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• LTI systems – recapitulation.

• frequency characteristics H(jω).

• fransfer of a signal thrugh a system with H(jω).

• Laplace transform.

• Stability and relationship between LT and H(jω).
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LTI systems – recapitulation

• linearity: ax1(t) + bx2(t) −→ ay1(t) + by2(t). This property is especially important as

we often represent a signal as a sum of complex exponentials.

• time invariance: system’s properties do not change over time.

• LTI systems are defined by impulse response: for the input δ(t) a system outputs

h(t). What h(t) looks like for causal systems?

• to any arbitrary input signal x(t) we compute the output using convolution:

y(t) = x(t) ⋆ h(t) =

∫ +∞

−∞

x(τ)h(t − τ)dτ

or vice-versa as convolution is communitative. For causal impuls responce we obtain:

y(t) =

∫ t

−∞

x(τ)h(t − τ)dτ
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System’s response to the input signal est

where s is an arbitrary complex value:

y(t) = H(s)est, where H(s) =

∫ +∞

−∞

h(t)e−stdt.

The output is the original signal multiplied by a complex number H(s). We are especially

interested in the case when s = jω, then the input signal is ejωt.

y(t) = H(jω)ejωt, where

H(jω) =

∫ +∞

−∞

h(t)e−jωtdt.

The complex exponential with frequency ω is now multiplied by a complex number H(jω).

A value of H(jω) is called transfer . We can evaluate H(jω) for any ω. The function

H(jω) is called (complex) frequency characteristic. Transfer function is a Fourier

transform of an impulse response: H(jω) = F{h(t)}. As h(t) ∈ ℜ, then H(jω) has the

following property:

H(jω) = H⋆(−jω).
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Example: H(jω) of a low pass filter:
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Transfer of a signal through a system with H(jω)

Complex exponential x(t) = c1e
jω1t.

Find a value of H(jω1), decompose it into magnitude and argument:

y(t) = H(jω1)c1e
jω1t = |H(jω1)||c1|e

j(arg c1+arg H(jω1))ejω1t.

⇒only magnitude and argument of c1 change. The period remains unchanged.

Cosine function x(t) = C1 cos(ω1t + φ1) can be decomposed to the form:

x(t) = C1

2 ejφ1ejω1t + C1

2 e−jφ1e−jω1t. We work with a linear system, that is the

exponentials can be processed separatelly and consequently summed up:

y(t) = H(jω1)
C1

2
ejφ1ejω1t + H(−jω1)

C1

2
e−jφ1e−jω1t.

5



We know that H(jω1) and H(−jω1) are complex conjugate, thus |H(jω1)| = |H(−jω1)|

and arg H(−jω1) = − arg H(jω1).

y(t) = |H(jω1)|
C1

2 ejφ1+j arg H(jω1)ejω1t + |H(jω1)|
C1

2 e−jφ1−j arg H(jω1)e−jω1t =

= |H(jω1)|C1 cos [ω1t + φ1 + arg H(jω1)] .

⇒the resulting cosine has changed magnitude and phase.
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Example: Ideal Hi-Fi amplifier amplifies from 0 to 20 kHz:

|H(jω)| =







100 for 0 ≤ |ω| ≤ 40000π

1 for |ω| > 40000π
arg H(jω) = −

ω

100000
.

How will it react on a cosine signal with magnitude 1 V and frequencies f1 = 1 kHz and

f2 = 30 kHz ?

x1(t) = cos(2000πt), ω1 = 2000π, H(jω1) = 100e−j0.02π

y1(t) = 100 cos(2000πt − 0.02π).

x2(t) = cos(60000πt), ω2 = 60000π, H(jω1) = 1e−j0.6π

y1(t) = 1 cos(60000πt − 0.6π).
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Arbitrary periodic signal can be decomposed into FS:

x(t) =

+∞
∑

k=−∞

ckejkω1t

H(jω) will alter every coefficient with respect to the frequency it is tied with:

y(t) =

+∞
∑

k=−∞

H(jkω1)ckejkω1t,

Again, we do simple multiplication of the FS coefficients (no convolution).

