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• Properties of linear systems.

• Convolution – diskrete and continuous time.

• Properties of convolution
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Systems

• What can be system?

Continuous time Systems: x(t) → y(t). Discrete time systems: x[n] → y[n].
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Example 1: electric circuit uc(t), us(t):

• i(t) = us(t)−uc(t)
R

• i(t) = C
duc(t)

dt
.

• duc(t)
dt

+ 1
RC

uc(t) = 1
RC

us(t).

Example 2 discrete: amount of neurons in one’s brain decreases by 0.1% plus the number

of beers drunk:

y[n] = 0.999y[n − 1] − x[n]

This difference equation can be solved for a given x[n] at a certain time n and the initial

condition y[0] (the number of neurons at birth). We can also find out when y[n] will equal

to zero.
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Combination of systems

paralel, in series, loop-back:

Fundamentals about systems

With memory / without memory

Example with memory: neurons in brain Example without memory: y(t) = Kx(t).
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Examples: drinking of beer: input - output:
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Causal systems

Example:

Causal system: y[n] = x[n] − x[n − 1] Non-causal system: y[n] = x[−n]
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Stability

Bounded input implies baunded output.

We can find such B, C < ∞ that for every t, n the following relations hold:

|x(t)| < B → |y(t)| < C |x[n]| < B → |y[n]| < C.

Example 1: y(t) = tx(t),∀tx(t) < ∞. The system is unstable as at time t = ∞ the output

is ∞.

Example 2: y(t) = expx(t)
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Time-invariant systems

System does not change its behaviour over time. That is, if for the input x(t) the system

outputs y(t), given the input x(t − t0) the system will output y(t − t0).

Example 1: y[n] = sin(x[n]). For time [n − n0] we get exactly the same sine but shifted by

n0 : y[n − n0] = sin(x[n − n0])

Example 2: y[n] = nx[n]
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Linearity

x1(t) → y1(t) a x2(t) → y2(t).

• addition: x1(t) + x2(t) → y1(t) + y2(t).

• scaling: ax1(t) → ay1(t).

ax1(t) + bx2(t) → ay1(t) + by2(t)

ax1[n] + bx2[n] → ay1[n] + by2[n]
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Example: y(t) = tx(t) is not stable but is linear!

Linearity plays very important role in system analysis: each input can be represented as a

sequence of scaled and shifted impulses. Given the system impulse response, we therefore

can calculate the output to an arbitrary (that is different from impulse) input by means of
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convolution.
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LTI SYSTEMS

• LTI – linear, time-invariant

• impuls response - reaction to the impulse signal

We are interested in the system response to the generic signals x(t), x[n].
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Decomposition of signal into discrete unit impulses

x[n] =

+∞
∑

k=−∞

x[k]δ[n − k].
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Example for h[n] a x[n]:
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Solution:

y[n] =
+∞
∑

k=−∞

x[k]h[n − k]

y[n] = x[n] ⋆ h[n]
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k -5 -4 -3 -2 -1 0 1 2 3 4 5 y[n]

x[k] 0 0 0 0 2 -1 1 0 0 0 0

n=-2 0 1 2 3 0 0 0 0 0 0 0 0

n=-1 0 0 1 2 3 0 0 0 0 0 0 6

n= 0 0 0 0 1 2 3 0 0 0 0 0 1

n= 1 0 0 0 0 1 2 3 0 0 0 0 3

n= 2 0 0 0 0 0 1 2 3 0 0 0 1

n= 3 0 0 0 0 0 0 1 2 3 0 0 1

n= 4 0 0 0 0 0 0 0 1 2 3 0 0
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LTI systems for continuous time

δ∆(t) =







1
∆ for 0 ≤ t ≤ ∆

0 elsewhere

x̂(t) =
∞
∑

k=−∞

x(k∆)δ∆(t − k∆)∆.

18



δ(t) → h(t), δ(t − τ) → h(t − τ), x(τ)δ(t − τ) → x(τ)h(t − τ)
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y(t) =

∫ +∞

−∞

x(τ)h(t − τ)dτ.

y(t) = x(t) ⋆ h(t).
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Convolution – conclusions

y[n] = x[n] ⋆ h[n] =

+∞
∑

k=−∞

x[k]h[n − k]

y(t) = x(t) ⋆ h(t) =

∫ +∞

−∞

x(τ)h(t − τ)dτ.

Properties of convolution

Comutativity:

y[n] = x[n] ⋆ h[n] = h[n] ⋆ x[n] =

+∞
∑

k=−∞

x[k]h[n − k] =

+∞
∑

k=−∞

h[k]x[n − k]

y(t) = x(t) ⋆ h(t) = h(t) ⋆ x(t) =

∫ +∞

−∞

x(τ)h(t − τ)dτ =

∫ +∞

−∞

h(τ)x(t − τ)dτ.
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Distributivity – paralel combination of systems:

y(t) = y1(t) + y2(t) = x(t) ⋆ h1(t) + x(t) ⋆ h2(t) = x(t) ⋆ [h1(t) + h2(t)].

h(t) = h1(t) + h2(t).

Check it:
∫

x(τ)h1(t−τ)dτ+

∫

x(τ)h2(t−τ)dτ =

∫

x(τ)[h1(t−τ)+h2(t−τ)]dτ = x(t)⋆[h1(t)+h2(t)],

y[n] = x[n] ⋆ [h1[n] + h2[n]].
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Associativity – combination of systems in series:

y(t) = [x(t) ⋆ h1(t)] ⋆ h2(t) = x(t) ⋆ [h1(t) ⋆ h2(t)].

Impulse response h(t) = h1(t) ⋆ h2(t).

Check it:

y(t) =

∫

v

[
∫

τ

x(τ)h1(v − τ)dτ

]

h2(t − v)dv =

∫

v

∫

τ

x(τ)h1(v − τ)h2(t − v)dτdv =

= swap order of integration =

∫

τ

∫

v

x(τ)h1(v − τ)h2(t − v)dvdτ =

∫

x(τ)

[
∫

v

h1(v − τ)h2(t − v)dv

]

dτ = . . .

v = g + τ and take into account:
∫

g
h1(g)h2(t − τ − g)dg = h(t − τ) thus, solution is:

. . . = x(t)[h1(t) ⋆ h2(t)].
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For discrete systems:

y[n] = x[n] ⋆ [h1[n] ⋆ h2[n]].

Systems with memory and without it :

Without memory: h[0] = Kδ[n], thus: y[n] = x[n] ⋆ h[n] =

+∞
∑

k=−∞

x[k]Kδ[n − k] = Kx[n].

h(t) = Kδ(t), therefore: y(t) =

∫ +∞

−∞

x(τ)Kδ(t − τ)dτ = Kx(t).

identity (wire):

h[n] = δ[n]

h(t) = δ(t).
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Causality:

h[n] = 0 pro n < 0

h(t) = 0 pro t < 0
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+∞
∑

k=−∞

x[k]h[n − k] →

n
∑

k=−∞

x[k]h[n − k],

+∞
∑

k=−∞

h[k]x[n − k] →

∞
∑

k=0

h[k]x[n − k]
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∫ +∞

−∞

x(τ)h(t − τ)dτ →

∫ t

−∞

x(τ)h(t − τ)dτ,

∫ +∞

−∞

h(τ)x(t − τ)dτ →

∫ +∞

0

h(τ)x(t − τ)dτ.

Stability:

+∞
∑

k=−∞

|h[k]| < ∞,

∫ +∞

−∞

|h(t)|dt < ∞.
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