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SIGNALS - FUNDAMENTALS'

continuous time x(t)
discrete time z[n|
time axis modification — shift (delay, advance), x(t —7), x(t+7), x[n —m], x[n+m)]

reflection with shift — careful with the opposite sense of the sign: in z[—n + m] a
positive m correspond to the delay of the reflected signal.

contraction and delatation of the time axis in continuous time domain: z(mt), z(%).



Energy and power I

. pln] = Jz[n]?

instantenous power: p(t) = |x(t)
overall energy (finite/infinite)
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everall mean power (finite/infinite)
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= for a periodic signal power is computed over one period.



Periodic signals I

repeat after 1" or N, fundamental period 77 or Ny, frequency and angular frequency
(regular for a continous time signal, normalized for a discrete signal):

1 2T 1 , 2w

= — = — /:— = —
fl_Tl Wi = J1 N 1TT N,

...we don't use apostrophe.



Harmonic signals I

are defined by a magnitude, frequency and initial phase:
continuous time:

C, . . C . .
z(t) = C1 cos(wit + ¢1) = 716J¢16Jw1t X 716—9¢16—Jw1t
period T} = f_ll — 3—717
discrete time:
Cy . . C . .

period N7 is computed differently — Ny has to be an integer number, in some cases we
don't succeed.



Important signals I

e unit impulse §(t), d[n| ( in continuous time has peculiar properties, in discrete time is

e unit step o(t), o[n]

a standard signal)



SIGNALS IN CONTINUOUS TIME DOMAIN- FREQUENCY ANALYSIS'

Periodic — Fourier series
signal is periodic = sctrum is discrete (coefficients)

1 <
CL = — x(t)e_]kW1tdt z(t) = Z cped et
Tl Th k=—o0

cr are coefficients of Fourier series. Properties:

® Cp = Cik
® ¢y IS a mean value
e are tied with frequencies kw,q

e pairs of coefficients ¢, and c_; with the corresponding exponentials compose a cosine
with frequency kws.
e signal shift: z(t) — z(t — 7), cp — cre 7*17 — influences only on arguments of

coefficients



Examples:

e cosine: z(t) = Cj cos(wit + ¢1) has only two coefficients: ¢; = £Lel?1,

1
2
e periodic series of square signals: using and auxuliary function sinc:

b
/ eI dy = 2b sinc(bx)
—b

(V. v . : :
result: ¢ = DTsmc (57%‘001) . first draw dashed the precomputed auxuliary function,
1

then mark the coefficients on it.

All spectra are composed of separatelly plotted modul and argument parts,

argument of a positive real number os 0, argument of a negative real number is
either m or —r.



Non-periodic — Fourier transform
signal is non-periodic =spectrum is defined by a function

Foo . 1 [T .
X (juw) = / pe= it a(t) = — [ X(jw)et“tduw

X (jw) is a spectral function, fundamental properties:
o X(jw)=X"(—jw).
e shift of a signal: z(t) — 2(t — 7), X (jw) — X (jw)e 7“7 — effect only on the

argument of a spectral function.

Examples:

e shifted Dirac impulse: z(t) = 6(t — 7), X(jw) = 7%,

V
e square impuls: X (jw) = Disinc (§w> function sinc ( decomposition to modul and

argument) is the result.



SAMPLING'

in time domain, signal is multiplied by a sampling signal: sampling period T, sampling

frequency F,; = Ti angular sampling frequency Qg = 2Z: x,(t) = z(t)s(¢)

in theory, a periodic series of Dirac impulses serves as a sampling signal, the resulting

spectral function becomes

Xs(jw):% Z X(w — kwq).

k=—o0

if the copies of the spectrum of the original signal overlap = aliasing.

for signals with bounded spectrum with frequency wy,q., sampling theorem (prevent
aliasing): Qs > 2wWmaz OF Fs > 2f s

when ST satisfied, signal z(¢) can be idealy reconstructed.

: : nl’ _
normalized time: n = a (counter of samples), normalized regular frequency

, w : :
f' fracfFy, normalized angular frequency w’ = ok normalized always by sampling

S

frequency.
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DISCRETE SIGNAL'

basic operations

e sequency of length N — obtained by multiplying with a window

1 for ne|0,N —1]

RN [n] = _
0 otherwise

e periodization: Z[n| = x[mod yn)|
e periodic shift: x[n] — z[mod ny(n — m)]

e circular shift: x|n] — Ry[n]z[mod ny(n —m)]

11



convolution

e linear: x[n] xy[n| = Z x|k]y|n — k| (for a sequence of length N results in a

k=—o0

sequence of length 2N — 1)

e periodic: Z x|k]y[ mod n(n — k)] (has samples along the whole axis).
N-1

e circular z[n]Wy|n] = Ry[n] Z x|kly[mod x(n — k)], results in a sequence of the
k=0

same length as the original signal V.
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Spectral analysis of discrete signals'

