ISS – Numerical exercises I.

Valentina Hubeika, Jan Černocký, FIT BUT Brno

Exercise 1

Given a signal with continuous time:

$$s(t) = \begin{cases} t+1 & \text{for } -1 \le t \le 1\\ 0 & \text{otherwise} \end{cases}$$

- a) draw signal s(t).
- b) draw signals s(t-2), s(t+2), s(-t-2), s(-t+2), s(3t), s(t/3).
- c) draw instantaneous power p(t) graph.
- d) calculate the signal's energy in the interval $t \in [-1, 1]$.
- e) calculate the signal's overall energy E_{∞} and the mean power P_{∞} .
- f) answer: has the signal finite energy?

Exercise 2

Given a descrete signal:

$$s[n] = \begin{cases} 3 & \text{for } n = 0 \\ 2 & \text{for } n = 1 \\ 1 & \text{for } n = 2 \\ 0 & \text{otherwise} \end{cases}$$

- a) draw signal s[n].
- b) draw signals s[n-3], s[n+3], s[-n-3], s[-n+3].
- c) draw instantaneous power p[n] graph.
- d) calculate the signal's overall enerdy E_{∞} and overall mean power P_{∞} .

Exercise 3

Given a periodic signal:

$$s(t) = \begin{cases} 4 & \text{for } 0 < t \le 1\\ -1 & \text{for } 1 < t \le 3 \end{cases}$$

with the fundamental period $T_1 = 3$.

- a) draw signal s(t).
- b) draw signal s(t-1).
- c) calculate mean value of the signal.
- d) draw instantaneous power p(t) graph.
- e) calculate mean power P_s .
- f) calculate the signal's effective value C_{ef} .
- g) calculate the signal's overall energy E_{∞} .

Exercise 4

In the picture, there is a harmonic signal with continuous time $s(t) = C_1 \cos(\omega_1 t + \phi_1)$:

- a) calculate C_1 , ω_1 and ϕ_1 and express the signal by the equation $s(t) = C_1 \cos(\omega_1 t + \phi_1)$.
- b) an alternative form is $s(t) = C_1 \cos[\omega_1(t+\tau_1)]$, where τ_1 is the initial shift. Calculate τ_1 .

Exercise 5

draw signal $s(t) = 5\cos(4\pi t + 1)$.

Exercise 6

Harmonic signals with descrete time have general definition:

$$s[n] = C_1 \cos(\omega_1 n + \phi_1)$$

- . Given a signal with descrete time: $s[n] = 5\cos(\frac{\pi}{6}n)$.
 - a) find initial period N_1 .
 - b) draw signal s[n]. You can use an auxiliary function $\cos(\frac{\pi}{6}t)$.

Exercise 7

Given a harmonic signal with discrete time: $s[n] = \cos(\frac{3\pi}{16}n)$.

- a) find initial period N_1 .
- b) draw signal s[n]. You can use an auxiliary function $\cos(\frac{3\pi}{16}t)$.