
Random signals II.

Jan Černocký

ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz

1

Temporal estimate of autocorrelation coefficients

for ergodic discrete-time random process.

•

R̂[k] =
1

N

N−1
∑

n=0

x[n]x[n + k],

where N is the number of samples we have at our disposal, is called biased estimate.

When we “pull” the signals from each other, R(k) is estimated from only N − k

samples, but we are always dividing by N , so that the values will decrease toward the

edges.

•

R̂[k] =
1

N − |k|
N−1
∑

n=0

x[n]x[n + k],

is unbiased estimate, where the division is done by the actual number of overlapping

samples. On the other hand, the coefficients on the edges: k → N − 1, k → −N + 1

are very badly estimated, as only few samples are available for their estimation.

Therefore, we prefer biased estimates.
2

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

8

10
x 10

−3

−300 −200 −100 0 100 200 300

−6

−4

−2

0

2

4

6

8

10

12

14

x 10
−3

3

Power spectral density – PSD – continuous time

We want to study the behavior in frequency also for random processes, but:

• we can not use Fourier series, as random signals are not periodic.

• we can not use Fourier transform, as random signals have infinite energy (FT can be

applied to such signals, but only to some special cases).

We will consider only ergodic random signals, one realization: x(t).

Power spectral density – PSD – derivation.

• let us define an interval of length T : from −T/2 till T/2:

xT (t) =







x(t) for |t| < T/2

0 elsewhere

4

-0.5T
0 t

+0.5T

x

• We will define a Fourier image:

XT (jω) =

∫ +∞

−∞

xT (t)e−jωtdt

• We will define energy spectral density (see the lecture on Fourier transform):
∫

∞

−∞

x2
T (t)dt = . . . =

1

2π

∫

∞

−∞

XT (jω)XT (−jω)dω =

∫

∞

−∞

LT (jω)dω

LT (ω) will be called (double-sided) energy spectral density
5

LT (jω) =
|X(jω)|2

2π
• We will try to “stretch” T till ∞. In this case however, the energy (and also its

density) would grow to infinity. We will therefore define (double-sided) power

spectral density by dividing the energy by T (analogy: P = E/T):

GT (jω) =
LT (jω)

T

• now, the “stretching” can be done and power spectral density can be computed not

only for the interval of length T , but for the whole signal:

G(jω) = lim
T→∞

GT (jω) = lim
T→∞

|XT (jω)|2
2πT

Properties of G(jω)

• For spectral function of a real signal XT (jω):

XT (jω) = X⋆
T (−jω)

G(jω) is given by squares of its values so that it will be purely real and even.
6

• The mean power of random process in an interval [ω1, ω2] can be computed by:

P[ω1, ω2] =

∫ ω2

ω1

G(jω)dω +

∫

−ω1

−ω2

G(jω)dω = 2

∫ ω2

ω1

G(jω)dω.

• And the total mean power of random process is expressed as:

P =

∫ +∞

−∞

G(ω)dω

• In communication technology, often the mean value a = 0. Then, the mean power is

equal to the variance: P = D and the effective value is equal to the standard

deviation: Xef = σ.

7

Wiener-Chinchin’s equations

The power spectral density is linked to the auto-correlation function by R(τ) by FT

(usually, we compute PSD in this way – it is more tractable than increasing T → ∞):

G(jω) =
1

2π

∫ +∞

−∞

R(τ)e−jωτdτ

R(τ) =

∫ +∞

−∞

G(jω)e+jωτdω

8

Power spectral density – discrete time

PSD of discrete-time random process will be defined directly using auto-correlation

coefficients (note the terminology: auto-correlation function R(τ) for continuous time but

auto-correlation coefficients R[k] for discrete time):

G(ejω) =
∞
∑

k=−∞

R[k]e−jωk

(question: which angular frequency is ω in this equation ?). G(ejω) is Discrete-time Fourier

transform (DTFT) of auto-correlation coefficients. In case we estimate these (ensemble or

temporal estimate), we can compute G(ejω).