DTFT Discrete Time Fourier Transform
Signal is sampled (discrete), spectrum is periodic

X (%) = Z r[nle " x[n] = — X (e79)eTI9mdu

Properties

e is periodic as the signal is discrete.
e is a function defined for all w, as the signal is arbitrary.

e can be displayed on different frequenxy axes.
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Discrete Fourier Series of a discrete signal with period N
Signal is sampled (discrete), spectrum is periodic. Signal is periodic thus spectrum
is discrete (coefficients, not function)

N-1 !
= T _j%kn —-
nz:% x|nle =%

Properties of DFS coefficients:

N—-1

k=0

27T

e coefficients are tied to normalized angular frequencies : kwq, where w1 = 5.

o coefficients possess standard properties: X [k] = X*[—k], and moreover are periodic :
Xkl = X[k + gN]
Example: DFS of a harmonic signal with period N: z[n] = C; cos(3Zn + ¢1):

~ ~ NCy

X[1]] = [ X[V - 1)| = arg X[1] = —arg X[N — 1] = ¢

14



Discrete Fourier transform converts a signal sequence of length IV to a spectrum
sequence of length N.

N-1 N-1
.2 1 . 27T
Xkl = zlnle I NE glp] = — X[kletVN*  only forn,k=0...N —1
4= 3 sl = X XIE y

Connection of coefficients X [k] with frequency:

. k N —1
e normalized regular frequency N to N

malized lar f 27r—k to 27 !
® nhormalized angular rrequenc o)
g g y N N

k N —1

e regular frequency NFS to ~ F
k N —1
e regular angular frequency NQT(‘FS to ~

2mF,

15



Properties:
o X|k]=X*IN — k]
e circular shift: [n] — Ryz|mod y(n —m)], X[k] — X[k]e—j%mk
e calculation using FFT.

e convinient for calculating FS and FT with discrete time, however with restrictions !
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SYSTEM '

causal, time invariant, linear, stable.

described by impulse response: in continuous time excited by Dirac impulse 6(t) (only
theory), we obtain h(t). In discrete time excited by unit impulse §[n]| (also in practise),
we obtain h[n].

response to arbitrary input: convolution with impulse response:

+00 o0

yln| = x[n] x hn] = Z zlklhln — k] y(t) =x(t) x h(t) = / x(T)h(t — T)dT.

k=—00 — o0

(symmetry).

impulse response of a causal system

hin]=0forn <0 hA(t)=0fort <0

convolution computation using “paper’ method: discrete : write numbers, multiply
and sum up. continuous: drow functions, multiply and integrate — area computation.
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Systems in continuous time domain I

complex frequency characteristic is a FT of impulse response:

+0o0
H(jw) = / h(t)e 7«tdt.

— o0
has the same properties as a FT of a continuous non-periodic signal: non-periodic nor
discrete. H(jw) = H*(—jw).
Transfer of a cosine:

x(t) = Crcos(wit+ ¢1)  y(t) = |H(jw1)|C1cos |wit + ¢1 + arg H(jwy)|. = the
output cosine has a modified magnitude and phase

Transfer of a periodic signal: multiply coefficients ¢, by H(jkwy)

Transger of a general signal: spectral image of convolution is multiplication

—1

2(t) 2o X(jw) Y (jw) = H(jw)X (jw) Y (jw) T y(t).
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System definition by a difference equation:

g LU0 gy, Al
i T = S

Laplac transform:

dx(t
we are interested in LT derication: Zi ) sX (s)
Transfer function:
M
> bt
Y(s) k=0
H p— p—
> s
k=0
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e frequency characteristic: H(jw) = H(s)|

sS=jw
e nulls and poles of a transfer function (polynom roots in numerator and denominator):

M

H(s—nk)

H(s) = 22 .
110 —pr)
k=1

We can estimate behaviour of frequency characteristic.

e stability: all polls are found in the left half-plane of the complex plane. ®{pi} < 0.
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Systems in discrete time domain I

e fundamental blocks: delay, constant multiplication, addition.

e complex frequency characteristic is a DTFT of an impulse response:
H(e/*) =) " h[k]e 9"
k=0
has the same properties as a DTFT of a discrete signal: periodic and
H(e!¥) = H*(e™7%)

Transfer of a cosine: x[n] = C7 cos(win + ¢1),
y[n] = C1|H(e7“")| cos(win + ¢1 + arg H(eI“1))

Systen definition by a difference equation I

P

Q
yln| = Z brx|n — k| — Z aryln — kl,

k=1

e FIR — non-recursive: only by ...bg are defined (non-zero). Impulse response is given
21



by the filter coefficients:

0 for n<0 andfor n>Q

hin] =
b, for 0<n <@

e IIR — pure recursive: only by, a1 ...ap are non-zero.

e IIR — general recursive: a; 1 b; are non-zero.

