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• Ideal sampling – spectrum of a sampled signal.

• Aliasing, Shannon theorem.

• Ideal reconstruction.

• Normalized time and frequency.
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Recapitulation – Why we need discrete signal processing ?

DSP has undisputed advantages compared to classical (although, DSP nowadays is

becoming a standard) signal processing.

• reproductibility.

• no changes caused by material aging or temperature.

• no setting and calibration.

• possibile adaptive processing (functionality changes according to the input signal

property).

• simulation = application.

• compatible with the boom of computer technology, Internet, mobile communication.

2



Signal Provcessing Stages
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A continuous time signal is defined at every time point t, from −∞ to ∞ (infinite number

of values)
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t0

x(t)

Fourier transform is used to represent a signal in frequency domain:

X(jω) =

∫ −∞

−∞

x(t)e−jωtdt, (1)

where X(jω) is called spectral function or shortly spectrum. Real signals are normally

bounded in frequency (the energy is concentrated in the band (0, ωmax)).
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Analog to discrete (AD) transform

Sampled signal is obtained by multiplying the given analog signal with some signal

periodic in time. Signal s(t) is called sampling signal.
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Theoretically, sampling is understood as multiplying a signal by a sequence of Dirac

impulses. We will have to derive spectral function formula for such signal :-(
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Spectral function of a periodic sequence of square impulses
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Prior to spectral function, we compute coefficients of Fourier series for a periodic sequence

of Dirac impulses. We know that for a periodic sequence of square impulses with width ϑ,

height D and period T , we compute FS coefficients using:

ck =
Dϑ

T
sinc

(

ϑ

2
kΩ

)
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Consider, we express a Dirac impulse by means of a square signal: D has to equal to

D = 1

ϑ for the square’s arrea to make 1. If ϑ → 0, 1

ϑ → ∞, the coefficients become:

ck = lim
ϑ→0

1

ϑϑ

T
sinc

(

ϑ

2
kΩ

)

=
1

T
sinc(0) =

1

T

Thus, all FS coefficients of a periodic series of Dirac impulses are equal to 1/T ! To convert

FS coefficients to spectral function we have to periodize Dirac impulses (place them to

multiples of the basic angular frequency) and their potency set to the value of FS

coefficients. For our signal we obtain:

S(jω) =

+∞
∑

k=−∞

2πckδ(ω − kω1) =

+∞
∑

k=−∞

2π

T
δ(ω − kω1)

The result is interesting: spectrum of a periodic sequence of Dirac impulses (with period

T ) is again a periodic sequence of Dirac impulses (now with period ω1 = 2π
T )

Spectrum of a sampling signal.

8



2  /Tπ

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

2  /Tπ

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

2  /Tπ

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

2  /Tπ

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

S(  )ω

0ω ω 2ω1 1 1 ω

9



Multiplication by a sequence of Dirac impulses

When we multiply a signal by a sequence of Dirac impulses x(t), we obtain a sequence of

Dirac impulses but their potency (area of a Dirac signal) becomes the value of the original

signal at time nT :

xs(t) = x(t)s(t)

1

s

t0 T

s(t) x (t)=x(t)s(t)

t0

T is sampling period and Fs =
1

T
is sampling frequency
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Spectrum of a sampled signal

In time domain, we multiplied the original signal and the sampled signal which means we

have to apply convolution in frequency domain:

Xs(jω) = F{x(t)s(t)} =
1

2π

∫ +∞

−∞

S(ν)X(ω − ν)dν =

=
1

2π

∫ +∞

−∞

[

2π

T

∞
∑

k=−∞

δ(ν − kω1)

]

X(ω−ν)dν =
1

T

∞
∑

k=−∞

∫ +∞

−∞

X(ω−ν)δ(ν−kω1)dν =

=
1

T

∞
∑

k=−∞

X(ω − kω1).