Back from G(ejω) to auto-correlation coefficients (inverse DTFT):

R[k] =
1

2π

∫ π

−π

G(ejω)e+jωkdω

9

Example: flowing water (R[k] estimated from one realization):

−15 −10 −5 0 5 10 15

0.1

0.2

0.3

0.4

0.5

normalized omega

−4 −3 −2 −1 0 1 2 3 4

x 10
4

0.1

0.2

0.3

0.4

0.5

f

10

zoom from −Fs/2 to Fs/2:

−3 −2 −1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

normalized omega

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f

⇒ the flowing water has a peak in the power at 700 Hz (a resonance of tube in my

ex-apartment ?)
11

Properties of G(ejω) are again given by standard properties of DTFT-image of a real

signal:

• auto-correlation coefficients are real, therefore

G(ejω) = G⋆(e−jω),

• autocorrelation coefficients are symmetric (even), so that G(ejω) will be purely real.

• by combining the two properties above, we can conclude, that G(ejω) will be real and

even, similarly to G(jω).

• it is periodic (with period 2π, 1, Fs or 2πFs — depends on which frequency you’ll

choose) as the signal is discrete.

• The mean power of random process in interval [ω1, ω2] can be computed as:

P[ω1, ω2] =
1

2π

∫ ω2

ω1

G(ejω)dω +
1

2π

∫

−ω1

−ω2

G(ejω)dω =
1

π

∫ ω2

ω1

G(ejω)dω.

• For the total mean power of random signal, we have:

P =
1

2π

∫ +π

−π

G(ejω)dω

12

. . . but this is a value of inverse DTFT for k = 0:

R[0] =
1

2π

∫ π

−π

G(ejω)e+jω0dω = R[0] =
1

2π

∫ +π

−π

G(ejω)dω

so that we have obtained:

R[0] = P

13

Estimation of power spectral density G(ejω) using DFT

In case we dispose of one realization of random process x[n] with samples N , we can

estimate the PSD using Discrete Fourier transform (DFT . . . this is the only one that we

can actually compute!). Reminder:

X[k] =

N−1
∑

n=0

x[n]e−j 2π
N

kn

G(ejω) will be obtained only for discrete frequencies: ωk = 2π
N

k:

Ĝ(ejωk) =
1

N
|X[k]|2.

This estimate is usually very unreliable (noisy), so that we often use Welch method –

averaging of several PSD estimates over several time-segments:

• The signal is divided into M segments, each with N samples and DFT is computed

14

for each segment:

Xm[k] =

N−1
∑

n=0

xm[n]e−j 2π
N

kn for 0 ≤ m ≤ M − 1

• The PSD-estimate is done:

ĜW (ejωk) =
1

M

M−1
∑

m=0

1

N
|Xm[k]|2.

15

Example of PSD estimate from one 320-sample segment and average from 1068 such

segments:

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
one realization

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1
averaging − Welch

⇒ the estimate obtained by averaging is much smoother.
16

Random signals processed by linear systems

• continuous time: the linear system has complex frequency response H(jω). For input

signal with PSD Gx(jω) the output PSD is:

Gy(jω) = |H(jω)|2Gx(jω)

• discrete time: the linear system has complex frequency response H(ejω). For input

signal with PSD Gx(ejω), the output PSD is:

Gy(ejω) = |H(ejω)|2Gx(ejω)

In both cases, the input PSD is multiplied by the square of the magnitude of complex

frequency response.

The shape of probability density function is not changed by the linear system – only the

parameters change.

17

Example: filtering of one realization of the water flowing by filter H(z) = 1 − 0.9z−1.

Input signal and its PSD:

50 100 150 200 250 300

−0.2

0

0.2

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

18

Magnitude of the complex frequency response and its square:

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

|H|

0 0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

3.5

|H|2

19

Output signal and its PSD:

50 100 150 200 250 300

−0.2

0

0.2

0 0.5 1 1.5 2 2.5 3

0.02

0.04

0.06

0.08

0.1

20

Example of random process – Gaussian white noise

In Matlab, function randn – the samples are independent and the PDF is given by

Gaussian distribution:

p(x) = N (x; µ, σ) =
1

σ
√

2π
e−

[x−µ]2

2σ2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

µ=0, σ=1

x

p(
x)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
µ=0, σ=1

x

F
(x

)