FS coefficient computation, multiplication and signal restoration can be faster than

convolution!

Example: A mixture of the signals from the previous example

x(t) = cos(2000πt) + cos(60000πt) = c1e
jω1t + c−1e

−jω1t + c30e
j30ω1t + c−30e

−j30ω1t,

where c1 = c−1 = c30 = c−30 = 1
2 .

After transfer throught the amplifier, new coefficients are:

c1,y = 1
2100e−j0.02π, c−1,y = 1

2100ej0.02π, c30,y = 1
21e−j0.6π, c−30,y = 1

21ej0.6π.

y(t) = 100 cos(2000πt − 0.02π) + 1 cos(60000πt − 0.6π).
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Transfer of a continuous-time signal through a system with H(jω)

An arbitrary signal is decomposed to an infinite number of infinitelly small exponentials

using FT:

X(jω) =

∫ +∞

−∞

s(t)e−jωtdt

where X(jω) is a spectral function of input signal and is defined as:

X(jω) = 2π
dcx

dω
.

Likewise, we can define a spectral function of output signal:

Y (jω) = 2π
dcy

dω
.

For some ω1 at which we find dcx,1 and dcy,1, the following holds:

dcy,1 = H(jω1)dcx,1.

And:

Y (jω1)
dω

2π
= H(jω1)X(jω1)

dω

2π
.
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The above definitions hold for all ω1, thus:

Y (jω) = H(jω)X(jω)

Can be proved also by:

Y (jω) = F{y(t)} =

∫ +∞

−∞

[
∫ +∞

−∞

x(τ)h(t − τ)dτ

]

e−jωtdt = . . .
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Example: The input signal into Hi-Fi amplifier is a square signal defined by ϑ = 1 µs,

D = 1 V. Calculate the output y(t)

We start off with:

x(t)
F
−→ X(jω) Y (jω) = H(jω)X(jω) Y (jω)

F
−1

−→ y(t).
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Direct FT: X(jω) = Dϑsinc
(

ϑ
2 ω

)

= 1 × 1 × 10−6sinc(0.5 × 10−6ω), the function touchs

the ω axis at ϑ
2 ωa = π, ωa = π

0.5×10−6 = 2Mπ.
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The function is multiplied by H(jω), that is much ’thinner’

The result is a square signal with linear phase. As the last step, an inverse Fourier

transform has to be applied.
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First, lets assume the phase is zero (“zp”–zero phase). The signal with square shaped

spectrum is:

yzp(t) =
1

2π

∫ ωc

−ωc

He+jωt =
Hωc

π
sinc(ωct) = 1 × 10−4 40000π

π
sinc(40000πt) =

= 4sinc(40000πt).

The function will cross time axis for the first time for: 40000πt = π, t = 1
40000 = 25 µs.

The phase though is linear (not zero-values): φ = − ω
100000 . . .What does it remind us?

Shift of the signal in time !

y(t) = yzp(t − τ) −→ Y (jω) = Yzp(jω)e−jωτ ,

thus τ = 1
100000 = 10 µs.
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We see that:

• the signal is stretched 50 times.

• low-band filters ’do not like’ sharp edged signals in the input.

• impulse response of the ideal low-band filter apparently is function sinc.

• is it really possible for the signal y(t) begin at time −0.5 µs (before the input x(t) is

actually given to the filter)?
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Ideal amplifier

y(t) = a x(t − τ), Y (ω) = a X(ω)e−jωτ H(jω) = ae−jωτ

a

0

0

|K(  )|ω

ω

arg K(  )ω

ω
−ωτ
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Derivative unit

y(t) =
dx(t)

dt
. If we set the input x(t) = ejωt, the output is y(t) =

dejωt

dt
= ejωtjω

H(jω) = jω.
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LAPLACE TRANSFORM

We know that given a complex exponential est to the input, an LTI system produces the

output:

y(t) = estH(s), where H(s) =

∫ +∞

−∞

h(τ)e−sτdτ.