We used a previously derived formula:
∫

f(x)δ(x − x0)dx = f(x0),

and use substitution : x = ν, f(x) = X(ω − ν), x0 = kω1. Spectrum of the original

signal periodizes and all coppies add up!
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Sampling theorem and aliasing

Depending on the relation of the maximum frequency in the signals spectrum ωmax and

the sampling frequency Ωs = 2πFs, we have two cases

1) Ωs > 2ωmax: Single copies of a sampled signal do not overlap and the signal can be

perfectly reconstructed from the spectrum

−Ωs Ωs

ω
1/T max|X(j  )|ω

−ω ωω0max max

|Xs(j   )|

2) Ωs ≤ 2ωmax: Single coppies of a sampled signal operlap and the original spectrum is

modified. We cannot reconstruct the original signal from the spectrum of the sampled

signal. This phenomenon is called aliasing.
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−2Ωs −Ω s

Ω s
2Ω s

1/T max|X(j  )|

−ωmax ωmax

ω
ω

ω0

|Xs(j  )|

The condition for a correct sampling is called Shannon Kotelniko Nyquist sampling

theorem
Ωs > 2ωmax

or

Fs > 2fmax

Notes

• the condition should be satisfied even when we do not need reconstruction.

• it is not possible practicly reconstruct ideal “rectangular” low pass filter with passing

in the interval −ωmax to +ωmax and supressing the signal elsewhere. Most of the

reconstruction filters have cut off band of 30–40 dB.
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Reconstruction

we apply a low-pass filter with cutting frequency Ωs/2 on the sampled signal:

Hr(jω) =







T for − Ωs/2 < ω < Ωs/2

0 elsewhere

The value of a frequency characteristic in the pass band is T so we get the same

magnitude as in the original spectrum ( 1

T T = 1).
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1. Example of sampling and reconstruction – OK

Fs = 8000 Hz, fmax = 3000 Hz, a tedy Ωs = 16000π rad/s, ωmax = 6000π rad/s.

T = 1
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2. Example of sampling and reconstruction – BAD

Fs = 8000 Hz, fmax = 7000 Hz, a tedy Ωs = 16000π rad/s, ωmax = 14000π rad/s.

T = 1
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Antialiasing filter

What can we do when we have a sampled signal where the sampling theorem is not

satisfied and we cannot change the sampling frequency? Prior to sampling we have to apply

an anti-aliasing filter on the sampled signal, that filters off frequencies higher than the half

sampling period. The original spectrum is modified before sampling and high freuencies are

lost. We cannot restore the original signal but the preprocessed signal that does not

contain the high frequencies from the original signal is no longer affected by aliasing.

Haa(jω) =







1 for − Ωs/2 < ω < Ωs/2

0 elsewhere
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Example 2. with applying an anti-aliasing filter:
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Reconstruction in time domain

... or what happens during low pass filtering. Filtering with reconstruction filter with

frequency characteristic Hr(jω):

Hr(jω) =







1

T
for − Ωs/2 < ω < Ωs/2

0 elsewhere

corresponds to convolution with its impulse response hr(t). Impulse response is an inverse

Fourier transform of a square signal:

hr(t) =
1

2π

∫ ∞

−∞

Hr(jΩs)e
+jωtdω =

1

2π

∫ Ωs/2

−Ωs/2

Te+jωtdω =
T

2π

∫ Ωs/2

−Ωs/2

e+jωtdω =

We know that:
∫ b

−b
e±jxydy = 2b sinc(bx), where ϑ = Ωs/2, y = ω a x = t. We get:

hr(t) =
T

2π
Ωssinc

(

Ωs

2
t

)

= sinc

(

Ωs

2
t

)
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SINC reachs maximum value 1 and is equal to zero at :

Ωs

2
t = π, thus t =

2π

Ωs
=

2πT

T
= T.