Generation in Matlab: x = sigma*randn(1,N) + mu

21

0 20 40 60 80 100 120 140 160 180 200
−3

−2

−1

0

1

2

3

Autocorrelation coefficients:

R[0] = µ2 + D, R[k] = µ2 pro k 6= 0

22

−150 −100 −50 0 50 100 150

0

0.2

0.4

0.6

0.8

1

PSD for white noise is constant (therefore “white”):

G(ejω) = R[0]

23

0 0.5 1 1.5 2 2.5 3

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

averaging − Welch

For continuous time, a true white noise ca not be generated (in case G(jω) is be non-zero

for all ω, the noise would have infinite energy. . .)

24

Quantization

We can not represent samples of discrete signal x[n] with arbitrary precision

⇒ quantization. Most often, we will round to a fixed number L quantization levels,

which are numbered 0 to L − 1. In case we dispose of b bits, L = 2b.

Uniform quantization has uniform distribution of quantization levels q0 . . . qL−1 from

minimum value of the signal xmin till its maximum value xmax:

Quantization step ∆ is given by:

∆ =
xmax − xmin

L − 1
,

25

for large L, we can approximate by:

∆ =
xmax − xmin

L
.

Quantization: for value x[n], the index of the best quantization level is given by:

i[n] = arg min
l=0...L−1

|x[n] − ql|,

and the quantized signal is:

xq[n] = qi[n].

Quantization error:

e[n] = x[n] − xq[n].

can also be considered as a signal !

26

Illustration of quantization on a cosine: x[n] = 4 cos(0.1n), L = 8:

20 40 60 80 100 120 140 160 180

−2

0

2

4

20 40 60 80 100 120 140 160 180

−2

0

2

4

20 40 60 80 100 120 140 160 180

−0.5

0

0.5

27

To learn, how the signal was distorted by the quantization, we will compute the power of

the useful signal Ps and compare it to the power of noise Pe: signal-to-noise ratio

(SNR):

SNR = 10 log10

Ps

Pe

[dB].

For computing the power of error signal, we will make use of the theory of random

processes: we do not know the values of e[n], but we know that they will be in the

interval [−∆
2 , +∆

2] and that they will be uniformly distributed. Probability density

function for e[n] will therefore be:

28

. . . its height 1
∆ is given by the fact that the surface:

∫ ∆
2

−
∆
2

pe(g)dg
!
= 1.

This process has a zero mean value (we would easily obtain
∫

∆
2

−
∆
2

gpe(g)dg = 0), so that its

power will be equal to the variance:

Pe = De =

∫

∞

−∞

g2pe(g)dg =

∫ ∆
2

−
∆
2

g2pe(g)dg =
1

∆

[

g3

3

]

∆
2

−
∆
2

=
1

3∆

(

∆3

8
+

∆3

8

)

=
∆2

12

29

SNR computation for a cosine

amplitude A, the cosine has power Ps = A2

2

xmin = −A, xmax = A, so that

∆ =
2A

L
Pe =

∆2

12
=

4A2

12L2
=

A2

3L2
.

Signal-to-noise ratio:

SNR = 10 log10

Ps

Pe

= 10 log10

2A
L
A2

3L2

= 10 log10

3L2

2
.

In case we dispose of b bits and the number of quantization levels is L = 2b:

SNR = 10 log10

3

2
(2b)2 = 10 log10

3

2
+ 10 log10 22b = 1.76 + 20b log10 2 = 1.76 + 6 b dB.

The constant 1.76 depends on the character of signal (cos, noise), but it always holds that

adding/removing 1 bit improves/decreases the SNR by 6 dB.

30

Example: cosine with A = 4 quantized at L = 8 levels:

SNRteor = 1.76 + 3 × 6 = 19.76 dB

SNRexp = 10 log10

1

N

N−1
∑

n=0

s2[n]

1

N

N−1
∑

n=0

e2[n]

= 19.36 dB

Matlab: snr = 10*log10 (sum(x.^2) / sum(e.^2))

. . . quite matching ;-)

31