So far we were interested in the case when s = jω, now we will be interested in the entire

complex plane “s”. Laplace transform:

X(s) =

∫ +∞

−∞

x(t)e−stdt,

where s = σ + jω is a complex variable. X(s) is a complex function over complex plane

called projection and is denoted as L, x(t)
L

−→ X(s). Note, that:

X(s)|s=jω = F{x(t)}.

What do we need LT for? We are not interested in the transformed signals but rather the

behaviour and stability of the systems defined by differential equations (LTI systems).
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Fundamental properties of LT

• Convolution in time domain x1(t) ⋆ x2(t) −→ X1(s)X2(s), corresponds to

multiplication in frequency domain

x(t) −→ X(s), h(t) −→ H(s)

y(t) = x(t) ⋆ h(t) −→ Y (s) = X(s)H(s).

H(s) is called transfer function or system function.

• Note the derivation
dx(t)

dt
−→ sX(s).

21



Systems defined by differential equations

N
∑

k=0

ak

dky(t)

dtk
=

M
∑

k=0

bk

dkx(t)

dtk

We are interested in the transfer function that is telling us what’s the system’s reaction on

the input:
(

N
∑

k=0

aksk

)

Y (s) =

(

M
∑

k=0

bksk

)

X(s),

H(s) =

M
∑

k=0

bksk

N
∑

k=0

aksk

,

From the above notation, we can easily get to the frequency characteristics:

H(jω) = H(s)|s=jω
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the numinator and the denominator are composed of polynomials. Polynomials are defined

either by coefficients or roots.

H(s) =
bM

aN

M
∏

k=1

(s − nk)

N
∏

k=1

(s − pk)

.

The roots are the values of s for which the polynomial equals to zero. The roots of the

numinator nk are called zero points or zeros. The roots of the denominator pk are called

poles.
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Example: H(s) = s2+3s+1
s2+0.16 = (s+2)(s+1)

(s+j0.4)(s−j0.4)

n1 = −2, n2 = −1, p1 = −j0.4, p2 = +j0.4

From zeros and poles, we can also estimate graphical represenation of H(jω).
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Stability of causal systems

Causal system is stable when all poles lie in the left half-plane of the complex plane:

ℜ{pk} < 0.

Example: what is the capacitor tention y(t) with respect to the source tention x(t)?

i(t) = x(t)−y(t)
R

current on the capacitor : i(t) = C
dy(t)

dt

it gives : RC
dy(t)

dt
+ y(t) = x(t)

τ = RC is so called time constant of the system. The coefficients of the differential

equation are : a1 = τ, a0 = 1, b0 = 1.
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The transfer funtion have no zeros and one pole for (sτ + 1) = 0, thus p1 = − 1
τ
.

⇒ the system is stable.
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Zero-pole notation:

H(jω) =
bM

aN

M
∏

k=1

(jω − nk)

N
∏

k=1

(jω − pk)

.

For a given jω each braces is a complex number, that can be represented as a vector.

To obtain the value of the frequency characteristic for the frequency ω we have to

• multiply together moduls of all the numbers from the numinator and sum up argumets.

• divide moduls of all the numbers from the denuminator and subtract arguments.
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Back to the example...

H(s) = 1
τ

1
s−(− 1

τ
)
.

• we start off with jω = 0: |H(0)| = 1, arg H(0) = 0.

• increasing ω: then |s − (− 1
τ
)| increases, but is in the denominator. Thus the fraction

decreases. The ungle increases and is used with the inverted sign to get the final result.

• jω = ∞: |H(j∞)| = 0, arg H(0) = −π
2 .
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Example: R = 1 kΩ, C = 1 µF, τ = RC = 1 ms.
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