This is interesting:

0 ω

ω

−Ω /2 Ω /2

1/T

Hr(j  )

s s

1

0 T 2T-T-3T -2T 3T

The reconstructed signal in time domain is:

xr(t) = hr(t) ⋆ xs(t)
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We skip the proof. We have to note though that when we do convolution with a sequence

of Dirac impulses (xs(t) is such a signal), for each Dirac impulse, we obtain an impulse

responce at each point nT multiplied with the signal’s value at this time point.

For one Dirac in sampled signal:

x(nT )δ(t − nT ) −→ x(nT )sinc

(

Ωs

2
(t − nT )

)

,

For the whole sequence of Diracs all impulse responses add up:

yr =

∞
∑

n=−∞

x(nT )sinc

(

Ωs

2
(t − nT )

)

.

Functions sinc interpolate values between single samples. Each sinc function passes zero

values for all neighboring samples, thus the value of the reconstructed signal at nT is given

by x(nT ) and between samples interpolation is made using mainly two adjusted samples

but also all other samples.
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Reconstruction in time domain

Illustration 1:

Fs = 8000 Hz, Ωs = 16000π rad/s, T = 1/8000 s. We sample signal x(t) = sin(2π600t)

using sample frequency Fs = 600 Hz.

Illustration 2: Fs = 8000 Hz, Ωs = 16000π rad/s, T = 1/8000 s. We sample a square

impuls signal with values 1 at 2T to 5T , and 0 elsewhere.

What happened??? Why the reconstructed signal is not equivalent to the original one?
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Denotation of a sampled signal

signal xs(t) can be expressed as a Dirac impulse with potency equal to xs(nT ). As a

sampled signal is a sequence of numbers - discrete signal, we use standard indeces n:

xs[n].

When working with a sampled signal, we have to know its sampling frequency (implicitly,

T , or explicitly, given in the WAV file header).

When working with a sampled signal, we like to avoid real time nT , and instead work

with n. This can be viewed as normalized time that is obtained by dividing with the

sampling period T :

n =
nT

T
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Thus the sampling period of signal xs[n] becomes 1. Along with time normalization we

need to define normalization of frequency:

• normal fequency: f ′ =
f

Fs
, thus Fs becomes 1.

• circular frequvency: ω′ =
ω

Fs
, thus Fs becomes 2π.

Note that

• For convinience and simplification, simbol ω can denote also normalized frequency

• When we work with normalized frequency, we usually dont consider any information on

sampling period T .

• When we transform original frequency to normalized, the values in spectrum do not

change. Only units and values on x axis change.
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Example 1. We are given a continuous time cosine signal with frequency 100 Hz,

amplitude 5 and zero initial phase. What is its discrete representation with sampling

frequency Fs = 8000 Hz. Plot the signal for n = 0 . . . 200.

Solution: f1 = 100 Hz, ω1 = 200π rad/s, C1 = 5.

x(t) = C1 cos(ω1t + φ1) = 5 cos(200πt).

Normalized frequency is given by : f ′
1 =

f1

Fs
=

100

8000
= 0.0125. ω′

1 = 0.025π.

x[n] = C1 cos(ω′
1n + φ1) = 5 cos(0.025πn).

Matlab: n = 0:100; xn = 5 * cos(0.025 * pi * n); stem(n,xn)
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Example 2. We are given a continuous time cosine signal with frequency 8100 Hz,

amplitude 5 and zero initial phase. What is its discrete representation with sampling

frequency Fs = 8000 Hz. Plot the signal for n = 0 . . . 200.

Solution: f1 = 8100 Hz, ω1 = 16200π rad/s, C1 = 5.

x(t) = C1 cos(ω1t + φ1) = 5 cos(16200πt).

Normalized frequency is given by : f ′
1 =

f1

Fs
=

8100

8000
= 1.0125. ω′

1 = 2.025π.

x[n] = C1 cos(ω′
1n + φ1) = 5 cos(2.025πn).

Matlab: n = 0:100; xn = 5 * cos(2.025 * pi * n); stem(n,xn)
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What happened? Why did we get the same signal?
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