ISS - Numerical exercises IV.

Valentina Hubeika, Jan Černocký, FIT BUT Brno

Example 1 - transfer of a harmonic signal through an LTI system

Given a cosine: $x(t)=45 \cos (160 \pi t+0.4 \pi)$. Transfer the signal through an amplifier with amplification 10 at frequency 80 Hz and delay of phase 0.5π. What is the output signal considering that the amplifier is perfectly linear?

Example 2 - sampling

A cosine $(1 \mathrm{kHz})$ given by : $x(t)=10 \cos 2000 \pi t$. is sampled on sampling frequency $F_{s}=8000 \mathrm{~Hz}$.

- Plot the spectrum of the origianl cosine.
- Plot the spectrum of the sampled cosine.
- Signal is reconstructed by ideal low-pass filter with transfer $\frac{1}{8000}$ from -4 kHz to $4 \mathrm{kHz}, 0$ elsewhere. What does the resulting spectrum look like?
- What are the outputs if considered a cosine with angular frequency $\omega_{1}=14000 \pi \mathrm{rad} / \mathrm{s}$?
- Determine normalized frequencies for both cosine functions.

Example 3 - circular convolution

Discrete signals with length $N=4$ are defined for $n=0,1,2,3$:
$x=\left[\begin{array}{llll}0 & 2 & 2 & 0\end{array}\right]$
$y=\left[\begin{array}{llll}-1 & 1 & 0 & 0\end{array}\right]$
Compute their circular convolution.

Example 4 - DTFT

Compute Frourie transform with discrete time of the signal $x[n]$.

Example 5 - DFS

Compute DFT coefficients of the periodized signal $x[n]$ with period $N=4$.

Example 6 - DFT

Compute DFT of the signal $x[n]$.

Example 7 - DFT once more

Compute DFT of a signal of length $N=8: x[n]=5 \cos \left(\frac{2 \pi}{8} n+\frac{\pi}{2}\right)$ for $n=0 \ldots 7,0$ elsewhere.

