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Fourier transform

Properties of spectral function
Spectral function of important signals
Hints on spectra

Energy and Parseval theorem.



Reasons for developement of FT: I

e \We want to do frequency analysis of signals other than periodic

e Nonperiodic signals will be also expressed as a sum of harmonic signals (system

responce is nicely calculated for input e/«?, etc). It will be a little more difficult to
imagine as we will obtain an infinite number of components that are infinitelly small.
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From FS to FT'
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Coefficients of FS:

Ck x(t)e IRt s,

Now, we will be "stretching” the period to infinity

2T
TN — o0, w =——dw, kw —w
1

p 1 dw
cy — dc, — — —
K R P

Derive a new equation for the coefficients’ calculation:

dw [T

=0 .

dc z(t)e Ivtdt.

2773—5 is an infinitelly small coefficient increment on an infinitelly small increment of angular

frequency multiplied by 27. Rather we will introduce term: Spectral function X (jw).
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+o0
X(jw) = / z(t)e ¥ dt,

— 00

Function X (jw) will be called Fourier projection/image or simply image of signal z(t).
Spectral function X (jw) can also be called spectrum. Fourier transform is sometimes

denoted as F: z(t) 5 X (jw).



Fundamental properties of spectral function I

If projection exists, then:
X(jw) = X" (—jw)
which follows from,

400

+00
X(jw) = / x(t) cos(wt)dt — j/ x(t) sin(wt)dt.

— OO — OO

Other properties are special cases. Even signal has only real spectrum:
z(t) = x(—t) = X(jw) = R{X(jw)}
Odd signal has only imaginary spectrum:

2(t) = —2(-t) = X(jw) = j3H{X(jw)}



Inverse Fourier transform '

Signal synthesis from FS coefficients:

—+ o0 —+ o0
x(t) = E cpel Pt = — E om—elkwity,
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k=—o0 k=—o0

By transition 17 — oo, we obtain:

x(t) = — X (jw)et?“dw.
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Convergence of FT I

If we assume that spectral function will consist of impulse signals, for FT to converge it

only needs to satisfy the following restrictions:

e the signal has to be bounded with a constant M < oo,
lz(t)| < M

lts energy thus does not have to be finite. It allows us to calculate FT of a direct

current of a periodic signal!
e Signal can be composed from unit impulses - shifted and scaled. This property will

help us during sampling, where we will be looking for a spectrum of a periodic

sequence of unit impulses.






SPECTRAL FUNCTION OF IMPORTANT SIGNALS'
Unit impuls.

Unit impuls is an infinitely sharp peak bounding unit area, that is a derivation of the unit

step function: da(t) = d(%(t), where A goes to 0:
A G5 (£) 5a (€)
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Unit impulse can be used in sampling, it satisfies:

+o0
/ z(t)o(t — 7)dt = z(7)

— OO0
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Why? If we multiply signal x by da (¢ — 7) and integrate, we obtain an area of the size
Axx(T) = x(7). If A'is sufficiently short, we can assume the signal to be a constant
within the area it bounds. Thus the equation holds for A — 0.
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Spectral function of unit impuls
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X(Jw) = / §(t — T)e IWtdt = e IwT
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Direct signal

Prove by inverse FT:

S(t)

X(jw) =27 Ad(w)

+o0o
x(t) = %271’14/ S(w)e?“tdw = A.
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Periodic signal described using FS

—+ o0

x(t) = Z celkwrt

k=—oc0

First, lets see what a signal with the following spectral function looks like:

X(Jw) =276 (w — wp)

1 oo .
x(t) = %27{'/ §(w —wp)e?¥tdw = . ..

— 00

after variable substitution:

+o0 ' | 4o | |
ZE(t) p— / 5(T)69(r+wo)tdr — ejwot/ 5(T)6‘7Ttd7“ _ ejwot

— 00 — o0

It is a complex exponential rotating on frequency wg. FT of a periodic signal defined by
means of FS is thus:

+o0
X(jw) = Z 2merd(w — kwy).

k=—o0
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_ —Jjwit Jwit
Example of a harmonic signal x(t) = Cy cos(wit + ¢1) = c_1e77“" + cqe
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Square impuls We know: f_bb eI dy = 2b sinc(bz). Let's define b = 2,

) = Dosine

we obtain:

s 9. (0
X(jw)=D e Itdt = D2—sinc | —w
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Inverse projection of a square spectral function'
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z(t) = %/ X(jw)e™ dw = 9 HetI9w = %/ e dw =

H _ Hw,. .
= —2w.sinc(w.t) = sinc(wct)
2T T

What is the maximum of the function? Points where the function crosses time axis?
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Hints to the spetcra of non periodic signals'

x(t)

X(jw)

linearity

shift in time

change of scale

convolution

ary(t) + bxy(t)
x(t—7)

s(mt) m >0

x1(t) x x2(t) = /OO x1(7T)xo(t — 7)dT

aXy(jw) + bXp(jw)
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Time-shift '

Same as for FS, only argument/phase of spectral function will be changed, by: —wr.

Example:

arg S) i
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1 s delay: X (jw) multiplied by function e™7%, thus w will be subtracted from the original
argument:

()}
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1 s advance: X (jw) multiplied by function e/“, thus w will be added to the original
argument:

()}
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Examples of time axis scale'
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Spectrum of convolution I

/_O:O [/_O:O T1 (7)o (1 — T)dT] e Ivtdt = /_o; 21 () [/_O; To(t — T)e ¥t | dr =

o

= /_OO z1(7) [X2(jw)e 7] dr = Xg(jw)/ r1(7)e 7T dr = X1 (w) Xo(w)

— OO
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s1(t) 4

0,8

Example about spectrum of convolution I

S1(w A

s2(t) 4

0,6
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Parseval theorem - absolute energy of signal using spectral function I

/_ O:O 2 (1)l = /_ O:o (1) [% /_ O:O X(jw)efwtdw] it —
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X(—jw)

Lg4(w) is called (double sided) spectral density function of energy
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