2z — transform

n=——~oo

of the most interest is ZT delay : z[n — k] — 27X (2)

Transfer function

Q

> et
k=0

o P
1+ Z akz_k
k=1

e frequency characteristic: H(e’*) = H(2)|,—¢iw
22




e nulls and poles:

we can estimate behaviour of the frequency characerlstlc.

e Stability: system is stable when all poles are found within unit circle |p;| < 1
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RANDOM SIGNALS '

e continuous time: system {&;} of random values is defined for all ¢ € R and is called a
random process &(t).

e discrete time: systen {&,} of random values is defined for all n € N and is called a
random process &[n].

Set of realizations (with size 2): denote &, (%), and &, [n]. Estimation on a realization set
. corpora estimation

Functions to descrive random process

e Distribution function

F(x7t) — P{f(t) < ZE}, F(xvt) — P{f[n] < CIZ},

set estimation. For each x, count how many values less or equal to x and devide by (.

e Probability density function

Pl t) = (5F§i,t)7 p(z,m) = 5ng,n)
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set estimation using a histogram — dont forget to divide by €2 and A, to ensure that
ftf p(x,t)dr = 1.

e probability
b

Pla < &(t) < b} = F(b,t) — F(a,t) = / p(x,t)dx

a

moments

e mean value:

+00 00
alt) = B{E()) = / wp(z,t)dz  afn] = E{€[n]} = / ep(z, n)de

set estimation is simply an average over all realizations.

e variance, standard deviation:

+oo
D(t) = B{£(t) — a(t)]?} = / & — a(t)p(z, t)da

+00
Din] = E{[¢[n] — a[n]]?} = / & — aln]]*p(z, n)da

7(t) = /D(t)  oln] = VDIl



set estimation:

Q
Dt) = & S le() —a(®, 6(t)=\/D(t), Dnl,oln] = ...

e (auto-)correlation function (continous time)
+0o0 +o0
R(t1,t2) :/ / r122p(x1, T2, t1,t2)dx1dwo,
— o0 — o0
(auto-)correlation coefficients (discrete time):

—+ o0 —+ o0
R(n1,n2) = / / r1x9p(x1, X2, N1, N2 )dxdTo,
— OO — 0

2-dimensional probability disctribution function can be estimated from a set by a 2D
histogram (dont forget to divide by Q and A?).

Stacionarity I

same characteristics (values of the functions) for all £, n; moments , autocorrelation

functions (continuous) depend only on 7 = t5 — t1, autocorrelation coefficients (discrete)

depend only on £ = ngy — nj;. o6



Ergodic process I

function value estimation from one realization z(¢) of length T' (continuous) or z|n| of
length IV (discrete).

Time estimation

e F(x), p(x) — histograms estimated over one realization.

e mean value, variance, standard deviation:
1 (T ) T _
5 — —/ s()dt D —/ () —al2dt &= VD
T Jo T Jo

N—-1 N—-1
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T
autocorrelation function R(7) = %/ x(t)x(t + 7)dt
0

autocorrelation coefficients:

N-1
R(k) = N Z x[n]x[n + k|, , skewed, but reliable estimation
n=0
N-1
R(k) = N+|k| Z x[n]x[n + k|, no skewed, but nonreliable estimation at margins.
n=0

Power Spectral Density — PSD I

continuous time:

1 +00 . +00 '
Gw) = o / R(De T dr Rir)= | Gljw)e 7 dw

discrete time:

G(e?) = Z R[kle™7“* R[k] = % ‘/7T G (%) etk du

k=—00 —TT

both G share properties with FT and D‘I;gT (e.g. periodicity in G(e/%), etc.)



e estimation of PSD using DFT: for w, = 2ka:
Ge) = | X[K] 2
N

in some cases not reliable, averaging over several segments (Welch method).
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Transfer of a random signal through a linear system I

Gy(jw) = [H(jw)|*Ga(jw)
Gy(e!”) = [H(e’)|*Ga(e’™)
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QUANTIATION '

raunding to given quantization levels. L = 2° levels from Z,,in t0 Zmaz, quantization step

A L Lmaxr — Lmin - Lmaxr — Lmin

L-1 L
for every x[n| choose the closest level: z[n| — z,[n]. Quantization error:

e[n] = xn] — z4[n].

Influence of the error to signal quality: signal to noise ratio:

P

e

For a cosine with magnitude A and correct setting of z,,;n, and T,,qx:

3 3
SNR = 10log,, 5(26)2 = 10log; 5 + 101ogy 22° = 1.76 + 20blog,, 2 = 1.76 + 6 b dB.
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