$$x(t) = x(-t) \Rightarrow X(j\omega) = \Re\{X(j\omega)\}\$$

Odd signal has only imaginary spectrum:

$$x(t) = -x(-t) \Rightarrow X(j\omega) = j\Im\{X(j\omega)\}\$$

Inverse Fourier transform

Signal synthesis from FS coefficients:

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_1 t} = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} 2\pi \frac{c_k}{\omega_1} e^{jk\omega_1 t} \omega_1.$$

By transition $T_1 \to \infty$, we obtain:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{+j\omega t} d\omega.$$

Convergence of FT

If we assume that spectral function will consist of impulse signals, for FT to converge it only needs to satisfy the following restrictions:

ullet the signal has to be bounded with a constant $M<\infty$,

Its energy thus does not have to be finite. It allows us to calculate FT of a direct current of a periodic signal!

 Signal can be composed from unit impulses - shifted and scaled. This property will help us during sampling, where we will be looking for a spectrum of a periodic sequence of unit impulses.

SPECTRAL FUNCTION OF IMPORTANT SIGNALS

Unit impuls

Unit impuls is an infinitely sharp peak bounding unit area, that is a derivation of the unit step function: $\delta_{\Delta}(t) = \frac{d\sigma_{\Delta}(t)}{dt}$, where Δ goes to 0:

Unit impulse can be used in sampling, it satisfies:

$$\int_{-\infty}^{+\infty} x(t)\delta(t-\tau)dt = x(\tau)$$

Why? If we multiply signal x by $\delta_{\Delta}(t-\tau)$ and integrate, we obtain an area of the size $\Delta \frac{1}{\Delta} x(\tau) = x(\tau)$. If Δ is sufficiently short, we can assume the signal to be a constant within the area it bounds. Thus the equation holds for $\Delta \to 0$.

$$\int_{\infty}^{+\infty} x(t)\delta_{\Delta}(t-\tau)dt = \int_{\tau}^{\tau+\Delta} x(t)\delta_{\Delta}(t-\tau)dt \approx \int_{\tau}^{\tau+\Delta} x(\tau)\delta_{\Delta}(t-\tau)dt = \Delta \frac{1}{\Delta}x(\tau) = x(\tau)$$

Spectral function of unit impuls

$$X(j\omega) = \int_{-\infty}^{+\infty} \delta(t - \tau)e^{-j\omega t}dt = e^{-j\omega\tau}$$

Direct signal

$$X(j\omega) = 2\pi A\delta(\omega)$$

Prove by inverse FT:

$$x(t) = \frac{1}{2\pi} 2\pi A \int_{-\infty}^{+\infty} \delta(\omega) e^{j\omega t} d\omega = A.$$

Periodic signal described using FS

$$x(t) = \sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_1 t}$$

First, lets see what a signal with the following spectral function looks like:

$$X(j\omega) = 2\pi\delta(\omega - \omega_0)$$

$$x(t) = \frac{1}{2\pi} 2\pi \int_{-\infty}^{+\infty} \delta(\omega - \omega_0) e^{j\omega t} d\omega = \dots$$

after variable substitution:

$$x(t) = \int_{-\infty}^{+\infty} \delta(r)e^{j(r+\omega_0)t}dr = e^{j\omega_0 t} \int_{-\infty}^{+\infty} \delta(r)e^{jrt}dr = e^{j\omega_0 t}$$

It is a complex exponential rotating on frequency ω_0 . FT of a periodic signal defined by means of FS is thus:

$$X(j\omega) = \sum_{k=-\infty}^{+\infty} 2\pi c_k \delta(\omega - k\omega_1).$$

Example of a harmonic signal $x(t) = C_1 \cos(\omega_1 t + \phi_1) = c_{-1} e^{-j\omega_1 t} + c_1 e^{j\omega_1 t}$

Square impuls We know: $\int_{-b}^{b} e^{\pm jxy} dy = 2b \operatorname{sinc}(bx)$. Let's define $b = \frac{\vartheta}{2}, \quad y = t, \quad x = \omega$, we obtain:

$$X(j\omega) = D \int_{-\frac{\vartheta}{2}}^{+\frac{\vartheta}{2}} e^{-j\omega t} dt = D2 \frac{\vartheta}{2} \mathrm{sinc}\left(\frac{\vartheta}{2}\omega\right) = D\vartheta \mathrm{sinc}\left(\frac{\vartheta}{2}\omega\right)$$

Inverse projection of a square spectral function

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{+j\omega t} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} H e^{+j\omega t} d\omega = \frac{H}{2\pi} \int_{-\omega_c}^{\omega_c} e^{+j\omega t} d\omega = \frac{H}{2\pi} 2\omega_c \operatorname{sinc}(\omega_c t) = \frac{H\omega_c}{\pi} \operatorname{sinc}(\omega_c t)$$

What is the maximum of the function? Points where the function crosses time axis?

Hints to the spetcra of non periodic signals

	x(t)	$X(j\omega)$
linearity	$ax_a(t) + bx_b(t)$	$aX_a(j\omega) + bX_b(j\omega)$
shift in time	x(t- au)	$X(j\omega)e^{-j\omega\tau}$
change of scale	s(mt) m > 0	$\frac{1}{m}X\left(\frac{\omega}{m}\right)$
convolution	$x_1(t) \star x_2(t) = \int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau$	$X_1(j\omega)X_2(j\omega)$

Time-shift

Same as for FS, only argument/phase of spectral function will be changed, by: $-\omega\tau$. Example:

1 s delay: $X(j\omega)$ multiplied by function $e^{-j\omega}$, thus ω will be subtracted from the original argument:

1 s advance: $X(j\omega)$ multiplied by function $e^{j\omega}$, thus ω will be added to the original argument:

Spectrum of convolution

$$\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x_1(\tau) x_2(t-\tau) d\tau \right] e^{-j\omega t} dt = \int_{-\infty}^{\infty} x_1(\tau) \left[\int_{-\infty}^{\infty} x_2(t-\tau) e^{-j\omega t} dt \right] d\tau =$$

$$= \int_{-\infty}^{\infty} x_1(\tau) \left[X_2(j\omega) e^{-j\omega \tau} \right] d\tau = X_2(j\omega) \int_{-\infty}^{\infty} x_1(\tau) e^{-j\omega \tau} d\tau = X_1(\omega) X_2(\omega)$$

Example about spectrum of convolution

Parseval theorem - absolute energy of signal using spectral function

$$\int_{-\infty}^{\infty} s^{2}(t)dt = \int_{-\infty}^{\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \right] dt =$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) \underbrace{\left[\int_{-\infty}^{\infty} x(t) e^{j\omega t} dt \right]}_{X(-j\omega)} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) X(-j\omega) d\omega = \int_{-\infty}^{\infty} L_{d}(\omega) d\omega$$

 $L_d(\omega)$ is called (double sided) spectral density function of energy

